
Deep Learning Aided Software Vulnerability
Detection: A Survey

Md Nizam Uddin, Yihe Zhang, and Xiali Hei

University of Louisiana at Lafayette, Lafayette LA 70503, USA

Abstract. The pervasive nature of software vulnerabilities has emerged as a primary factor for the surge in
cyberattacks. Traditional vulnerability detection methods, including rule-based, signature-based, manual
review, static, and dynamic analysis, often exhibit limitations when encountering increasingly complex
systems and a fast-evolving attack landscape. Deep learning (DL) methods excel at automatically learning
and identifying complex patterns in code, enabling more effective detection of emerging vulnerabilities.
This survey analyzes 34 relevant studies from high-impact journals and conferences between 2017 and
2024. This survey introduces the conceptual framework “Vulnerability Detection Lifecycle” for the first
time to systematically analyze and compare various DL-based vulnerability detection methods and unify
them into the same analysis perspective. The framework includes six phases: (1) Dataset Construction, (2)
Vulnerability Granularity Definition, (3) Code Representation, (4) Model Design, (5) Model Performance
Evaluation, and (6) Real-world Project Implementation. For each phase of the framework, we identify and
explore key issues through in-depth analysis of existing research while also highlighting challenges that
remain inadequately addressed. This survey provides guidelines for future software vulnerability detection,
facilitating further implementation of deep learning techniques applications in this field.

Keywords: Deep learning, Vulnerability detection, Application security, Cyberattack.

1 Introduction

Cyberattacks, which are reported to occur approximately every 39 seconds, causing an
average loss of $2.6 million per incident and impacting over 800,000 victims annually, have
imposed a significant financial burden on companies and governments [1]. These attacks
involve attackers gaining unauthorized access or exploiting malicious actions through soft-
ware vulnerabilities (e.g., weaknesses and flow) in a computer system. The vulnerabilities
that arise from inadvertent software practices contribute to programmer cognition failures
during design or implementation and are often introduced during the development pro-
cess. Moreover, with the abundance of software reuse in this era of Open Source Software
(OSS) development, the dissemination of vulnerabilities has presented a tougher challenge
to security experts than ever [2].

A multitude of sophisticated methodologies have been proposed to address the perva-
sive issue of software vulnerability. In order to find potential vulnerabilities, static analy-
sis [3] entails carefully reviewing source code or compiled code. Dynamic analysis [4] entails
executing the program and meticulously analyzing its runtime behavior to detect vulner-
abilities. Furthermore, Fuzz testing [5] involves generating random inputs to a program to
uncover vulnerabilities that can be triggered by unforeseen inputs.

Software vulnerabilities continue to be a serious hazard to computer systems even with
the effectiveness of these solutions. This is caused by the complexity of software systems
and the dynamic character of cyber-attacks [6]. Hence, the development of new, reliable
techniques that need less human labor and produce high levels of accuracy in software
vulnerability identification is required. Academics are increasingly exploring the applica-
tion of deep learning (DL) techniques for precise and automated vulnerability detection,
inspired by the remarkable success of DL in various fields, including computer vision and

David C. Wyld et al. (Eds): CSIT, AMLA, IPDCA, NLPA, AIS, IPPR, SPTM – 2025
pp. 01-20, 2025. - DOI: 10.5121/csit.2025.151401CSCP 2025CS & IT

https://doi.org/10.5121/csit.2025.151401
https://airccse.org/csit/V15N14.html
https://airccse.org

Dataset
Construction

 Vulnerability
Granularity
Definition

 Code
Representation

 Model
Design

 Model
Performance
Evaluation

 Real-world
Project

Implementation
Fig. 1: Lifecycle of deep learning-based source code vulnerability detection.

natural language processing [7]. Production softwares are susceptible to numerous security
vulnerabilities, which may be identified through internal evaluations of proprietary code or
publicly reported in the Common Vulnerabilities and Exposures (CVE) database [8]. These
vulnerabilities frequently elude developers and code evaluators due to their subtle nature.
However, with so much open-source code available for analysis, there is an opportunity to
learn about defect trends.

The two complementary methods, static analysis and dynamic analysis of source code,
are used to find program vulnerabilities. Both methods, however, have the potential to yield
erroneous positives and false negatives. On the other hand, Fuzzing is a method for finding
software flaws by creating and feeding unexpected data. It requires a lot of resources and
time, yet it can produce false positives or miss some types of vulnerabilities, consequently
incurring high human intervention and demanding expertise to produce good results.

Deep learning techniques, with their prominent success in almost every aspect of sci-
entific research, are no different in the field of source code vulnerability detection but
with some weaknesses and challenges to overcome. The significance of this challenge has
made it a prominent focus of recent studies. Accordingly, a comprehensive review has been
conducted here, encompassing 34 studies published in esteemed journals and conference
proceedings of IEEE, ACM, Springer, and Google Scholar between 2017 and 2024.

With the proliferation of research in this field of study, no one has comprehensively
carried out a systematic literature review that presents the life cycle of DL-based source
code vulnerability detection. By making the following contribution, our study intends to
fill up the gaps in existing review articles:

• Firstly, we define the complete life cycle and core components of source code vulnerability
detection using deep learning, as shown in Fig. 1.

• Secondly, we summarize core components by studying how the existing literature ad-
dressed each of the components and what their work methodology is within the compo-
nent alongside their faced challenges.

• Finally, we discuss key challenges and pin down outstanding research gaps with potential
future research direction.

2 Computer Science & Information Technology (CS & IT)

The remainder of this paper is organized as follows: Section 2 provides an overview of
the lifecycle of deep learning-based source code vulnerability detection and outlines our
research methodology. Section 3 presents a component-based discussion of the established
lifecycle. Section 4 explores future research directions, and Section 5 concludes the paper.

2 Research Method

Source code vulnerability detection differs greatly from other domains in diverse ways where
deep learning models are employed. The way source code is interpreted and represented
in the model is one of them. An additional pivotal contrast pertains to the requirement
for contextual comprehension of the source code. As vulnerabilities frequently hinge on
particular programming constructions, models must comprehend deeper semantic links in
addition to syntactic patterns. Furthermore, models that can generalize across diverse and
sometimes unknown code bases are required due to the complexity and variety of coding
techniques across various languages and development environments. This section provides
an overview of the elements of the DL-based source code vulnerability detection lifecycle
alongside our research methodology. These components are illustrated in Fig. 1, including
Dataset Construction, Vulnerability Granularity Definition, Code Representation, Model
Selection, Model Performance Evaluation, and Real Project Implementation.

2.1 Research Strategy

In order to achieve the primary objectives of this study, we have adopted a comprehensive
research strategy that encompasses the following steps:

1. Define the Life Cycle of DL-Based Source Code Vulnerability Detection: We
meticulously outlined the various phases involved in the application of deep learning
techniques to detect vulnerabilities in source code.

2. Select Groundbreaking and Impactful Studies: We identified and selected seminal
and highly impactful studies due to their influence on subsequent research from the past
seven years in the domain of DL-based vulnerability detection.

3. Analyze Methodologies and Challenges: We examined the methodologies employed
by the selected studies within each component of the life cycle, highlighting the chal-
lenges encountered.

4. Identify Research Gaps: We pinpointed existing research gaps through existing chal-
lenges in the field and providing a comprehensive overview of current and future direc-
tions.

Our structured approach ensures a thorough investigation and critical analysis of the cur-
rent state of research, ultimately contributing to the advancement of knowledge in this
field.

2.2 Selection of Studies

To focus on recent studies from 2017 to the present, papers from IEEE, ACM, Springer, and
Google Scholar were meticulously reviewed. The initial pool of 94 studies was refined to 34
after accounting for duplicates across databases and assessing their relevance. Studies that
did not specifically address deep learning methods for vulnerability detection, including
those focused on general machine learning techniques, were excluded. In contrast, studies
explicitly employing deep learning methods for vulnerability detection were prioritized,
with a particular emphasis on seminal and highly impactful research.

Computer Science & Information Technology (CS & IT) 3

To determine seminal and highly impactful research in deep learning-based vulnerability
detection, we adopt a three-pronged selection approach based on:
Novelty – The study introduces a groundbreaking concept, methodology, or dataset that
significantly advances the field.
Citation Count – The paper has garnered substantial citations, indicating its influence
and recognition within the research community. The citation counts of our selected studies
range from 127 [9] to 1,216 [10], underscoring their impact and widespread adoption in the
field.
Foundational Impact – The study serves as a cornerstone for subsequent research, mean-
ing later works explicitly build upon, extend, or benchmark against it. This criterion
captures the generational influence of research, identifying papers that have shaped the
trajectory of deep learning in vulnerability detection.

Our rigorous selection process ensured that only the most pertinent and influential
works were considered, providing a robust foundation for our analysis. The resulting se-
lection highlights key advancements and trends in the application of deep learning to
vulnerability detection. These selected papers collectively excels our survey work to repre-
sent a comprehensive overview of the most significant contributions to deep learning-based
vulnerability detection in recent years and draw the future directions of this field.

3 Component Based Discussion

In this section, we provide a detailed discussion of the established lifecycle, breaking it down
into its key components. Each component is examined in terms of its role, significance,
challenges and contribution to the overall lifecycle, offering a structured analysis of its
functionality and interdependencies.

3.1 Dataset Construction

The quality of the dataset is paramount to the success of DL models in vulnerability
detection, as it significantly impacts the model’s ability to learn and effectively generalize
the vulnerability pattern [11]. A well-constructed dataset enables the model to accurately
capture underlying patterns and relationships within the data, thereby reducing the risk
of over-fitting/under-fitting and enhancing predictive accuracy.

National Vulnerability Database (NVD) [22] and the Software Assurance Reference
Dataset (SARD) [23] have been a prominent source of data for vulnerable code due to
reliability and credibility. NVD’s authority stems from its affiliation with the National
Institute of Standards and Technology (NIST) [24] in the United States, ensuring metic-
ulous curation and adherence to rigorous standards. On the other hand, SARD’s relia-
bility lies in its role as a curated repository of diverse and well-documented test cases,
meticulously designed to evaluate the efficacy of software quality assurance tools. Several
state-of-the-art works have extensively relied on these two prominent sources for dataset
preparation namely VulDeePecker [10] SySeVR [25], VulHunter [26], µVuldeepecker [20].
Table 1 presents the overview of the prominent vulnerability datasets.

Challenge: A large body of closely examined literature reveals that duplication and
dataset imbalance (Fig. 2) are widespread concerns.

The µVuldeepecker [20] dataset includes 181,641 code fragments from 33,409 programs,
referred to as "code gadgets," which are units for vulnerability detection. Among them,

4 Computer Science & Information Technology (CS & IT)

Table 1: Overview of most prominent Vulnerability Datasets

Dataset Source Code
Language Type Source Status Vuln.

Samples
Non-Vuln.
Samples Gran.

Juliet [12] C/C++,
Java Synth. Common Vulnerability

Pattern ✓ 89,000 89,000 Level 1

Draper [13] C/C++ Synth.&
Real

Open Source Projects
(OSP) ✓ 82,324 1,192,041 Level 2

DeepWukong [14] C/C++ Real SARD & 2 OSPs ✓ 156,195 409,262 Level 3
SySeVR [15] C/C++ Real SARD & NVD ✓ 56,395 364,232 Level 3
FUNDED [16] C/C++ Real SARD & NVD & OSP ✓ 75,474 75,474 Level 2
REVEAL [17] C/C++ Real OSP ✓ 1,664 16,505 Level 2
Devign [18] C/C++ Real OSP ● 10,067 12,294 Level 2
D2A [19] C/C++ Real OSP ✓ 18,653 1,295,623 Level 3
Vuldeepecker [10] C/C++ Real NVD & SARD ✓ 17,725 43,913 Level 3
µVulDeePecker [20] C/C++ Real NVD & SARD ✓ 43,119 138,522 Level 3
DiverseVul [21] C/C++ Real OSP ✓ 18,945 330,492 Level 2
Hussain et al. [9] Java Real SARD ✓ 29,258 12,954 Level 4

✓: Publicly Available, ●: Partially Available

138,522 are non-vulnerable (i.e., not known to contain vulnerabilities) and the other 43,119
are vulnerable and contain 40 types of Common Weakness Enumeration (CWEs) [27].
Another type of dataset emerged according to predefined patterns that are called synthetic
datasets. One of those is Juliet [23] which is collection of test cases in C/C++ containing
64,099 test cases of 118 different CWEs. s-bAbI [28] contains syntactically valid C programs
with non-trivial control flow with safe and unsafe buffer writes labeled at the line of code
level, which is originally an extension of Facebook AI Research developed bAbI [29].

Challenge: Synthetic and unrealistic source code are largely absent of the complex-
ity and variability of actual software environments and many datasets are curated
synthetically.

Static analyzers’ and Synthetic datasets’ labels are frequently imprecise in terms of
accuracy and confidence. Thus, the integrity of label assignments may be seriously jeop-
ardized when vulnerability detection techniques are evaluated with these datasets [30].
Conversely, real-world projects exhibit a broader spectrum of vulnerabilities. Open source
projects(OSP) are a robust source of both vulnerable and non-vulnerable code examples
through security patches, with platforms like GitHub and other public repositories provid-
ing excellent access for researchers.

Challenge: Despite the abundance of open-source projects (OSP), datasets are still
limited to capturing only few top most severe software errors classified in CWE.
This restriction poses a significant challenge as it may overlook less well-known
vulnerabilities that can pose substantial threats to systems.

Russel et al. [13] used Debian project while DeepWukong [14] dataset is based on the
combination of SARD and two real-world open-source c/c++ projects, lua and redis. Lin
et al. [31] constructed a real-world vulnerability ground truth dataset containing manually
labelled 1,471 vulnerable functions and 1,320 vulnerable files from nine open-source soft-
ware projects. Fan et al. [32] proposed Big-Vul dataset that includes detailed CVE IDs,
severity scores, summaries, and code changes, all meticulously curated and stored in CSV
format.

Computer Science & Information Technology (CS & IT) 5

Fig. 2: Data imbalance across studied datasets.

Challenge: The restrictive size of the datasets may not adequately represent the
breadth and depth of real-world software systems and their vulnerabilities.

IBM’s research team produced D2A [19], which extracts samples through inter-process
analysis, contrasting with conventional datasets with functions only. This approach facil-
itates the comprehensive preservation of bug types, specific locations, trace information,
and analyzer output. Encompassing multiple prominent open-source software projects such
as FFmpeg, httpd, Libav, LibTIFF, Nginx, and OpenSSL, the dataset provides a diverse
and substantive foundation essential for rigorous research.

Meticulously compiled from various security issue websites by aggregating vulnerability
reports, DiverseVul [9] is an open-source vulnerability dataset encompassing 18,945 vulner-
able functions and 330,492 non-vulnerable functions, derived from 7,514 commits, covering
150 different C/C++ CWEs.

Challenge: Existing datasets predominantly feature samples written in C/C++,
with limited representation of programming languages such as Java, Python, and
Swift. This disparity in language diversity poses a significant challenge in ensuring
comprehensive coverage and applicability across various software ecosystems.

3.2 Vulnerability Granularity Definition

Vulnerabilities can manifest in various spaces within the source code. It is essential to iden-
tify the specific spaces that are particularly prone to these security issues. These critical
spaces include but are not limited to, Files, Functions, Structures, Macros, and Variables.
Each of these spaces can harbor distinct types of vulnerabilities, which necessitates careful
examination and robust security measures to mitigate potential risks. In extensive source
code repositories comprising thousands of lines of code, precise identification of vulnera-
bilities is imperative.

6 Computer Science & Information Technology (CS & IT)

Fil
e

Le
ve

l 1
TokenLevel 4

Level 2 Lev
el

3
Function Sli

ce

LIW
LIT

Fig. 3: Detection granularity with inherited issues.

We classify the granularity of vulnerability detection in existing research into four levels:
file/program level (Level 1), function level (Level 2), slice level (Level 3), and token level
(Level 4) Moreover, in Fig. 3 we depict the inherited problems for each level which are
discussed subsequently.

Among studies, the most coarse-grained level of vulnerability detection is at the Level 1.
A list of works [33,34,35] set their detection granularity at this level. The authors [35] use
the high-level semantic representations learned by the neural networks as defective features
and conduct experiments on the dataset of open-source Java projects to identify Level 1
vulnerabilities. Level 2 vulnerability detection is most frequently explored in this field, as
evidenced by studies by Vuddy [36], Mansur et al. [37], Centris [38], MVP [39], V1Scan [40],
Russel et al. [13], SySeVR [15].

Both Level 1 and Level 2 vulnerability detection suffers from the “Lost in the Woods”
(LIW) problem, where a single marked vulnerable file or function may contain thousands
of lines of code. Vulnerabilities of external functional code are usually undetected and,
therefore, require detection at a more granular level.

Challenge: LIW requires significant manual intervention from security experts to
pinpoint the exact vulnerability.

The first work to employ DL to identify software vulnerabilities at the slice level
(Level 3) is from VulDeePecker [10]. It creates a code gadget consisting of many program
statements that are not necessarily sequential but are semantically connected to each other.
DeepWokung [14] created code slice into a compact, low-dimensional representation, that
preserves high-level programming logic, encompassing control and data flows, while main-
taining the natural language context of the program. The last line of works [41,42,43,34]
presented token-level (Level 4) detection granularity. It disassembles source code into dis-
crete tokens, operators, identifiers, and keywords, providing extensive insights into code
structure. Although this method may not fully capture intricate inter-token relationships,
it serves as a foundational framework for code analysis. In their exploration of Level 4 vul-
nerability detection, Islam et al. [41] employed machine learning methodologies to dissect
code segments. Furthermore, Li et al. [43] scrutinized the efficacy Level 4 attributes for
vulnerability detection, yielding promising outcomes in identifying security vulnerabilities.

Computer Science & Information Technology (CS & IT) 7

Loss of semantic integrity is one of the issues consistent with Level 3 and Level 4 vul-
nerability detection, which we name it “Lost in Translation” (LIT) problem. Although
slicing and tokenization work well for capturing syntactic structures, they can miss subtle
semantic linkages in the code, leading to inefficient feature learning and causing false pos-
itives or negatives. To improve the precision and dependability of detection systems, it is
still imperative to strike a balance between syntactic slicing and semantic comprehension.

Challenge: LIT can seriously impair the effectiveness of the feature learning pro-
cesses, thereby compromising the accuracy and reliability of vulnerability detection
methods.

3.3 Code Representation

Once the granularity of detection has been established, the subsequent challenge involves
presenting the code to autonomously learn important features. Using DL models to detect
vulnerabilities accurately requires precise and meaningful source code representation. Code
representations that capture syntactic patterns and semantic subtleties have been devel-
oped using a variety of methodologies. Existing studies on code representation techniques
have been systematically categorized into five distinct approaches.

Abstract Syntax Tree (AST)-Based Representation captures the syntactic struc-
ture of source code using a tree of nodes, where each node represents a specific syntactic
construct. This approach abstracts away low-level details while preserving essential syntac-
tic information. The resulting AST provides a comprehensive view of the code’s structure,
including control flow and hierarchical relationships, enabling a more organized and sys-
tematic representation of the source code. Although ASTs can incorporate specific semantic
insights by utilizing techniques such as data flow analysis or type inference, their primary
use is to capture the syntactic and structural aspects of the code [44]. These require pars-
ing the code into a tree structure, which is computationally manageable but can become
complex with larger or more intricate code bases. The significance of hierarchical code rep-
resentations was further emphasized by Ahmadi et al. [37], who investigated AST-based
characteristics for vulnerability identification in open-source projects. Furthermore, to illus-
trate the practicality of this method, Kalouptsoglou et al. [33] employed DL in conjunction
with AST-based features to forecast cross-project vulnerabilities.

Graph-Based Representation conceptualizes the source code as a graph structure
where program items are represented adeptly, modeling syntax and semantics by incor-
porating different nodes and edges that depict not only the structure of code but also the
interactions and dependencies, such as call graphs or program dependency graphs. This
comprehensive approach enhances their ability to robustly model syntax and semantics
[45,16,46]. It involves constructing and analyzing potentially large and complex graphs
that represent various relationships and dependencies, demanding significant computa-
tional resources. Woo et al. [38] highlighted scalability and efficiency by using graph-based
characteristics for vulnerability identification in industrial code-bases. Additionally, Li et
al. [15] implemented graph-based representation by accommodating syntax and semantic
information effectively.

Hybrid Representation comprehensively captures code syntax and semantics. They
combine several levels of abstraction and thus inherit the computational demands of each,

8 Computer Science & Information Technology (CS & IT)

generally resulting in high complexity but superior analysis capabilities. To improve the ac-
curacy of vulnerability detection, Li et al. [47] presented a hybrid representation that com-
bines token-level (Level 4) features with higher-level semantic information. Furthermore, in
comparison to traditional approaches, Cheng et al. [14] achieved better performance with a
hybrid strategy that combined AST-based characteristics with natural language processing
techniques. In addition, Kim et al. [36] investigated hybrid representations for vulnerabil-
ity detection, blending machine learning techniques with graph-based characteristics to
improve detection accuracy.

Natural Language Processing (NLP)-Based Representation utilizes sophisticated
NLP techniques to extract semantic information from documentation and code comments.
The precise syntactic structures that are inherent to programming languages may not
always be followed by NLP approaches, which are widely recognized for their effectiveness
in capturing semantic patterns and purpose [48]. However, these methods are just as good
at deciphering semantic material as they are at processing natural languages, especially
when it comes to code functionality and intent. While generally less resource-intensive
than graph-based methods, NLP techniques still require significant processing, especially
for semantic analysis and natural language processing tasks. In [49], the authors leveraged
a custom tokenization pipeline that combines the Byte-Pair Encoding algorithm with novel
predefined code tokens to train an transformer based NLP model RoBERTa [50](introduced
by Facebook AI in 2019).

Embedding-Based Representation encodes the source code into low-dimens
ional vector spaces using representations based on embeddings, which carefully maintain
semantic links. These techniques usually provide a succinct numerical depiction of the
code, identifying patterns useful for deducing syntax and semantics. V1Scan [40] effec-
tively leveraged embedding-based representations to unveil vulnerabilities, thereby exem-
plifying the robustness of this approach in pinpointing security vulnerabilities. Russell et al.
[13] initially convert the tokens comprising the lexed functions into a fixed k-dimensional
representation constrained to the range [−1, 1]. This representation is learned during the
classification training through back-propagation applied to a linear transformation of a
one-hot embedding.

Challenge: Scalability remains a critical challenge, as many solutions struggle to
efficiently handle large-scale codebases or real-time data due to computational limi-
tations. Another significant issue lies in aligning deep learning models with suitable
representation techniques, given their reliance on specific data formats and varying
sensitivities to feature types, making effective matching essential for optimal perfor-
mance. Furthermore, generalizing these methods across programming languages and
development environments proves challenging, as approaches that perform well in one
language may falter in others due to differences in syntax and semantic structures.

In this study, we propose a novel benchmark for the comparative analysis of five code
representation techniques, employing three key scoring metrics Syntactic Capture Score
(Ssyntactic), Semantic Capture Score (Ssemantic), and Complexity Score (Scomplexity). To
the best of our knowledge this is the first known attempt to establish such a comparison
framework.

Each scoring matrix value ranging from 0 to 3 is controlled by multiple decision criteria,
and scores are formulated following the principle of Multiple Criteria Decision Analysis

Computer Science & Information Technology (CS & IT) 9

Fig. 4: Comparison of code representation techniques.

(MCDA) [51] and using the Weighted Decision Matrix (WDM) [52]. Syntactic Capture
Score (Ssyntactic) computed as a weighted sum of three critical sub-dimensions: Structural
Fidelity (SF), Granularity (G), and Adaptability (A), each of which was assigned an
efficiency value ranging from 1 to 3. The weights represent the relative importance of each
sub-dimension in preserving the syntactic information of source code.

Ssyntactic = 0.5 · SF + 0.3 ·G+ 0.2 ·A (1)

Semantic Capture Score (Ssemantic) reflects the ability of a technique to model the
meaning and contextual relationships in the source code. It is calculated as the weighted
sum of Control and Data Flow Modeling (CDF), Context Awareness (CA), and Scalability
(S).

Ssemantic = 0.4 · CDF + 0.3 · CA+ 0.3 · S (2)

Complexity Score (Scomplexity) evaluates the computational and implementation chal-
lenges associated with a source code representation technique. It is derived from the
weighted sum of Computational Overhead (CO), Ease of Implementation (EI), and Scal-
ability (S).

Scomplexity = 0.5 · CO + 0.3 · EI + 0.2 · S (3)

Fig. 4 presents the comprehensive comparison. Our scoring methodology demonstrates
that the AST-Based technique achieves the highest score for syntactic capture but performs
poorly in semantic capture and complexity. The Graph-Based technique demonstrates mod-
erate performance across all three dimensions, reflecting a balanced but unremarkable
profile. The Hybrid technique stands out with consistently high scores across all criteria,
highlighting its robustness and versatility. In contrast, the NLP-Based technique excels
in semantic capture but underperforms in syntactic capture and complexity. This scoring
methodology ensures a robust and evidence-based evaluation of the techniques’ effective-
ness for source code representation and facilitates determining the appropriate technique
to build a robust vulnerability detection model.

10 Computer Science & Information Technology (CS & IT)

Table 2: Overview of Deep Learning Models for Vulnerability Detection
Study Type Model Components Imple. Features Challenges

VulDeeP.
[10] Seq. BLSTM

Long-range
dependencies
extraction TensorFlow,

Python

Improved
vulnerability
identification

Limited to
binary

classification

SySeVR
[15] Seq. BGRU

Multiple neural
networks, enhanced
sequential pattern

analysis

PyTorch,
Python

Superior to
shallow

learning models

High
computational

complexity

µVulDeeP.
[20] Seq. BLSTM

Global-feature,
local-feature,
feature-fusion

models
TensorFlow,

Keras

Multi-class
vulnerability

detection

Complex model
architecture

POSTER
[54] Seq. BLSTM

AST-based
function-level

feature
extraction

TensorFlow,
Python

Cross-project
domain feature

extraction

Requires
comprehensive

AST construction

Devign
[18] Graph GNN

Data and
control dependency

code graphs,
Conv module

PyTorch,
DGL

Extracts
interesting

features from
source code

Handling large
graphs and

data dependencies

DeepWukong
[55]

Graph GNN
Compact,

low-dimensional
representation

PyTorch
Geometric

Detects ten
different types of
vulnerabilities

Requires extensive
feature engineering

DeepTective
[56] Graph GCN+

GRU
Combines GRU

and GCN TensorFlow,
Keras

SQLi, XSS,
and command

injection in PHP

Balancing GRU
and GCN training

DRAPER
[13] Hybrid CNN+

RNN

Feature extraction
from

embedding-based
representations

TensorFlow,
Scikit-learn

Ensemble
classifiers for

improved results

Integration of
multiple neural
network types

3.4 Model Design

Upon completion of the pre-processing and code representations, the next critical step
involves the vectorization and selection of deep learning models for training. The selec-
tion of a model impacts the choice of representation technique, as different models require
data in specific formats and have varying sensitivity to feature granularity.This necessi-
tates a careful matching process to ensure that the chosen technique aligns with the model’s
capabilities to achieve effective learning outcomes. Current state-of-the-art studies predom-
inantly employ four vectorization techniques: One-hot encoding, Word2Vec (encompassing
Continuous Bag of Words (CBOW) and Skip-gram) [48], and Doc2Vec (including Para-
graph Vector-Distributed Memory (PV-DM) and Paragraph Vector-Distributed Bag of
Words (PV-DBOW)) [53]. Table 2 provides a comprehensive comparison of the represen-
tation types, models, and their specific characteristics utilized in state-of-the-art studies.
The deep learning models explored in this study are categorized into three primary types:
Sequence-based models, Graph-based models, and Hybrid models, which are described in
the subsequent sections.

Sequence-based Models excel in managing sequential data due to their ability to iden-
tify temporal connections and patterns. In domains like time series analysis and natural
language processing (NLP), where temporal or sequential context is critical, these models
exhibit remarkable performance. These models are especially useful for identifying intricate
patterns that may be signs of security flaws because source code is sequential, much like
the structure of natural language. This method not only increases vulnerability detection
accuracy but also enables it to find subtle, context-dependent problems in the code.

Computer Science & Information Technology (CS & IT) 11

Recurrent neural networks (RNN), Long Short-Term Memory networks (LSTM), Bidi-
rectional Long Short-Term Memory (BLSTM), Gated Recurrent Units (GRU), Bidirec-
tional Gated Recurrent Units (BiGRU), and Transformers are notable designs utilized in
this field of vulnerability detection. VulDeePecker [10] is an innovative pioneering study
that employs a Bidirectional Long Short-Term Memory (BLSTM) paradigm to find vul-
nerabilities. Effective vulnerability identification is made possible by the BLSTM archi-
tecture, which is used to extract and understand long-range dependencies from code se-
quences. Several limitations of this study have been addressed by SySeVR [15] leveraging
multiple neural networks for vulnerability detection. In particular, the implementation
of Bidirectional Gated Recurrent Units (BGRUs) has demonstrated superior effectiveness
compared to shallow learning models. By leveraging BGRUs, SySeVR can more accurately
capture and analyze complex sequential patterns in source code, thereby significantly en-
hancing the detection and identification of vulnerabilities. By altering the Bidirectional
Long Short-Term Memory (BLSTM) architecture to enable multi-class vulnerability iden-
tification, µVuldeepecker [20] builds on the work of VulDeePecker [10]. Three different
BLSTM models make up this sophisticated network: a feature-fusion model, a local feature-
learning model, and a global feature-learning model. The global-feature learning model uses
deep BLSTM layers and a preprocessing layer to extract global features. The deep BLSTM
layers concentrate on extracting global features from the preprocessed data, whereas the
preprocessing layer is mostly in charge of eliminating zero vectors.

Another notable bidirectional Long Short-Term Memory (BLSTM) model was pro-
posed by Guanjun et al. [54] for function-level vulnerability detection across cross-project
domains. This model leverages the BLSTM architecture to extract features from functions
represented using the Abstract Syntax Tree (AST) based representation method.

Graph-based Models are highly effective at handling complex relational data due to
their ability to capture and utilize the interconnections and hierarchical structures within
graph-structured data. These approaches encode complex relationships efficiently by rep-
resenting data as graphs, making them well-suited for advanced analysis across various do-
mains. Notable examples of these models include Graph Neural Networks (GNNs), Graph
Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Gated Recurrent
Units (GRU).

The Devign [18] framework was presented by Zhou et al. and uses a Graph Neural
Network (GNN) to extract key features from source code and govern dependencies in code
graphs. It also incorporates a specific convolutional module. Similarly, DeepWukong [14]
detects ten different types of vulnerabilities by encoding code fragments into compact,
low-dimensional representations using GNNs. Extending beyond C/C++ applications, the
DeepTective [56] system combines Gated Recurrent Unit (GRU) and Graph Convolutional
Network (GCN) where the former operates on the linear sequence of source code tokens,
and the latter operates on the Control Flow Graph (CFG) of the source code to identify
vulnerabilities such as SQL injection (SQLi), cross-site scripting (XSS), command injection
in PHP source code.

Hybrid Models , in an effort to maximize the advantages of sequential processing and
structural comprehension, combine the best features of both sequence-based and graph-
based methodologies. They offer a more comprehensive depiction of the data by merging
these approaches, which may improve performance on a range of tasks, including Code
Structures and Behaviors understanding, and feature-learning enhancements. Russel et
al. [13] conducted an in-depth exploration of both Convolutional Neural Networks (CNNs)

12 Computer Science & Information Technology (CS & IT)

and Recurrent Neural Networks (RNNs) for feature extraction from embedding-based rep-
resentations of source code. Following the extraction of these features, they employed an
ensemble of powerful classifiers, such as random forests and extremely randomized trees.
This combination yielded the most effective results in their study, demonstrating the supe-
rior performance of these advanced machine learning techniques in vulnerability detection.

Challenge: Training models for vulnerability detection often incurs significant com-
putational costs and prolonged inference times. This has prompted ongoing research
into optimization techniques, model compression, and hardware acceleration to im-
prove efficiency without compromising performance. Additionally, while some models
excel on specific datasets and vulnerability classes, their ability to generalize to new,
unseen vulnerabilities remains a persistent issue. Lastly, determining the optimal
model for feature learning is a critical challenge, as different models demonstrate
varying learning capacities when applied to the same dataset, complicating the selec-
tion process.

3.5 Model Performance Evaluation

Standardization in model performance evaluation helps by recognizing real progress in the
field and enables researchers to compare new models with existing benchmarks. Addition-
ally, comprehensive assessments involving multiple metrics can reveal the strengths and
weaknesses of different models, leading to more reliable vulnerability detection systems.

We explore the metrics commonly used by existing works and draw a comparative
analysis in Table 3, listing them as follows:
Accuracy (Acc) is the proportion of accurately predicted instances compared to the total
instances.

Acc =
TP + TN

TP + TN + FP + FN
(4)

where TP , TN , FP , and FN denote the true positive instances, true negative instances,
false positive instances, and false negative instances, respectively.
Precision (Pre) presents the ratio of correctly predicted positive instances to the total
number of positive instances.

Pre =
TP

TP + FP
(5)

Recall (Rec) represents the ratio of true positive instances to the sum of true positive
instances and false negative instances.

Rec =
TP

TP + FN
(6)

F1-score (F1) is the balanced measure that combines precision and recall, making it
particularly useful for evaluating imbalanced datasets.

F1 = 2 ·
Pre · Rec

Pre + Rec
. (7)

False Positive Rate (FPR) is the proportion of negative instances that are incorrectly
classified as positive, calculated as the ratio of false positives to the sum of false positives
and true negatives.

FPR =
FP

FP + TN
(8)

False Negative Rate (FNR) represents the proportion of positive instances that are
incorrectly classified as negative, which is especially important in situations where missing
positive cases can have serious consequences.

FNR =
FN

FN + TP
(9)

Computer Science & Information Technology (CS & IT) 13

Table 3: Performance Metrics of Various Vulnerability Detection Approaches
Work Pre Rec Acc F1 FPR FNR MCC PR-

AUC
ROC-
AUC

SySeVR
[15] 90.80% - 98.00% 92.60% 1.40% 5.60% 90.50% - -

DeepWK
[14] - - 97.40% 95.60% - - - - -

FUNDED
[16] 92.00% 94.00% 92.00% 94.00% - - - - -

DRAPER
[13] - - - 82.40% - - 67.20% 91.60% 93.60%

VulDeeP.
[10] 78.60% - 83.10% 80.80% 22.90% 16.90% - - -

µVulDeeP.
[20] - - - 94.6% 0.02% 5.73% - - -

Devign
[18] - - 75.56% 27.25% - - - - -

Subhan et al.
[57]

92.00% 98.50% 91.19% 95.50% - - - - -

Challenge: A key challenge is reducing FPR and FNR to minimize the need for
manual intervention, thereby enhancing the reliability and effectiveness of automated
vulnerability detection systems.

Reducing these rates significantly minimizes the need for manual intervention by se-
curity experts in automated vulnerability detection, thereby improving the dependability
and efficiency of these systems, which is a key goal within the research community.
Matthews Correlation Coefficient (MCC) measures the quality of binary classifi-
cations by assessing the correlation between the predicted and actual outcomes. MCC is
particularly useful for evaluating models on imbalanced datasets as it provides a more
informative and truthful score in such scenarios.

MCC =
(TP · TN) − (FP · FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

Precision-Recall Curve (PR-AUC) plot the trade-off between Pre and Rec at various
threshold values.
Receiver Operating Characteristic (ROC-AUC) presents the graphic that illustrates
the trade-off between TPR and FPR at various threshold values. Better discriminatory
ability is shown by greater values of the area under the ROC curve (ROC-AUC), which
offers a single scalar value summarizing the model’s performance.

Fig. 5 presents charts that visualize the evaluation metrics for various software vulner-
ability detection models. Each chart represents an individual model, depicting its perfor-
mance across the examined range of metrics. This detailed visualization enables an intuitive
comparison of the models’ performance across different dimensions of vulnerability detec-
tion, thereby elucidating their strengths and identifying areas requiring enhancement.

Challenge: Establish baseline models and dataset that represent the current SOTA.
These models will serve as benchmarks against new models and datasets.

A comparison with a relevant and reasonable baseline is crucial to demonstrate the
improvements provided by a particular model. However, each study often introduces its own
baseline for comparison, highlighting the need for a domain-specific standardized baseline.
This standardization would facilitate more consistent and meaningful evaluations across
different studies, ensuring that improvements are accurately quantified and compared.

14 Computer Science & Information Technology (CS & IT)

Fig. 5: Visualizing Performance Metrics of Vulnerability Detection Models

Challenge: Real-world project implementation is seldom practiced in studies, yet it
should be established as a benchmark for evaluation.

3.6 Real-world Project Implementation

Deploying models in practical settings to identify both known and previously unknown
vulnerabilities is essential and that completes our vulnerability detection life cycle. The
practical usefulness and robustness of these models are shown through real-world testing,
which also exposes the models’ true performance outside of controlled experimental set-
tings. Such an implementation provides essential feedback for further model improvement
in addition to highlighting the models’ strengths and limitations. Through the examination
of real-world problems, scientists can guarantee that their models are both theoretically
and practically solid, resulting in automated vulnerability detection systems that are more
dependable and efficient. This strategy ultimately propels the field’s progress by bridging
the gap between scholarly study and real-world application. Table 4 presents the real-world
implementation of a selected set of studies.

A significant challenge is ensuring that vulnerability detection models, which perform
well in controlled experimental settings, can also demonstrate practical feasibility and
effectiveness in real-world applications.

Challenge: Developed models capable of identifying known and previously unknown
vulnerabilities when deployed in real-world environments.

SySeVR [15] was implemented in real-world scenarios involving four software products
(Libav, Seamonkey, Thunderbird and Xen) and reported 15 vulnerabilities not listed in the
National Vulnerability Database (NVD), 7 of which were previously unknown vulnerabili-
ties are subsequently patched by their respective vendors. The remaining 8 vulnerabilities
had already been addressed by the vendors in newer versions of the software products. This

Computer Science & Information Technology (CS & IT) 15

Table 4: Summary of Studies on Vulnerability Detection
Dataset Pos.:Neg.Gran. Repr. DL Model Exp. Setting Performance Project impl.

SySeVR
[15] 13:87 L3

Syntax,
Semantics,

Vector
Bi-GRU

Python,
TensorFlow,

NVIDIA GPU FPR 1.4%, FNR 5.6%,
Acc 98%, Pre 90.8%,

F1 92.6%, MCC 90.5%

Detected 15
vulnerabilities
in 4 products

DeepWK.
[14] 28:72 L3 Slice-graph GNN PyTorch

Geometric Acc 97.4%, F1 95.6% -

FUNDED
[16] 50:50 L2 AST

GGNN+GRU

TensorFlow,
Python

scikit-learn

Acc 92%, Pre 92%,
Rec 94%, F1 94% -

Draper
[13] 6:94 L2 Embedded CNN+RNN N/A

PR-AUC 92%,
ROC-AUC 94%,

MCC 67%, F1 82%
-

VulDeeP.
[10] 29:71 L3 Embedded BLSTM

Python,
Theano,
Keras Rec 83.1%, Pre 78.6%,

F1 80.8%

Detected 4
vulnerabilities
in 3 products

µVulDeeP.
[20] 24:76 L3 Graph BLSTM

Intel CPU,
NVIDIA GPU,

Linux OS FPR 0.02%,
FNR 5.73%, F1 94.22%

Detected 16
vulnerabilities
in 3 products

Devign
[18] 45:55 L2 Graph GGRN NVIDIA Tesla

M40/P40 Acc 75.56%, F1
27.25%

-

SySvr,
CMD
[57]

13:87 L3 Graph
CNN, LSTM,

GRU
CNN-LSTM

Python,
Keras,

TensorFlow2

Pre 92%, Rec 99%,
Acc 91%, F1 95% -

SARD
[21] 31:69 L4 Graph QCNN

Python,
Keras,

TensorFlow2

Pre 97%, Rec 98%,
Acc 99%, F1 97% -

highlights the crucial capability of models to detect not only known vulnerabilities but
also previously unknown threats when deployed in real-world software environments—an
essential attribute for effective vulnerability detection systems. For the real-world imple-
mentation, VulDeePecker [10] analyzed 20 versions of the three software products (Xen,
Seamonkey, and Libav) by identifying 4 vulnerabilities later fixed by the vendor. Imple-
mentation on three real-world software products detected 16 vulnerabilities, 14 of which
corresponded to known vulnerability patterns from µVulDeePecker [20]. In general, evalu-
ating a model’s actual efficacy in a range of real-world circumstances can be difficult due
to differences in vendors’ mitigation of vulnerabilities found in their software products. It
is cumbersome to collect and apply real-world input to the models in an efficient manner
since this involves constant assessment and modification based on real-world use cases.

Challenge: Variations in vendor practices for handling vulnerabilities and the need
for ongoing feedback from real-world deployments present challenges in accurately
assessing and refining the effectiveness of vulnerability detection models.

4 Future Research Direction Discussion

Our study provides important insights and avenues for future investigation, laying a solid
platform for future research in this area. Addressing challenges and creating workable an-
swers to them would constitute a substantial research contribution and advance the study.
In order to guarantee that vulnerability detection models are trained and assessed on a
variety of pertinent data, future research should place a high priority on the development of

16 Computer Science & Information Technology (CS & IT)

approaches for choosing and curating datasets that accurately represent real-world scenar-
ios. In order to balance accuracy and computational performance, this entails determining
the proper degree of granularity in detection, which enables models to identify vulnera-
bilities efficiently while reducing false positives and negatives. The optimization of code
representations is also crucial, as is tackling the difficulties in generalizing these representa-
tions across various programming languages and contexts. This optimization should strike
a balance between computational practicality and detailed syntactic and semantic capture.
To ensure consistent and meaningful performance comparisons across different models, ro-
bust baselines and standardized evaluation metrics should be developed. Multiple metrics
and visualization techniques should be used to better capture model performance, espe-
cially in the context of imbalanced datasets. Furthermore, developing deep learning models’
interpretability and explainability will be essential to fostering transparency and confidence
in real-world uses. Finally, research should focus on creating standardized frameworks for
evaluating models in diverse real-world software environments, accounting for variations
in how vendors handle and patch vulnerabilities, and systematically gathering feedback
from real-world deployments to continuously refine and improve model performance and
robustness.

5 Conclusion

In this survey, we meticulously outlined the various phases involved in applying deep learn-
ing techniques to detect vulnerabilities in source code. By identifying and selecting seminal
and highly impactful studies from the past seven years, we have highlighted their influence
on subsequent research in the domain of deep learning-based vulnerability detection. For
each component of the defined life cycle, we addressed key aspects and challenges within
each phase. Our examination of the methodologies employed by the selected studies re-
vealed significant challenges encountered throughout the life cycle. Moreover, we pinpointed
existing research gaps stemming from these challenges, providing a comprehensive overview
of current and future directions in the field. In conclusion, this survey not only highlights
the progress made in applying deep learning to vulnerability detection but also empha-
sizes the need for continued exploration and development in this critical area of research.
Future work should focus on overcoming identified challenges, exploring novel method-
ologies, and fostering collaboration between academia and industry to achieve meaningful
advancements in vulnerability detection.

References

1. E. Topics, “Cybersecurity statistics,” https://explodingtopics.com/blog/cybersecurity-stats, 2023, ac-
cessed: 2023-07-24.

2. A. Gkortzis, D. Feitosa, and D. Spinellis, “Software reuse cuts both ways: An empirical analysis of its
relationship with security vulnerabilities,” Journal of Systems and Software, vol. 172, p. 110653, 2021.

3. P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints,” in Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM, 1977, pp. 238–252.

4. D. L. Coleman and P. A. Harwood, “Program instrumentation for dynamic memory allocation and
usage analysis,” Communications of the ACM, vol. 15, no. 11, pp. 906–910, 1972.

5. B. P. Miller, L. Fredriksen, and B. So, “Fuzz testing,” University of Wisconsin-Madison, Tech. Rep.,
1989.

6. S. Zhou, M. Möser, Z. Yang, B. Adida, T. Holz, J. Xiang, S. Goldfeder, Y. Cao, M. Plattner, X. Qin
et al., “An ever-evolving game: Evaluation of real-world attacks and defenses in ethereum ecosystem,”
in 29th USENIX Security Symposium, 2020, pp. 2793–2810.

7. R. Malhotra and P. Singh, “Recent advances in deep learning models: a systematic literature review,”
Multimedia Tools and Applications, vol. 82, no. 29, pp. 44 977–45 060, 2023.

Computer Science & Information Technology (CS & IT) 17

https://explodingtopics.com/blog/cybersecurity-stats

8. MITRE Corporation, “CVE - Common Vulnerabilities and Exposures (CVE),” https://cve.mitre.org/,
2023, accessed: 2024-08-06.

9. Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “Diversevul: A new vulnerable source code
dataset for deep learning based vulnerability detection,” in Proceedings of the 26th International Sym-
posium on Research in Attacks, Intrusions and Defenses, 2023, pp. 654–668.

10. Z. Li, D. Zou, S. Xu, and X. Ou, “Vuldeepecker: A deep learning-based system for vulnerability
detection,” in Proceedings of the 25th Annual Network and Distributed System Security Symposium
(NDSS’18), 2018.

11. S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for supervised learning,”
International journal of computer science, vol. 1, no. 2, pp. 111–117, 2006.

12. National Institute of Standards and Technology, “Juliet Test Suite for C/C++ Version 1.3,” 2018.
[Online]. Available: https://samate.nist.gov/SRD/testsuite.php

13. R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, and M. McConley,
“Automated vulnerability detection in source code using deep representation learning,” in 17th IEEE
International Conference on Machine Learning and Applications (ICMLA), Dec. 2018, pp. 1485–1490.

14. Y. Cheng et al., “Deepwokung: Creating compact code slices for deep learning-based vulnerability
detection,” in Proceedings of the 42nd International Conference on Software Engineering, 2021, pp.
623–634.

15. Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A framework for using deep learning to
detect software vulnerabilities,” IEEE Transactions on Dependable and Secure Computing, vol. Early
Access, pp. 1–1, January 2021.

16. H. Wang, G. Ye, Z. Tang, S. H. Tan, and Z. Wang, “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 1943–1958, 2020.

17. S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning based vulnerability detection: Are
we there yet?” arXiv, 2020.

18. Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks,” in NeurIPS, 2019, pp. 10 197–10 207.

19. Y. Zheng, S. Pujar, B. Lewis, and L. Buratti, “D2a: A dataset built for ai-based vulnerability detection
methods using differential analysis,” in Proceedings of the ACM/IEEE 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), May 2021.

20. D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker: a deep learning-based system for multiclass
vulnerability detection,” IEEE Transactions on Dependable and Secure Computing, vol. 18, p. 1, 2019.

21. S. Hussain, M. Nadeem, J. Baber, and et al., “Vulnerability detection in java source code using a
quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based
hybrid feature extraction,” Scientific Reports, vol. 14, no. 7406, 2024.

22. National Institute of Standards and Technology (NIST), “National Vulnerability Database (NVD),”
2024, accessed: 2024-08-06. [Online]. Available: https://nvd.nist.gov/

23. N. I. of Standards and Technology, “Sard test suite 112,” 2018, accessed: 2024-04-23. [Online].
Available: https://samate.nist.gov/SARD/test-suites/112

24. National Institute of Standards and Technology, “Nist,” https://www.nist.gov/, n.d., accessed: 2024-
08-10.

25. Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: A deep learning-based fine-grained
vulnerability detector,” IEEE Transactions on Dependable and Secure Computing, 2021, early Access.

26. N. Guo, X. Li, H. Yin, Y. Gao, J. Zhou, X. Luo, Q. Shen, and Z. Xu, “Vulhunter: An automated vulner-
ability detection system based on deep learning and bytecode,” in Information and Communications
Security, 2020, pp. 199–218.

27. MITRE Corporation, “Common weakness enumeration (cwe),” https://cwe.mitre.org/, n.d., accessed:
2024-08-10.

28. R. Hu, J. Andreas, T. Darrell, K. Saenko, and M. Rohrbach, “Explainable neural computation via
stack neural module networks,” CoRR, vol. abs/1808.09897, 2018.

29. J. Weston, A. Bordes, S. Chopra, and T. Mikolov, “Towards ai-complete question answering: A set of
prerequisite toy tasks,” CoRR, vol. abs/1502.05698, 2015.

30. H. J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from automatic static analysis tools: How
far are we?” in Proceedings of the 44th International Conference on Software Engineering, 2022, pp.
698–709.

31. G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based vulnerable function detection: A bench-
mark,” in Proceedings of the 21st International Conference on the Information and Communications
Security (ICICS), 2019, pp. 219–232.

32. J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability dataset with code changes and
cve summaries,” in Proceedings of the 17th International Conference on Mining Software Repositories
(MSR), 2020, pp. 508–512.

18 Computer Science & Information Technology (CS & IT)

https://cve.mitre.org/
https://samate.nist.gov/SRD/testsuite.php
https://nvd.nist.gov/
https://samate.nist.gov/SARD/test-suites/112
https://www.nist.gov/
https://cwe.mitre.org/

33. I. Kalouptsoglou et al., Cross-Project Vulnerability Prediction Based on Software Metrics and Deep
Learning. Springer International Publishing, 2020.

34. W. Niu, X. Zhang, X. Du, L. Zhao, R. Cao, and M. Guizani, “A deep learning based static taint
analysis approach for iot software vulnerability location,” Measurement, vol. 152, p. 107139, 2020.

35. S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” in Proc.
38th Int. Conf. Softw. Eng. (ICSE), 2016, pp. 297–308.

36. S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for vulnerable code clone discovery,”
in IEEE Symposium on Security and Privacy (SP), 2017, pp. 595–614.

37. M. Ahmadi, R. M. Farkhani, R. Williams, and L. Lu, “Finding bugs using your own code: Detecting
functionally-similar yet inconsistent code,” in 30th USENIX Security Symposium, 2021.

38. S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “Centris: A precise and scalable approach for identify-
ing modified open-source software reuse,” in IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021, pp. 860–872.

39. Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo, W. Zou et al., “Mvp: Detecting
vulnerabilities using patch-enhanced vulnerability signatures,” in 29th USENIX Security Symposium,
2020, pp. 1165–1182.

40. S. Woo, E. Choi, H. Lee, and H. Oh, “V1SCAN: Discovering 1-day vulnerabilities in reused C/C++
open-source software components using code classification techniques,” in 32nd USENIX Security Sym-
posium, 2023, pp. 6541–6556.

41. M. N. Islam and C. K. Roy, “Towards token-level bug detection in source code,” in Proceedings of
the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 516–527.

42. Y. Liu et al., “Token-level deep learning model for source code vulnerability detection,” Information,
vol. 11, no. 4, p. 189, 2020.

43. Y. Li et al., “Enhancing vulnerability detection accuracy with token-level features,” IEEE Transactions
on Software Engineering, vol. 47, no. 3, pp. 561–577, 2021.

44. J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural source code representa-
tion based on abstract syntax tree,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 783–794.

45. A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen, J. Al-Kofahi, and T. N.
Nguyen, “Graph-based pattern-oriented, context-sensitive source code completion,” in 2012 34th In-
ternational Conference on Software Engineering (ICSE). IEEE, 2012, pp. 69–79.

46. Q. Mi, Y. Zhan, H. Weng, Q. Bao, L. Cui, and W. Ma, “A graph-based code representation method
to improve code readability classification,” Empirical Software Engineering, vol. 28, no. 4, p. 87, 2023.

47. Y. Li et al., “Hybrid representation learning for source code vulnerability detection,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering, 2020, pp. 736–746.

48. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

49. H. Hanif and S. Maffeis, “Vulberta: Simplified source code pre-training for vulnerability detection,” in
2022 International Joint Conference on Neural Networks (IJCNN), 2022, pp. 1–8.

50. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov, “Roberta: A robustly optimized bert pretraining approach,” arXiv, 2019.

51. Wikipedia contributors, “Multiple-criteria decision analysis — Wikipedia, The Free Encyclopedia,”
2024, accessed: 2024-11-23. [Online]. Available: https://en.wikipedia.org/wiki/Multiple-criteria_
decision_analysis

52. Airfocus Team, “Weighted decision matrix: How to prioritize with ease,” 2024. [Online]. Available:
https://airfocus.com/blog/weighted-decision-matrix-prioritization/

53. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Proceedings of the
31st International Conference on Machine Learning, 2014, pp. 1188–1196.

54. G. Lin, J. Zhang, W. Luo, and L. Pan, “Vulnerability discovery with function representation learning
from unlabeled projects,” in Proceedings of the ACM SIGSAC Conference on Computer and Commu-
nications Security, 2017, pp. 2539–2541.

55. X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “Deepwukong: Statically detecting software vulnerabil-
ities using deep graph neural network,” ACM Transactions on Software Engineering and Methodology,
vol. 30, pp. 1–33, 2021.

56. J. Zhang, W. Wang, and L. Li, “Deeptective: Detection of php vulnerabilities using hybrid graph
neural networks,” in Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2020, pp. 1725–1739.

57. F. Subhan, X. Wu, L. Bo, X. Sun, and M. Rahman, “A deep learning-based approach for software
vulnerability detection using code metrics,” IET Software, vol. 16, no. 5, pp. 516–526, 2022.

Computer Science & Information Technology (CS & IT) 19

https://en.wikipedia.org/wiki/Multiple-criteria_decision_analysis
https://en.wikipedia.org/wiki/Multiple-criteria_decision_analysis
https://airfocus.com/blog/weighted-decision-matrix-prioritization/

Authors

Md Nizam Uddin obtained a Bachelor’s degree in Computer Science from the Islamic University of
Technology (IUT). He spent seven years as a Software Quality Assurance Engineer at Therap Services
LLC, where he specialized in software security, vulnerability assessment, and compliance verification. Cur-
rently, he is pursuing a Ph.D. in Computer Science at the University of Louisiana at Lafayette, focusing on
cutting-edge research in cybersecurity and industrial control system security. His research interests span
information and application security, security challenges in cyber-physical systems, and the resilience of
critical infrastructure.

Yihe Zhang received M.S. degree from SYSU-CMU Joint Institute of Engineering, Sun-Yat Sen University
and Carnegie Mellon University, in 2016. He is currently working toward the Ph.D. degree in the School of
Computing and Informatics, University of Louisiana at Lafayette. His research interests include machine
learning applications, knowledge graph and data-driven security. He received the Best Paper Award and
the Distinguished Paper Award from DSN 2023.

Dr. Xiali Hei is an Alfred and Helen M. Lamson Endowed associate professor in the School of Computing
and Informatics at the University of Louisiana at Lafayette since August 15th, 2023. She was an Alfred and
Helen M. Lamson Endowed assistant professor in the School of Computing and Informatics at the Univer-
sity of Louisiana at Lafayette from August 2017 to August 15th, 2023. Prior to joining the University of
Louisiana at Lafayette, she was an assistant professor at Delaware State University from 2015-2017 and an
assistant professor at Frostburg State University from 2014-2015. She was awarded Alfred and Helen M.
Lamson Endowed Professorship, an Outstanding Achievement Award in Externally Funded Research, five
NSF awards, a Meta Research award, IEEE SP 2024 Distinguished paper award, EAI SmartSP 2023 Best
paper award, etc. Her papers were published at IEEE S&P, USENIX Security Symp., ACM CCS, IEEE
INFOCOM, IEEE Euro S&P, RAID, ASIACCS, etc. She is a PC member of the USENIX Security Symp.,
IEEE EuroS&P, PST, IEEE GLOBECOM, SafeThings, VehivleSec, IEEE ICC, WASA, etc. She was the
general chair of EAI SmartSP 2024. Her research interests are Fast Encryption, Security of Wireless Med-
ical Devices, Biometrics security, Mobile security, Device Security, Network Forensics.

20 Computer Science & Information Technology (CS & IT)

 . This article is published under the Creative Commons Attribution (CC BY) license.© 2025 By AIRCC Publishing Corporation

https://airccse.org

	Deep Learning Aided Software Vulnerability Detection: A Survey
	Introduction
	Research Method
	Research Strategy
	Selection of Studies

	Component Based Discussion
	Dataset Construction
	Vulnerability Granularity Definition
	Code Representation
	Abstract Syntax Tree (AST)-Based Representation
	Graph-Based Representation
	Hybrid Representation
	Natural Language Processing (NLP)-Based Representation
	Embedding-Based Representation

	Model Design
	Sequence-based Models
	Graph-based Models
	Hybrid Models

	Model Performance Evaluation
	Real-world Project Implementation

	Future Research Direction Discussion
	Conclusion

