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ABSTRACT 
 
 The Internet of Vehicles (IoV) offers various services for road safety and user comfort. 

However, they face security vulnerabilities such as false data injections which need to be 

mitigated for public safety. The security solutions for IoV should have minimal processing 

delay and be scalable to deal with the large-scale IoV. While classical machine learning 

techniques have been adopted for malicious node detection in IoV, these solutions face 

computational challenges and scalability limitations. To deal with these challenges, in this 

paper, we propose a novel quantum-based MaxCut graph detection mechanism for 

identifying malicious nodes transmitting false messages in IoV. As validated by the 

performance evaluation results, the proposed quantum-based detection approach offers 

significantly lower data processing delay compared to the classical approach, especially as 

the data size increases. 
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1. INTRODUCTION 
 

The Internet of Vehicles (IoV) represents a significant advancement over traditional Vehicular 

Ad Hoc Networks (VANETs), enabling seamless real-time communication between vehicles 

(V2V), between vehicles and roadside infrastructure (V2I), and cloud services. These networks 

offer diverse services; they enhance road safety, improve traffic efficiency, and deliver real-time 

updates on traffic conditions, accidents, and emergency events. 

 

Vehicles within this system are equipped with On-Board Units (OBUs), which facilitate the 

transmission and reception of messages from other vehicles and the roadside infrastructure. The 

roadside infrastructure comprises of Road-Side Units (RSUs) strategically deployed along 

roadways, cameras, sensors, and traffic lights. Together, these components ensure efficient 

information dissemination and network reliability [1]. The IoV system underpins essential 

applications, including traffic management, collision avoidance, and autonomous driving, 

contributing to safer and more efficient transportation systems. However, the open and dynamic 

nature of IoV introduces significant security vulnerabilities [2]. Threats such as false data 

injection and malicious node activities pose considerable risks, potentially compromising 

communication reliability, degrading network performance, and endangering public safety. 

 

To address these challenges, researchers have explored various anomaly detection and intrusion 

prevention mechanisms. Classical machine learning algorithms such as Gradient Boosting 
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Decision Trees (GBDT) [3] and Random Forests have been employed for traffic anomaly 

detection and falsification prevention, demonstrating commendable accuracy. Additionally, 

vehicle consensus and clustering techniques such as K-means++ have further improved false 

message separation by optimizing centroid initialization. However, these methods face 

computational bottlenecks, scalability limitations, and delays when applied to large-scale, real-

time IoV environments. 

 

Recent advancements in quantum computing have opened new possibilities for overcoming these 

limitations. Quantum algorithms, particularly those leveraging Variational Quantum Eigen 

solvers (VQE) and quantum clustering frameworks, offer computational advantages in efficiently 

solving combinatorial optimization problems [4]. The Maximum Cut (MaxCut) problem [5], a 

well-known NP-hard problem in graph theory, has been effectively addressed using quantum 

approaches to partition graph nodes based on trust and communication metrics. This formulation 

is highly suitable for distinguishing between honest and malicious nodes in IoV, where each node 

represents a vehicle, and edges represent communication or trust-based connections. 

 

Our approach formulates node classification as a graph partitioning problem, leveraging trust 

metrics, vehicle speed, accelerations, and position as edge weights. By employing a hybrid 

quantum-classical Variational Quantum Eigen solver (VQE) algorithm, we optimize graph 

partitions to separate rogue and legitimate nodes with minimal data processing delay and high 

accuracy.  

 

In this paper, we propose a novel quantum-based MaxCut graph detection mechanism for 

identifying malicious nodes transmitting false or misleading messages within IoV networks. In 

highly dynamic vehicular environments, ensuring the authenticity and reliability of shared 

information such as position, speed, and traffic alerts is critical for maintaining safety and 

communication integrity. However, the open and decentralized nature of IoV systems makes 

them particularly vulnerable to adversarial behaviors, where compromised or rogue nodes may 

inject falsified data to disrupt network operations or mislead nearby vehicles. 

 

To address this challenge, our approach reformulates the problem of malicious node detection as 

a graph-based clustering task. Each vehicle node is represented as a vertex in a fully connected, 

weighted graph, where edge weights are computed using a combination of trust metrics, relative 

speed, acceleration, and positional information. These weights reflect the similarity or 

dissimilarity between pairs of nodes and serve as input to a MaxCut formulation, aiming to 

partition the graph into two disjoint sets such that the sum of weights across the cut is maximized. 

This setup naturally encourages the separation of honest and malicious nodes based on 

anomalous behavior patterns. 

 

To solve the MaxCut problem efficiently, we adopt a hybrid quantum-classical optimization 

strategy using the Variational Quantum Eigensolver (VQE) algorithm. The MaxCut cost function 

is encoded as a quantum Hamiltonian, and a parameterized quantum circuit (ansatz) is optimized 

to find a low-energy eigenstate, corresponding to an optimal or near-optimal cut. By leveraging 

the expressive power of quantum computing and the flexibility of classical optimizers, our 

framework achieves robust classification with minimal data processing latency a critical 

requirement in real-time vehicular networks. The proposed method exhibits the following key 

advantages, which are the contributions to this work: 

 

1. The quantum MaxCut algorithm dynamically adjusts to the ever-changing nature of IoV. 

2. Incorporating multiple trust metrics into edge weight calculations improves detection 

accuracy while maintaining computational efficiency. 
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3. The use of quantum algorithms offers faster convergence and scalability compared to 

traditional clustering methods like K-means++. 

 

We validate our approach using numerical simulations conducted on IBM's Statevector 

Simulator. Performance is evaluated using standard metrics such as accuracy, True Positive Rate 

(TPR), F1 score, and execution time. The results demonstrate that the proposed quantum 

clustering method consistently outperforms classical approaches across varying proportions of 

malicious nodes, maintaining high accuracy and robust scalability. 

 

The rest of this paper is organized as follows: Section 2 discusses related work; Section 3 details 

the proposed quantum-based detection technique; Section 4 presents performance evaluation 

results; and finally, Section 5 provides the conclusions. 

 

2. RELATED WORK 
 

In [6], a hybrid approach is proposed to detect false messages on the IoV by combining traffic 

anomaly detection, vehicle consensus mechanisms, and data clustering. Gradient Boosting 

Decision Trees (GBDT) analyze time-series data to predict normal vehicle densities and identify 

anomalies by comparing predicted and observed values, while Practical Byzantine Fault 

Tolerance (PBFT) validates unclear anomalies through consensus among vehicles. The K-

means++ clustering algorithm then separates malicious from benign messages by analyzing 

deviations from cluster centroids, optimizing centroid initialization probabilistically to improve 

clustering accuracy and reduce suboptimal results. However, the computational demands of 

GBDT and PBFT can introduce latency, and while K-means++ enhances clustering precision, it 

requires higher computational cost compared to the traditional K-means algorithm. 

 

Reference [7] proposes a method for detecting and preventing false nodes and messages in 

VANETs by leveraging a combination of mesh network structures and profile-based evaluation 

techniques. The mesh network ensures consistent connectivity and reduces the risk of frequent 

disconnections. Nodes are monitored using profiles that include attributes such as vehicle ID, 

make, model, location, and performance history, which are evaluated through a reward/penalty 

system. Nodes that fail to meet the defined threshold are reported as fake to RSUs and 

eliminated. To prevent the propagation of malicious data, messages are similarly assessed using 

their profiles, which include attributes like message ID, routing details, and reward/penalty 

scores. Messages identified as fake are promptly removed from the network, enhancing overall 

communication reliability. The limitation of this approach includes lack of scalability and 

infrastructure dependance resulting in large propagation delays. 

 

In [8], the Randomized Search Optimization-based Ensemble Falsification Detection System 

(RSO-FDS) was proposed. This system leverages an ensemble Random Forest (RF) classifier, 

enhanced with hyperparameter tuning through Randomized Search Optimization (RSO), to detect 

falsified data in (IoV). The model evaluates Basic Safety Messages for anomalies and 

disseminates alerts across the IoV network. Performance was assessed using datasets such 

as VeReMi, BurST-ADMA, and V2X. fabrication. Despite its strengths, the RSO-FDS 

requires hyperparameter tuning, a computationally intensive process that introduces high latency, 

making it less suitable for the real-time demands of VANETs. While the model demonstrates 

strong performance in addressing known falsification scenarios, its scalability and adaptability to 

the dynamic and evolving IoV environment remain uncertain. 

 

In [9] the Secure Vehicular Quantum Communication Protocol (SVQCP) is proposed as a 

security mechanism that leverages the entanglement property of qubits, a fundamental principle 

of quantum mechanics, to prevent collisions and detect falsification in vehicular networks. The 
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protocol ensures the secure distribution of shared traffic signals using Quantum Fourier 

Transform (QFT). The Traffic Control System (TCS) generates a single secret signal and 

securely distributes portions of it to participating vehicles. These vehicles then collaborate to 

reconstruct the original signal. Successful reconstruction verifies their legitimacy, while any 

failure in this process identifies the vehicle as falsified or dishonest. Though the method ensures 

secure and reliable communication, the protocol demands significant quantum resources, which 

poses challenges for scalability. 

 

In [10], the authors propose a hybrid quantum-classical intrusion detection system that integrates 

the strengths of quantum computing and classical machine learning is proposed. Their approach 

utilizes Quantum Neural Networks (QNNs), beginning with the encoding of features into 

quantum states, followed by the design of a parameterized quantum circuit optimized iteratively 

to minimize a loss function. The system demonstrates strong performance, reducing 

computational time and overhead while maintaining high detection accuracy compared to 

traditional neural networks. However, while the model excels at detecting well-known attack 

patterns, the dynamic and unpredictable nature of VANETs demands a more adaptable and 

resilient system capable of identifying emerging and previously unseen threats in real time. 

 

Reference [11] introduces three hybrid quantum KMeans algorithms that enhance clustering 

efficiency by integrating quantum computation into key steps. Quantum circuits calculate 

Euclidean distances using amplitude encoding and FF-QRAM, while the centroid update step 

remains classical, and the cluster assignment step is accelerated with quantum circuits. The three 

variants: q1:1-KMeans, q1, and qM differ in how they handle record-to-centroid assignments, 

either one-to-one, one-to-many, or many-to-many. Preprocessing with Inverse Stereographic 

Projection reduces feature dimensions and improves centroid initialization. However, the method 

relies heavily on post-selection, where invalid quantum states are discarded after measurement. 

As the number of qubits increases, the quantum state space grows exponentially, reducing the 

probability of obtaining valid results. This issue worsens when data sizes do not align with 

powers of two, causing misalignment with the quantum circuit structure and increasing invalid 

outcomes. Consequently, repeated circuit executions are required, impacting both efficiency and 

scalability. 

 

These studies have several common limitations that include high computational overhead, 

scalability constraints, dependence on extensive infrastructure, and challenges adapting to the 

dynamic nature of IoV networks. Many classical methods introduce significant latency (e.g., 

GBDT, RSO-FDS) and face difficulties in large-scale deployment (e.g., profile-based 

evaluation). While quantum-based approaches demonstrate potential, they encounter scalability 

issues due to hardware limitations and inefficiencies associated with post-selection. 

 

To address the above challenges in detecting malicious nodes within the IoV, we propose a novel 

quantum-enhanced MaxCut clustering method. This approach leverages the adaptability and 

computational efficiency of quantum algorithms to effectively identify and isolate malicious 

nodes in IoV networks. By integrating quantum computing principles, our method aims to 

enhance detection accuracy and scalability, addressing the limitations of classical approaches in 

dynamic and large-scale IoV environments. Unlike classical clustering techniques, which may 

struggle with the dynamic and unpredictable nature of IoV topologies, our method seamlessly 

adjusts to changes in network structure, ensuring robust detection capabilities in highly mobile 

environments. The integration of quantum-enabled MaxCut algorithms brings significant 

computational advantages over classical methods. Quantum algorithms excel at handling large 

and complex graph structures with improved scalability, making them particularly well-suited for 

large-scale IoV deployments where node density and communication patterns vary frequently. 
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Moreover, the computational efficiency of our quantum-based method is independent of feature 

dimensions, ensuring robust performance even as the complexity of the data increases. 

 

3. METHODOLOGY 
 

The proposed quantum-enabled clustering method targets the classification of nodes in Internet of 

Vehicles (IoV) environments by leveraging the MaxCut framework a classical NP-hard problem 

in combinatorial optimization. In this context, the MaxCut problem seeks to divide a network of 

vehicles into two disjoint clusters (e.g., honest vs. malicious) such that the sum of dissimilarities 

(edge weights) between nodes in opposite clusters is maximized. In the IoV context, this 

corresponds to identifying an optimal separation between potentially malicious and honest nodes 

based on their behavioural or contextual features. 

 

In classical computing, the time complexity of solving the MaxCut problem is 𝑂(𝑛3), which can 

become computationally prohibitive in the dynamic and time-sensitive environment of IoV. 

These networks demand real-time decision-making, where delays can compromise 

communication reliability and network performance. We Propose a quantum-based approach to 

solve the MaxCut problem and apply it to the classification of nodes in IoV. By leveraging 

quantum algorithms, we can efficiently partition the graph representing the network into two 

groups, distinguishing between honest and malicious nodes. This quantum approach provides a 

significant advantage in handling the dynamic and time-sensitive nature of IoV, offering faster 

and more accurate solutions compared to traditional methods. 

 

3.1. Problem Mapping: MaxCut Formulation for Clustering of  IoV Nodes 
 

Let 𝐷 = {𝑥1, 𝑥2…𝑥𝑛} denote the set of IoV node’s data, where each 𝑥𝑖∈ 𝑅𝑑 is a feature vector 

representing the 𝑖𝑡ℎ vehicle and d is the feature vector dimension. These features may include 

physical and behavioral attributes such as position, velocity, acceleration, and direction. To 

ensure that all features contribute proportionally to the clustering process, we apply min-max 

normalization to each dimension of the feature vectors: 

 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−min⁡(𝑥𝑗)

max(𝑥𝑗)−min⁡(𝑥𝑗)
                                                                                (1) 

 

Where 𝑥𝑖𝑗 is the 𝑗𝑡ℎ feature of the⁡𝑖𝑡ℎnode, and min(𝑥𝑗) ,max(𝑥𝑗) are the minimum and 

maximum values of feature 𝑗 across the dataset. This normalization rescales all features to the 

range [0,1], ensuring that features with large numeric ranges (e.g., position) do not dominate over 

others (e.g., acceleration). 

 

Using the normalized vectors, we compute the pairwise distances 𝑤𝑖𝑗 = 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗). (using 

Euclidean distance) to quantify behavioural dissimilarity between vehicles. We use Euclidean 

distance quantify differences in position, speed and acceleration: 

 

𝑤𝑖𝑗 =⁡√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑘                                                                             (2) 

 

Where 𝑤𝑖𝑗 distance between  𝑖𝑡ℎ ⁡and  𝑗𝑡ℎ feature vector, 𝑥𝑖𝑘, 𝑥𝑗𝑘 are the  𝑘𝑡ℎ feature (e.g., speed) 

of node 𝑖 and j respectively. Higher weights indicate greater behavioral divergence. 

 

Attributes such as GPS consistency, message frequency, and signal strength play a critical role in 

refining edge weights to enhance detection accuracy. For instance, a malicious node attempting to 
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spoof its location may exhibit discrepancies between its reported GPS coordinates and positions 

inferred via neighboring node, resulting in elevated edge weights to honest vehicles. Similarly, 

sudden acceleration or deceleration spikes inconsistent with surrounding traffic patterns can 

further increase these weights, signaling anomalous behavior.  

 

These distances define the edge weights in an undirected, weighted graph  𝐺 = (𝑉, 𝐸), where 

each node 𝑣𝑖⁡ ∈ V corresponds to vehicle 𝑣𝑖⁡, and each edge (𝑖, 𝑗) ∈ 𝐸𝑖𝑗 is weighted by 𝑤𝑖𝑗. This 

graph structure provides the basis for formulating the MaxCut clustering problem. Figure 1 

illustrates the MaxCut problem representation of IoV environment. 
 

 
 

Figure 1 Malicious node detection in IoV using MaxCut 

 

Traditional machine learning methods such as KMeans, Gradient Boosting Decision Trees 

(GBDT), and Random Forests are inherently limited when applied to the highly dynamic nature 

of the Internet of Vehicles (IoV). These approaches operate on static datasets and are not 

designed to update their internal state in real time. In environments where vehicle behaviour (e.g., 

speed, acceleration, GPS position) can change every second, such models struggle to incorporate 

new data without complete or partial retraining, leading to significant delays. 

 

To support the highly dynamic nature of IoV environments, our model continuously recalculates 

these edge weights in real time. As vehicles move, change speed, or experience connectivity 

fluctuations, the feature vectors are updated at regular time intervals, and the graph representation 

is refreshed accordingly. This ensures that transient malicious behaviors such as short bursts of 

false data injections are not overlooked, while persistent anomalies are reinforced through 

consistently elevated edge weights.  
 
By contrast to the traditional approach, our proposed quantum-based MaxCut approach 

recalculates edge weights in real time and reformulates the graph as a Hamiltonian, which is then 

solved using a variational quantum eigensolver (VQE). This allows the model to adapt instantly 

to transient anomalies without costly reprocessing, enabling rapid detection of both short-lived 

and persistent malicious behaviors. This dynamic adaptivity, coupled with the efficient structure 

of quantum circuits, offers a substantial advantage over classical approaches in real-time IoV 

security scenarios. 

 

Once the updated weight matrix is established, the graph is re-encoded into the MaxCut 

Hamiltonian and passed through the VQE. The quantum component thus operates on the most 
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recent behavioral snapshot of the network, allowing for timely and accurate partitioning of 

malicious and honest nodes. This tight feedback loop between real-time edge weight updates and 

quantum optimization enables the system to maintain robust detection accuracy under fast-

changing conditions, making it especially well-suited for real-world vehicular network security 

scenarios. 

 

In [11], the classical MaxCut cost function C is given by: 

    

𝐶 =
1

2
∑ 𝑤𝑖𝑗(1 − 𝜎𝑧

𝑖𝜎𝑧
𝑗
)(𝑖,𝑗)𝜖⁡𝐸 ⁡⁡⁡                                                             (3) 

 

 

Where𝑤𝑖𝑗⁡is⁡a⁡pairwise⁡similarity⁡distance. σ𝑧⁡𝜖⁡{+1,−1}. The term 𝑤𝑖𝑗(1 − 𝜎𝑧
𝑖𝜎𝑧

𝑗
) in the cost 

function C evaluates how the edge weight 𝑤𝑖𝑗  contributes to the total energy based on the nodes 

assignments as follows: 

 

Case(i): 𝜎𝑧
𝑖 ⁡≠ 𝜎𝑧

𝑗
  nodes 𝑖 and 𝑗 belong to different clusters and the term (1 − 𝜎𝑧

𝑖𝜎𝑧
𝑗
) becomes 2. 

In this case, the energy contribution corresponding to the vertex is maximized.  

 

Case(ii):  𝜎𝑧
𝑖 = 𝜎𝑧

𝑗
  nodes 𝑖 and 𝑗 belong to the same cluster and the term (1 − 𝜎𝑧

𝑖𝜎𝑧
𝑗
) becomes 0. 

In this case, the energy contribution corresponding to the vertex is zero.  

 

By finding the optimal separation of the nodes we will get the maximum value of C.  Finding all 

the combinations of clustering using the brute force approach is impractical for larger networks. 

So, we convert this cost function into the quantum framework. 

 

3.2. Quantum Reformulation: Hamiltonian Encoding 
 

In quantum mechanics, a Hamiltonian (H) represents the total energy of a system, including both 

kinetic and potential energies. For computational problems like MaxCut, the Hamiltonian is 

mathematically constructed so that its ground state (lowest energy state) corresponds to the 

optimal solution of the problem. This mapping is made possible by translating the MaxCut 

problem into a physical system where different states represent possible solutions, and the energy 

levels correspond to the cost function values of those solutions. 

 

Quantum computer is designed to find minima (typically the lowest energy state of a system) 

rather than maxima. Therefore, instead of directly maximizing the objective function C in the 

MaxCut problem, we minimize a corresponding Hamiltonian H. 

 

𝑀𝑖𝑛⁡𝐻 = ⁡−𝐶                                                                                       (4) 

 
In Equation 2, Hamiltonian is constructed to encode the MaxCut problem such that minimizing 

its energy corresponds to maximizing the cut. 

 

3.3. Illustrative Example: MaxCut Hamiltonian Construction from IoV Data 
 

To demonstrate the proposed method, consider a simple Internet of Vehicles (IoV) environment 

with three vehicles, each characterized by two features: position (in coordinates) and speed (in 

miles per hour).  

Step 1: Feature Extraction and Normalization 
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let the feature vectors are: 𝑥0 = [100, 30], 𝑥1 = [200, 40], 𝑥2 = [150, 80] Applying min-max 

normalization feature-wise: 

 

 For position: min⁡ = ⁡100, max⁡ = ⁡200 

 For speed: min⁡ = ⁡80, max⁡ = ⁡30 

The normalized feature vectors are: 

𝑥′2 = [
150−100

200−100
,
80−30

80−30
] = [0.5,1]  like wise  𝑥′0 = [0,0] and 𝑥′1 = [1,0.2] 

 

Step 2: Distance matrix calculation 

Compute the distance between  𝑥0⁡ and 𝑥1 

 

𝑤01 = √(0 − 1)2 + (0 − 0.2)2⁡ = 1.02, like wise  𝑤12 = 0.94, 𝑤02 = 1.12 

The distance matrix 𝑊 = [
0 1.02 1.12

1.02 0 0.94
1.12 0.94 0

] 

 

Step 3: Classical MaxCut Cost Function 

cost function  𝐶 =
1

2
⁡[1.02(1 − σ𝑧

0σ𝑧
1) + ⁡1.12(1 − σ𝑧

0σ𝑧
2) + 0.95(1 − σ𝑧

1σ𝑧
2)] 

                      𝐶 = 1.54 − 0.54⁡σ𝑧
0σ𝑧

1 − 0.56⁡σ𝑧
0σ𝑧

2 − 0.47σ𝑧
1σ𝑧

2 
 

Step 4: Hamiltonian Construction for Quantum Solver 

The problem Hamiltonian is defined as: 𝐻 = −𝐶, 𝐻 = 0.54𝑍0𝑍1 + 0.56𝑍0𝑍2 + 0.47𝑍1𝑍2 −
1.54𝐼   Where: 𝑍0, 𝑍1,𝑍2 are Pauli Z operator acting on the corresponding qubit.  

 

3.4.  Quantum implementation  
 

To find the ground state energy of H and its corresponding ground state we use the Variational 

Quantum Eigen solver (VQE) algorithm, leveraging quantum principles to efficiently optimize 

the separation. The VQE is a hybrid quantum-classical algorithm designed to find the ground 

state energy of a Hamiltonian efficiently. In this method, A quantum circuit is constructed to 

represent the trial wavefunction ∣ψ(θ)⟩, where θ is a set of adjustable parameters. This circuit is 

known as an ansatz. 

 

The ansatz prepares the state ∣ψ(θ)⟩ and measures the expectation value of the Hamiltonian 

⟨ψ(θ)∣H ∣ψ(θ)⟩. So, choosing the ansatz is more crucial to get the accurate result. We choose 

Matrix product state (MPS) ansatz [12] to prepare the trial state. The MPS ansatz circuit shown in 

Figure 2 is structured as a sequence of alternating layers of rotations gates and nearest-neighbor 

entangling gates (two qubit gates such as CNOT, CZ). Each qubit first undergoes parameterized 

single-qubit rotations using 𝑅𝑦(θ)⁡gates, which control the local amplitudes associated with the 

qubit’s state. After the local rotations, entangling gates are applied only between neighboring 

qubits (e.g., between 𝑞0 and 𝑞1, then 𝑞1 and 𝑞2, and so on). This local entanglement is introduced 

incrementally across layers, using a staggered pattern that ensures all adjacent qubit pairs become 

entangled over time. The repetition of this structure across multiple layers increases the 

expressive power of the ansatz without significantly increasing circuit depth. Because of its 

strictly local connectivity and shallow depth, this MPS ansatz is efficient to implement on NISQ 

hardware and naturally suited to graph-based problems.  

 

Once ansatz prepares the state ∣ψ(θ)⟩ and measures the expectation value of the Hamiltonian 

⟨ψ(θ)∣H ∣ψ(θ)⟩. Since direct measurement of H is not feasible, the Hamiltonian is in the form a 

sum of measurable terms (e.g., Pauli operators) such that 𝐻 = ∑ 𝑎𝑘𝑃𝑘,𝑘  where 𝑃𝑘 is a tensor 
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product of single-qubit Pauli operators such as I,Z and 𝑎𝑘 are real coefficients. The expectation 

value of H is then computed by individually measuring the expectation values of each 𝑃𝑘 term. 

After collecting all term-wise expectation values, they are aggregated classically to compute the 

total expectation value ⟨ H ⟩. This value is then fed to a classical optimizer, which updates the 

parameters θ to reduce the expectation value further. 

 

 
 

Figure 2 MPS ansatz  

 

In this work, we utilize the Simultaneous Perturbation Stochastic Approximation (SPSA) 

algorithm [13] as the classical optimizer within the VQE loop. SPSA is a stochastic gradient-

based optimization method known for its efficiency and robustness in high-dimensional, noisy 

optimization problems making it particularly well-suited for variational quantum algorithms on 

NISQ devices. 

 

Upon convergence, the optimized parameters θ∗ define a quantum state  ∣ ψ(θ∗)⟩  that 

approximates the ground state of 𝐻, and the measurement outcomes can be decoded to determine 

the final cluster assignments (e.g., honest vs. malicious nodes in IoV). This method is outlined in 

the following algorithm. 

 
Algorithm 1: VQE for Binary Clustering 

Input: Dataset D 

Output:  Classification label (honest/malicious) 

 1: 𝑛 = 𝑙𝑒𝑛(𝐷) 
   2: 𝑊𝑛⁡𝑋⁡𝑛 = 0 

 3: for each 𝑖 from 1 to 𝑛 

4:       for each 𝑗 from 1 to 𝑛 

5:            𝑊[𝑖, 𝑗] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡(𝐷[𝑖] − 𝐷[𝑗]) 
6:       end for 

7: end for 

8:  𝐻 =⁡Hamiltonian (𝑊) 
9:  Initialize the ansatz with default parameter (θ) 

 10   prepare the state ⟨ψ(θ)∣ H ∣ψ(θ)⟩ 
 11: for each iteration until  𝑚𝑖𝑛𝑖𝑚𝑢𝑚(⟨ψ(θ)∣ H ∣ψ(θ)⟩) 
 12:         Adjust the θ value 

 13:         ∣output⟩ = measure ⟨ψ(θ)∣ H ∣ψ(θ)⟩   
 14: end for 

 15: for each 𝑖⁡from 1 to 𝑙𝑒𝑛(output)     

 16:         if output⁡[i] == 1 

 17:              𝐷[𝑖] is a honest vehicle 

 18:         else  

 19:             𝐷[𝑖] is a malicious vehicle 

 20:         end if 

 21: end for 

 22: end 
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Algorithm 1 presents a VQE-based binary clustering approach for detecting malicious nodes in 

IoV environments. Given a dataset 𝐷 consisting of feature vectors for each vehicle, the algorithm 

first constructs a pairwise distance matrix 𝑊, where each entry represents the dissimilarity 

between two vehicles. This matrix is then encoded into a cost Hamiltonian 𝐻 representing a 

MaxCut problem, which aims to partition the nodes into two honest and malicious clusters based 

on their feature distances. An ansatz (parameterized quantum circuit) is initialized with default 

parameters θ, and the expectation value ⟨ψ(θ)∣H∣ψ(θ)⟩ is iteratively minimized using a classical 

optimizer. Once the optimal parameters are found, the quantum state is measured to produce a 

binary output indicating the cluster assignment for each vehicle. Nodes corresponding to output 

bit '1' are labeled as honest, while those with bit '0' are identified as malicious. This approach 

leverages quantum optimization to efficiently detect anomalous behavior in a scalable and noise-

resilient manner, suitable for real-time IoV security applications. 

 

3.5. Complexity Analysis 

 
Circuit Depth (d): The depth of the quantum circuit depends on the number of layers 𝑙 in the 

ansatz and  𝑔  is the maximum number of gate operations per layer. Therefore, the total circuit 

depth is approximately: 𝑑 = 𝑙. 𝑔 

 

Number of Qubits (N): The number of qubits used in the quantum circuit depends on the size of 

the problem. In our case, this scales linearly with the size of the dataset (i.e., the number of 

vehicles) 

 

Overall Complexity: 𝑂(𝑚. 𝑑) Let 𝐿⁡ is number of layers. Which depends on the complexity of the 

problem and m is the number of iterations to optimize the parameters.it depends on number of 

parameters and the initial point of gradient and the classical optimizer.  

 

Let the  𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = (2𝑁 − 2)⁡. (𝑙 + 1) then 

𝑚 ∝ N                                                                                                          (5) 

𝑚 = 𝑜𝑝𝑐𝑜𝑛𝑠𝑡⁡. 𝑁⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑑. 𝑜𝑝𝑐𝑜𝑛𝑠𝑡⁡. 𝑁                                                                     (7) 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐶𝑜𝑛𝑠𝑡⁡. 𝑁                                                                           (8) 

⁡⁡⁡⁡⁡⁡⁡⁡𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝑁)  polynomial. 

 

4. PERFORMANCE ANALYSIS 
 

We present numerical simulations using data generated with the SUMO simulator, from which 

we obtain numerical estimates of the quantum running time. These simulations were conducted 

on a classical computer that emulates the quantum steps in an ideal, noise-free environment. 

 

4.1. Simulation Setup 
 

We generate traces of vehicle movements using SUMO [14], comprising of speed, position, and 

acceleration importing a map of the city of Stillwater, Oklahoma, United States of America from 

OpenStreetMap. The vehicles in the simulation scenario travel at speeds in the 40-50 mph range. 

The legitimate vehicles transmit their actual speeds in the BSMs, while the malicious vehicles 

transmit false information to create the illusion of false road congestion. We use IBM’s 

StatevectorEstimator [15] to execute the quantum model. StatevectorEstimator is a widely used 

quantum simulation tool provided by IBM designed to emulate the behaviour of quantum 

circuits. Unlike physical quantum processors, which are subject to noise and gate errors, the state 
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vector simulator operates in an idealized environment that assumes perfect quantum states. This 

allows for the precise execution of algorithms. 

 

4.2. Performance Metrics 
 

The following metrics were used to evaluate the performance of quantum-enabled clustering in 

comparison to classical KMeans clustering (as discussed in Section I). 

 

Data processing delay: This metric quantifies the time required for the model to classify each 

node as either malicious or honest.  

 

Data processing time: The duration required to execute the clustering algorithm and classify 

nodes as either rogue and honest nodes refer data processing time or latency. A low latency 

clustering approach ensures prompt identification and isolation of malicious nodes, minimizing 

potential damage or disruptions to network performance and safety. Conversely, higher latency 

indicates delayed processing and increased vulnerability. 

 

Accuracy: The ratio of correctly classified instances (both rogue and honest nodes) to the total 

number of instances.  

 

F1 Score: The F1 Score is the harmonic mean of precision and recall (TPR), balancing the trade-

off between them. It is defined as 

𝐹1⁡𝑆𝑐𝑜𝑟𝑒 = 2⁡𝑋⁡
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡𝑋⁡𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

       Where precision measures the proportion of correctly identified positive instances among all 

instances predicted as positive. It is calculated as 

 

Precision =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

The F1 Score is useful when the data is imbalanced, as it considers both false positives and false 

negatives. In malicious node prediction, where precision and recall are equally important, a high 

F1 Score indicates a well-performing model. 

 

True Positive Rate (TPR): TPR also known as sensitivity or recall, measures the proportion of 

actual malicious nodes that are correctly identified by the model. It is defined as: 

 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

It quantifies the model’s ability to detect malicious nodes effectively. High TPR indicates that the 

model successfully identifies most rogue nodes, a critical feature for security-sensitive 

applications. 

 

False Positive Rate (FPR): FPR also known as fall-out, measures the proportion of rogue nodes 

that are incorrectly classified as malicious by the model. It is defined as: 

 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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It quantifies the model’s ability to detect malicious nodes effectively. Low FPR indicates that the 

model successfully identifies most rogue nodes, a critical feature for security-sensitive 

applications. 

 

4.3. Results 
 

4.3.1. Date Processing Delay 

 

The execution time for large data sizes was evaluated using the theoretical assumption of CLOPs 

(Circuit Layer Operations per Second), which is a standard metric in quantum computing to 

measure the performance of quantum processors [16]. The IBM Strasbourg QPU has a CLOPs 

rating of 37,000 CLOPs, and for efficient data processing, we assumed the quantum circuit depth 

to be 𝑙𝑜𝑔2 𝑛⁡layers. This assumption is based on the standard theoretical models for quantum 

circuit complexity and execution time, described in [17] which are used to estimate the ideal 

processing time under optimal conditions. While real-world quantum computers face issues like 

noise and decoherence, these factors are not accounted for in this theoretical framework. Thus, 

the execution times we report are intended as theoretical upper bounds, demonstrating the 

quantum model's potential scalability without the interference of practical limitations. 

 

While the execution time of the classical k-means algorithm is highly dependent on the choice of 

initial centroids, we averaged the execution time over 100 runs to ensure reliability and 

consistency in our measurements. Figure 3 shows that as data size increases, the prediction time 

for the classical model grows significantly, whereas the quantum model remains nearly constant 

with minimal increase. The quantum model demonstrates advantage in scalability, maintaining 

efficient prediction times even as the data size grows. This suggests that quantum computing can 

handle large datasets more effectively in real-time applications for rogue node detection. 

 

 
 

Figure 3 Data processing time Analysis 

 

4.3.2. Accuracy 

 

Quantum computers have the potential to globally optimize solutions due to their ability to 

evaluate all possibilities simultaneously. The expected high accuracy is aligned with theoretical 

models of quantum advantage, which suggest that, under ideal conditions, quantum models 

outperform classical ones in certain types of optimization tasks. Thus, we assumed the quantum 

model’s accuracy would remain high across malicious rates, which has been observed in other 

theoretical and experimental studies of quantum. On the other hand, classical K-Means explores 
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the solution space iteratively, reassigning points to clusters based on local decisions. It is prone to 

converging to local minima, depending on the initial random starting points. Figure 4 shows that 

the proposed quantum model maintains a consistently high accuracy, close to 1, across different 

malicious node rates, whereas the classical model’s accuracy decreases steadily as the malicious 

node rate increases. The quantum model exhibits superior robustness in maintaining high 

accuracy across varying malicious node rates.  

 

 
 

Figure 4 Impact of Malicious node rate on Detection Accuracy 

 

4.3.3. F1 Score 

 

The F1 score is a key metric for measuring the effectiveness of classification models. The 

expected high F1 score for the quantum model assumes that quantum clustering can identify 

malicious nodes with greater precision and recall, as it can evaluate a larger solution space and 

overcome the limitations of classical algorithms. Classical K-Means, while effective, often 

suffers from errors introduced by random initialization, which would result in a lower and more 

stable F1 score. These results highlight the potential of our quantum enabled clustering model as 

an effective solution for detecting false nodes in the IoV environment 

 

 
 

Figure 5 F1 Score Variation with Malicious node rate 
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Figure 5 demonstrates the F1 score comparison between quantum and KMeans clustering which 

highlights the superior detection performance and stability of the quantum-based clustering 

method over classical KMeans, in scenarios with varying levels of malicious activity. 

 

4.3.4. TPR 

 

The proposed method’s TPR remains consistently high, close to 1, across different malicious 

node rate percentages. This stability suggests that the quantum algorithm is robust and effective 

at detecting rogue nodes, regardless of the malicious node rate in the network. The classical 

algorithm, which hovers around 0.5 across all malicious node rate percentages. This indicates that 

the classical approach has limited effectiveness in accurately identifying malicious nodes. 

 

 
 

Figure 6 True Positive Rate across different Malicious node rates 

 

Figure 6 compares the TPR of the quantum and classical models with respect to the varying 

malicious node rate in the dataset. The quantum model maintains a high and consistent TPR 

across varying malicious rates, demonstrating its robustness in detecting malicious nodes. In 

contrast, the classical model shows a significantly lower TPR, indicating its limited effectiveness 

in identifying malicious nodes as the malicious node rate increases. 

 

4.3.5. FPR 

 

The proposed method’s FPR remains consistently low, close to 0.01, across different malicious 

node rate percentages. This stability suggests that the quantum algorithm is robust and effective 

at detecting rogue nodes, regardless of the malicious node rate in the network. The classical 

algorithm, which hovers around 0.5 across all malicious node rate percentages. This indicates that 

the classical approach has limited effectiveness in accurately identifying malicious nodes. Figure 

7 compares the FPR of the quantum and classical models with respect to the varying malicious 

node rate in the dataset. The quantum model maintains a low and consistent FPR across varying 

malicious rates, demonstrating its robustness in detecting malicious nodes. In contrast, the 

classical model shows a significantly higher FPR, indicating its limited effectiveness in 

identifying malicious nodes as the malicious node rate increases. 
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Figure 7 False Positive Rate across different Malicious node rates 

 

5. CONCLUSIONS 
 

In this paper, we proposed a quantum enabled clustering mechanism for identifying malicious 

nodes in the IoV. Our approach leverages the VQE to solve the MaxCut problem efficiently, 

offering significant advantages in terms of scalability and computational efficiency over KMeans 

clustering algorithm. The proposed method dynamically adapts to the changing nature of IoV, 

and significantly reduces data processing delay compared to classical clustering techniques. 

Performance evaluations conducted using numerical simulations on IBM’s Statevector Simulator 

demonstrated that our quantum clustering approach consistently outperforms classical K-means 

clustering in terms of accuracy, true positive rate (TPR), F1-score, and execution time. The 

quantum method exhibited robust performance even as the malicious node rate increased, 

maintaining high detection accuracy and efficient execution times. The results validate the 

feasibility of using quantum computing for real-time security applications in IoV, making it a 

promising approach for large-scale vehicular networks. 

 

Our experiments were conducted on an idealized quantum simulator, assuming a perfect quantum 

environment. Future work will focus on testing the method on real quantum hardware to evaluate 

its performance in the presence of noise and quantum decoherence. Additionally, further research 

should explore error mitigation techniques and fault-tolerant strategies to enhance the robustness 

of the method when deployed on near-term noisy quantum devices. This will ensure its practical 

applicability in real-world quantum computing scenarios. 
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