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ABSTRACT 
 

WebAssembly (WASM) provides a language-neutral execution format widely deployed for 

cloud, edge, and embedded workloads. Its linear memory model and software-level 

sandboxing afford portability and a baseline of spatial isolation, yet they rely on dynamic 

bounds checks and page-based protections that incur overhead and remain susceptible to 

violations under speculative and out-of-order execution. Prior efforts to secure WASM for 

untrusted workloads frequently embed it within Trusted Execution Environments (TEEs) 

such as Intel SGX, introducing attestation, enclave management complexity, and exposure 

to shared-cache side channels, while still lacking hardware-enforced pointer provenance 

and bounds. 

 

This work presents cWAMR, the first WebAssembly runtime ported to leverage CHERI’s 

hardware-enforced capability model, integrating fine-grained bounds, permissions, and 
pointer provenance directly into the execution of WASM modules. We describe the 

adaptations made to the WAMR runtime, including a CHERI-sealed memory allocator, 

capability-restricted system interface (cWASI), and secure externref handling, enabling 

WASM workloads to execute within CHERI compartments without reliance on enclave-

wide isolation boundaries. Validation on the Arm Morello CHERI platform demonstrates 

correct execution of AoT-compiled and interpreted WASM modules under capability 

enforcement, preserving memory safety, compartmentalization, and integrity guarantees 

throughout runtime operation. Developed under the UK Digital Security by Design (DSbD) 

CHERI Morello program, this work establishes a practical path for integrating hardware 

capability systems with portable runtime environments. It lays the groundwork for future 

toolchain support, performance characterization, and broader deployment of capability-

based security for untrusted code execution. 
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1. INTRODUCTION  

 

1.1. Motivation 
 
WebAssembly (WASM) has evolved into a widely adopted, language-neutral execution format 
for deploying software across heterogeneous platforms—including serverless Function-as-a-
Service (FaaS), edge computing nodes, IoT devices, and cloud-native microservices. By 
compiling high-level languages such as C, C++, and Rust into a compact bytecode based stack 
machine with a linear memory abstraction, WASM offers portability, fast instantiation times, and 
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software-level sandboxing. Standardized interfaces like the WebAssembly System Interface 
(WASI) [14] extend WASM’s reach by enabling platform-neutral access to files, clocks, random 
generators, and emerging features like networking and HTTP support—making it practical well 
beyond browser contexts. 

 
However, the security guarantees of WASM remain fundamentally software-bound. Its linear 
memory model is protected by dynamic bounds checks and virtual memory mechanisms (e.g., 
guard pages with mprotect), [33] which impose significant performance overhead—especially 
evident in compute-intensive workloads—and still leave room for out-of-bounds memory 
accesses under speculative or transient execution. Prior evaluations across runtimes and 
architectures have shown that WASM’s bounds-checking can degrade performance by up to 
20%–650% [33]. 

 
To mitigate these risks, practitioners have explored running WASM inside hardware-backed 
Trusted Execution Environments (TEEs) such as Intel SGX [9] or AMD SEV. While TEEs 
encrypt memory regions and authenticate workloads to remote parties, they introduce substantial 
enclave transition costs, EPC paging overheads, and persistent vulnerability to microarchitectural 
side channels. Moreover, TEEs enforce coarse-grained trust boundaries, lacking the fine-grained 
per-object memory integrity needed to compartmentalize individual WASM modules or data 

structures. 
 

1.2. Objectives and Contributions 
 
This landscape motivates a shift toward enforcing memory safety and compartmentalization 
directly at the architectural level, without relying solely on cryptographic boundaries or runtime-

managed checks. 
 

CHERI (Capability Hardware Enhanced RISC Instructions) [1][2] embodies such a shift. By 
extending processor architectures to natively support unforgeable, metadata-rich pointers—
capabilities that embed bounds, permissions, and provenance—CHERI enforces spatial and 
temporal safety guarantees in hardware, preventing unauthorized memory access even under 
speculation [34]. 

 
In this paper, we introduce cWAMR [24], the first integration of a mature WebAssembly runtime 
with the CHERI architecture. Specifically: 
 

● We adapt the WebAssembly Micro Runtime (WAMR) [13] to produce and operate on 
CHERI capabilities, including a sealed capability memory allocator, a capability-
enforced WASI interface (cWASI), and secure externref handling. 

● We demonstrate that WASM modules can run inside hardware-enforced CHERI 
compartments, eliminating the need for enclave-wide encrypted memory and heavy 
context transitions, yet still maintaining strict bounds, provenance, and isolation 
guarantees. 

● We validate our runtime on the Arm Morello platform [23], showing successful 
execution of AoT-compiled and interpreted WASM workloads under CHERI’s security 
model. 

 
These contributions represent a first step toward bringing architectural capability security to 
language-neutral, high-level runtime ecosystems—a direction aligned with recent priorities 
identified in national software security initiatives. 
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1.3. Paper Organization 
 
The remainder of this paper is structured as follows: 

 
● Section 2 reviews key background on WASM runtimes, TEEs, and the CHERI 

architecture, and surveys related double-sandbox models. 
● Section 3 presents the cWAMR architecture, describing how CHERI capabilities were 

integrated into WAMR to achieve hardware-enforced memory safety and 
compartmentalization. 

 
● Section 4 details implementation, including CHERI-specific adaptations to memory 

allocation, execution contexts, and AoT toolchain workflows. 
● Section 5 validates cWAMR on Arm Morello, confirming secure execution under 

CHERI, and outlines ongoing efforts in toolchain development and benchmarking. 
● Section 6 concludes with insights on advancing capability-based secure execution. 

 

2. BACKGROUND AND RELATED WORK 
 

2.1. WebAssembly and Language Agnostic Runtimes  

 
WebAssembly (WASM) [6][19] is a low-level binary instruction format designed as a portable 
compilation target for high-level languages such as C, C++, and Rust. Unlike conventional virtual 
machines like the JVM or CLR—which maintain rich object models and garbage collection—
WASM implements a minimalist stack machine coupled with a linear memory abstraction: a 
module’s entire heap is represented as a single, contiguous, byte-addressable array. Programs use 

untyped integer offsets to index into this space. 
 
This architecture minimizes runtime complexity by offloading memory safety to explicit checks 
rather than implicit object models or hardware-assisted segmentation. It also decouples execution 
from any single instruction set architecture, allowing WASM binaries to run unchanged across 
diverse platforms. 
 
Security in WASM is primarily enforced via software sandboxing. Each module is isolated in its 

own linear memory, with no capability to perform arbitrary system calls or access external 
memory directly. Instead, interactions with the host system—whether for file I/O, networking, or 
cryptographic operations—are explicitly mediated by interfaces such as the WebAssembly 
System Interface (WASI) [14]. WASI provides a standardized, platform-neutral set of APIs, 
effectively acting as a syscall layer under tight control of the runtime. 
 
However, WASM’s reliance on dynamic bounds checks and virtual memory protections leaves it 

vulnerable in adversarial contexts. Studies such as “Leaps and Bounds” [33] have demonstrated 
that bounds-checking overhead can become a dominant factor in runtime performance, and that 
speculative or out-of-order execution may transiently bypass these software checks. This exposes 
memory contents that ought to be logically inaccessible, undermining both confidentiality and 
integrity—especially in multi-tenant or untrusted execution environments. 
 

2.2. Trusted Execution Environments (Tee) 

 
Trusted Execution Environments (TEEs) provide hardware-isolated enclaves that shield code and 
data from the operating system and hypervisors. Prominent examples include Intel Software 
Guard Extensions (SGX) [11], AMD Secure Encrypted Virtualization (SEV) [17], and AWS 
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Nitro Enclaves [16]. These environments establish a cryptographic trust boundary to protect 
sensitive computations from a potentially compromised host. 
 
Intel SGX [11] partitions physical memory into protected Enclave Page Cache (EPC) regions, 

ensuring that data inside the enclave remains encrypted outside the CPU package. SGX supports 
remote attestation, enabling cloud clients to verify enclave integrity before provisioning secrets.  
 
However, SGX’s design incurs several bottlenecks [25][32]: 
 

● OCALL/ECALL overhead: System calls and external library invocations require 
explicit transitions across the enclave boundary, involving argument marshalling, 
encryption, and validation. 

● EPC paging penalties [36]: SGX reserves a dedicated Enclave Page Cache (EPC), 
typically 128 MB to 256 MB per socket, determined by BIOS configuration at boot. 
While SGX2 extends the instruction set to dynamically allocate or free EPC pages within 
an enclave, it does not expand the total EPC size. Oversubscribed EPC workloads trigger 
encrypted paging to untrusted DRAM, protected by integrity trees, which imposes 
substantial latency penalties. 

● Side-channel vulnerabilities: Despite memory encryption, shared microarchitectural 
resources (caches, branch predictors) can be exploited via transient execution attacks 
such as Spectre [7], Meltdown [8], and LVI [26], allowing leakage of enclave secrets. 

 

AMD SEV [17] encrypts the entire guest VM’s memory, isolating it from a malicious 
hypervisor. While this provides strong confidentiality, SEV operates at the VM granularity, 
lacking fine-grained compartmentalization within applications. Similarly, AWS Nitro Enclaves 
[16] spin off lightweight VMs with dedicated CPUs and memory, suitable for secure workload 
separation but too coarse for per-module or intra-process isolation. 
 

In all these designs, TEEs elevate the trust boundary and provide assurances against external 
threats, but they do not alter the semantics of pointers or enforce bounds at the hardware level. 
Once inside an enclave, applications still rely on conventional memory safety mechanisms, which 
can be subverted by programming bugs or speculative execution side channels. 
 

2.3. Cheri: Architectural Capability Enforcement  

 

CHERI (Capability Hardware Enhanced RISC Instructions) [1][2] fundamentally rethinks 
memory safety by embedding protection directly into processor instructions and registers. Instead 
of untyped pointers, CHERI employs capabilities—128-bit enriched references that tightly couple 
memory addresses with metadata describing what can be accessed and how. 
Each capability contains: 
 

● A 64-bit virtual address, indicating the base location. 
● Compressed bounds, specifying the lower and upper memory limits. 
● Permission bits, detailing allowed operations (e.g., load, store, execute). 
● A hidden validity tag, atomically tracked in hardware, which ensures the capability’s 

authenticity. 
 

These attributes are enforced by the CPU on every memory access or control transfer: 
 

● Spatial safety: Memory loads, stores, and jumps outside the authorized bounds 
automatically fault, blocking buffer overflows. 
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● Permission safety: Even within valid bounds, operations must match the capability’s 
permissions, preventing writes to read-only segments or unauthorized instruction fetches. 

● Provenance and integrity: Capabilities can only be derived (through explicit 
instructions like bounds narrowing or sealing) from other valid capabilities. This directly 
enforces temporal safety by invalidating stale references. 

 
CHERI introduces sealed capabilities, which are cryptographically guarded by the hardware so 
they cannot be dereferenced or modified until explicitly unsealed. This allows creating software 
compartments (e.g., isolating libraries or WASM modules) where cross-compartment interaction 
must occur through explicitly granted capabilities, enforcing strict least-privilege boundaries 
within a single address space. 

 
Formally verified proofs of CHERI’s architecture confirm that under typical attacker models—
including speculative execution [34] where transient violations must resolve to legitimate 
architectural state—capabilities uphold bounds, provenance, monotonicity, and encapsulation 
properties. This moves the trust model from external cryptographic wrappers (like enclave 
encryption) to intrinsic, per-pointer hardware checks, eliminating classes of spatial and temporal 
vulnerabilities. 

 

2.4. Related Work 

 

WebAssembly runtimes and bounds enforcement 

 
A wide body of work has explored the performance and security characteristics of WebAssembly 

runtimes. Early investigations like Jangda et al. [35] highlighted the cost of dynamic safety 
checks in WASM, showing that bounds checking for linear memory and indirect call tables can 
introduce overheads ranging from 10% to over 200% on real workloads. More recent empirical 
studies, such as Leaps and Bounds [33], benchmarked multiple WASM runtimes across x86, 
Arm, and RISC-V architectures, isolating the substantial cost of mprotect()-based memory 
protections and userfaultfd schemes typically employed by runtimes like V8 and Wasmtime [3] 
to implement sandbox boundaries. These studies confirm that while WASM enforces spatial 

safety via software-managed mechanisms, it remains sensitive to speculative leaks and incurs 
notable performance tradeoffs under memory protection. 
 
The WebAssembly Micro Runtime (WAMR) [13], on which our work builds, offers 
interpretation, AoT, and JIT modes optimized for constrained devices and standalone 
deployments. However, WAMR still relies on conventional linear memory bounds checks and 
does not enforce architectural provenance or bounds directly at the instruction set level. 
 

TEEs and double sandboxing of WASM 

 
To mitigate risks in untrusted platforms, multiple efforts have embedded WASM runtimes inside 
Trusted Execution Environments (TEEs), layering a software sandbox within a hardware enclave 
to achieve "double sandboxing." For instance, TWINE [9] runs unmodified WASM inside Intel 
SGX enclaves, relying on SGX’s encrypted memory and attestation to protect against 
compromised hosts. Similarly, AccTEE [10] executes WASM workloads inside AMD SEV 

virtual machines, leveraging full-VM memory encryption. 
 
While these approaches raise the security bar, they inherit TEE-specific limitations: SGX suffers 
from EPC paging bottlenecks and costly OCALL/ECALL transitions, while SEV lacks intra-
application compartmentalization [25][32]. Both remain exposed to speculative execution attacks 
on shared microarchitectural state, as demonstrated by Spectre [7], Meltdown [8], and LVI [26] 
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variants. Moreover, TEEs do not redefine the semantics of memory references—pointers inside 
enclaves still follow conventional ISA rules without intrinsic bounds or provenance enforcement. 
Capability hardware for fine-grained memory safety 

 

Outside TEEs, CHERI (Capability Hardware Enhanced RISC Instructions) represents a 
fundamentally different approach by embedding unforgeable capabilities with bounds, 
permissions, and validity tags directly into the CPU pipeline [1][2]. This enables hardware-
enforced spatial safety, provenance-based temporal safety, and sealed capabilities for software-
defined compartments, all without relying on encrypted memory or heavyweight enclave 
mechanisms. 
 
Recent CHERI-focused studies have primarily addressed OS kernels, native applications, and 

mitigation of speculative attacks via architectural speculation contracts [34]. To our knowledge, 
our work is the first to adapt a portable language-neutral WebAssembly runtime (WAMR) to 
execute directly within CHERI compartments, enforcing capability bounds and pointer integrity 
at the hardware level. By doing so, cWAMR sidesteps the high transition costs and coarse 
compartment models of TEEs, while directly leveraging CHERI’s architectural guarantees to 
confine untrusted WASM workloads. 
 

3. CWAMR ARCHITECTURE 
 

3.1. Overview of the Cheri-Enhanced WebAssembly Runtime  

 
The Capability-Aware WebAssembly Runtime (cWAMR) [24] is a CHERI-augmented variant 
of the WebAssembly Micro Runtime (WAMR) [13], designed to provide hardware-enforced 
memory safety, secure module isolation, and native execution compatibility for unmodified 

WebAssembly binaries. 
 
Unlike traditional WASM runtimes, which rely on software-based sandboxing within a flat linear 
memory model, cWAMR [24] leverages CHERI (Capability Hardware Enhanced RISC 

Instructions) [1][2] to enforce fine-grained, hardware-level memory protection. CHERI replaces 
untyped pointers with capability-enforced references that include bounds, permissions, and 
integrity constraints, eliminating common vulnerabilities such as buffer overflows, use-after-free 

errors, and speculative execution attacks. 
 
A central challenge in integrating CHERI with WebAssembly is the mismatch between WASM’s 
linear memory abstraction and CHERI’s capability-based memory model. Additionally, to 
support native interoperability and compatibility with the WebAssembly System Interface 
(WASI) [14], cWAMR [24] must bridge conventional pointer-based host interfaces with 
CHERI’s strict capability semantics. 
 

To address these challenges, cWAMR [24] introduces several architectural enhancements: 
 

● A capability-aware WASI layer (cWASI) [24] that mediates all system calls through 
CHERI-sealed references, ensuring per-compartment access control. 

● Secure handling of externref objects, enabling memory-safe interaction between 
WebAssembly modules and host-native functions. 

● Support for both hybrid and purecap execution modes [2], allowing developers to 

incrementally adopt CHERI’s full security model without sacrificing compatibility. 
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Figure 1. Layered Architecture of cWAMR [24] on the CHERI Platform 

 
Through these mechanisms, cWAMR [24] achieves a novel form of double sandboxing, where 
WebAssembly’s software-level isolation is nested within CHERI’s hardware-enforced 
compartments—eliminating the need for cryptographic attestation mechanisms typically required 
in Trusted Execution Environments (TEEs). 

 

3.2. Execution Models: Hybrid and PureCap 

 
WebAssembly is traditionally designed to operate with a linear memory model, where memory is 
accessed through 32-bit or 64-bit untyped integer offsets. While this model supports platform-
independence and predictable sandboxing, it provides limited protection against low-level 

memory manipulation and pointer-based vulnerabilities. 
 
By contrast, CHERI [2] replaces raw pointers with capability-enforced references. Each reference 
includes metadata encoding valid memory bounds, access permissions, and provenance, enabling 
hardware-level enforcement of memory safety and compartmentalization. 
 
To accommodate diverse deployment environments and support progressive adoption, cWAMR 
[24] supports two execution models: 

 
Hybrid Mode (Partial CHERI Enforcement): 

 

● WebAssembly modules operate largely within the traditional linear memory abstraction. 
● Selected memory regions and system interactions are protected using CHERI 

capabilities. 
● This model preserves compatibility with legacy WASI applications and standard 

toolchains. 
● CHERI-based enforcement can be selectively applied to high-risk operations, such as 

system calls and shared memory access. 
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Purecap Mode (Full Capability Enforcement): 

 

● All memory interactions, including function arguments, return values, and heap 
allocations, are mediated through CHERI capabilities. 

● WebAssembly memory is fully compartmentalized, and pointer manipulation outside 
defined bounds is hardware-trapped. 

● Purecap execution provides complete memory safety and isolation, but requires CHERI-
aware toolchain support (e.g., CHERI-LLVM [22]). 

 
 

Figure 2. cWAMR Execution Pipeline Overview 

 
cWAMR’s dual-mode design allows developers and platform architects to incrementally 
transition from traditional sandboxing models to fully hardware-enforced execution. This 
flexibility is critical for real-world adoption, enabling compatibility with existing WebAssembly 

ecosystems while gradually strengthening trust boundaries through CHERI. 
 

3.3. cWasi - Capability Aware System Interface for WebAssembly 

 

3.3.1. Wasi Limitations in Cheri Context 

 

The WebAssembly System Interface (WASI) [14] standardizes access to essential system 
resources—such as file I/O, networking, clocks, and entropy—allowing sandboxed 
WebAssembly modules to interact with their host environments in a platform-agnostic way. 
 
In conventional runtimes (e.g., WAMR [13], Wasmtime [3], Lucet [31]), WASI is implemented 
using raw pointers and integer-based file descriptors within a linear memory model. While 
suitable for traditional sandboxing, this design conflicts with capability-based architectures like 

CHERI, which embed bounds and permissions directly into memory references. 
 
Key limitations in this context include: 
 

● Incompatibility with CHERI pointers: WASI APIs rely on unbounded raw pointers, 
which CHERI explicitly prohibits. 
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● Assumed trust in the host: WASI presumes a trusted environment, whereas CHERI 
enforces per-compartment untrust and requires explicit delegation. 

● High-overhead OCALLs in enclave models: In SGX-based runtimes (e.g., TWINE [9]), 
WASI calls cross enclave boundaries via OCALLs, introducing cryptographic costs and 
side-channel exposure (e.g., Spectre [7], LVI [26]). 

 

3.3.2. cWasi - A Secure Interface Model 
 
To address these issues, we introduce CHERI-WASI (cWASI) [24] —a capability-enforced 

WASI implementation tailored for cWAMR. Rather than re-inventing the entire WASI spec, 
cWASI preserves the existing syscall semantics but ensures that: 
 

● Pointer arguments are capabilities: All memory-passing operations expect CHERI 
“__capability” types with hardware-enforced validity. 

● File descriptors and handles are sealed: cWASI binds resources (like files or sockets) 
to a module’s compartment using fine-grained tokens instead of ambient authority. 

● System calls run in-process: No boundary transitions or OCALLs are needed, unlike 
SGX. Instead, capability checks are performed prior to system dispatch, maintaining 
latency and integrity. 

 
3.3.3. Implementation Realities 

 

Raw Pointer Replacement 

 
Many WASI [14] functions (e.g., fd_read) were adapted to use “__capability” parameters. 

However, direct substitution wasn't trivial—WAMR’s internals relied on linear memory 
assumptions. This required rewriting memory access logic in mem_alloc and memcpy paths to 
validate bounds via CHERI instructions instead of manual offsets. 
 
File Access Control 

 
Standard WASI permits open-ended path access. In cWASI, resource delegation uses sealed 

capability tokens, stored in per-module descriptor tables. path_open was rewritten to enforce 
token validation prior to every open syscall. 
 
Avoiding OCALLs 

 
By keeping WASI syscalls in-process and validating all capability arguments via CHERI 
intrinsics, cWASI removed the need for TEE-like attestation or memory copying across enclave 
edges. This significantly reduced syscall latency. 
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Figure 3. Comparative Models of WASI Integration in Traditional, Enclave-Based, and CHERI-Based 

WebAssembly Runtimes 

 
This design enables cWAMR to support secure, low-overhead system interactions while 
preserving compatibility with standard WebAssembly tooling. As a result, cWAMR stands apart 
as the first runtime to offer capability-native system calls, delivering a scalable and hardware-
enforced foundation for secure execution beyond the limitations of TEE-based models. 

 

3.4. Externref Handling 

 

3.4.1. Problem: Unsafe Native Bridging 

 
The externref [29][30] construct in WebAssembly was designed for flexibility—allowing 

modules to hold opaque references to host-managed objects. Unfortunately, most runtimes 
implemented these using global raw pointer tables. This model breaks on CHERI for two reasons: 
 

1. It allows type-unsafe access: An externref [30] could be used across modules with 
incompatible layouts. 

2. It lacks memory provenance: Once allocated, externrefs could outlive their owners, 
risking stale or hijacked pointers. 

 
3.4.2. Our Solution: Capability Wrapped Object References 

 
In cWAMR [24], we redesigned externref handling to behave more like capability-based handles 
instead of raw table indices: 
 

● Reference Table Rewritten: We replaced WAMR’s static externref table with a 
dynamic slab allocator that stores CHERI-sealed capabilities per module context. 

● Lifetime Linking: Capabilities were bound to the lifecycle of their owning module. 
Once a module is deallocated, all associated capabilities are invalidated using CHERI’s 
provenance model—removing the need for manual reference counting or finalization 
hooks. 

● Cross-Compartment Passing: To support externref usage across modules, cWAMR 
uses sealed delegation. Only capabilities explicitly passed through host exports (e.g., via 
wasm_export_function) are valid in downstream modules. 
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Figure 4. Secure wasm interop using capability-wrapped externrefs 

 

3.4.3. Native Execution with Secure References 

 

cWAMR allows WASM modules to call native functions using externrefs [29] that are now 
CHERI capabilities. Here’s how we enforce safety without performance compromise: 
 

● Native functions only dereference memory through capability-validated pointers. 
● If a module tries to pass a forged or expired reference, the CPU triggers a hardware 

fault—pre-empting attack attempts. 
● Because all operations are in-process, there’s no cryptographic attestation step (as in 

SGX), and calls occur at near-native speed. 
 
By enforcing memory provenance, compartment scoping, and revocation at the hardware level, 
cWAMR’s externref system brings deterministic safety to a historically error-prone interaction 
layer. It ensures that native interoperability no longer undermines the isolation promised by 
WebAssembly. 
 

3.5. Fine Grained Compartmentalization in cWamr 

 
In conventional TEE-backed WebAssembly runtimes like TWINE [9] (SGX) or Enarx [15] 
(SEV/TDX), all WebAssembly modules typically execute within a monolithic secure enclave. 
While this offers memory confidentiality against untrusted OS or hypervisors, it fails to enforce 
intra-enclave isolation between multiple modules. Modules share the same virtual address space, 
creating risks of: 

 
● Intra-tenant data leakage 
● Unbounded pointer misuse 
● Privilege escalation across modules 
● Exposure to speculative attacks (e.g., Spectre [7], LVI [26]) 

 

cWAMR’s Capability-Enforced Isolation 

 
Unlike enclave-based models, cWAMR uses CHERI’s architectural primitives [1] to allocate and 
seal individual capability domains per module. Each WebAssembly module is executed inside its 
own capability-constrained compartment, configured at runtime by a capability manager. This 
enforces hardware-enforced compartment boundaries that cannot be bypassed in software, 
eliminating reliance on encrypted paging or cryptographic attestation. 
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Key Design Features 

 

● Compartment-Scoped Memory Maps 
 

Each WASM module’s heap, operand stack, and frame stack are sealed as independent 
capability regions. Memory accesses outside a compartment’s bounds trigger hardware-
enforced CHERI faults, protecting against out-of-bounds memory manipulation or 
pointer aliasing. 
 

● Cross-Module Delegation via Sealed Capabilities 
 

 

Unlike enclave models that rely on RPC [9] marshalling or OCALL [11] patterns, 
cWAMR implements capability transfer through explicitly delegated sealed objects. 
Capabilities passed across modules are derived from narrowed parent objects, limiting 
authority propagation. 
 

● No Shared Linear Memory by Default 
 

WebAssembly’s default linear memory model is kept private to each compartment unless 
explicitly shared via CHERI-sealed objects (e.g., shared memory pools or cross-
compartment tables), avoiding unintentional leakage. 
 

● Secure Code Re-Entrancy and Switching 
 
Module calls, recursion, and system interactions use a capability-aware call stack 

switcher that preserves isolation and avoids capability corruption during context 
transitions. 
 

 
 

Figure 5. Per-Module Isolation and Capability Delegation in cWAMR 

 

Implementation Considerations 

 

● The CHERI-LLVM–compiled [22] AoT modules embed per-function sealed entry 
points, allowing controlled invocation by a capability dispatcher. 
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● Runtime validation enforces that entry capabilities are not reused or passed backward 
from callee to caller, maintaining directional integrity of access. 

● Interactions via cWASI or externref are scoped to the current compartment's derived 

capabilities, ensuring that host-facing calls cannot be misused by other tenants. 
 

Table 1. Runtime Isolation Features: cWAMR vs. Enclave based approaches 

 

Feature cWAMR (CHERI) SGX-based WebAssembly 

Memory Isolation Per-module, capability enforced Enclave-wide; shared threads 

System Call Semantics In-process, sealed via cWASI; 

capability bound 

OCALL-based; boundary 

transitions 

Externref handling Sealed delegated references Raw pointers; manual validation 

Module Switching Hardware-regulated compartment 

transitions 

Software switches within single 

enclave 

Inter-Module 

Communication 

Delegated capabilities only Shared memory or manual 

software guards 

Speculative Attack Surface Narrowed via per-compartment 

CHERI sealing 

Shared enclave state susceptible 

to leakage 

 
Unlike enclave models constrained by cryptographic boundaries and shared secure memory, 
cWAMR ensures that each module is an isolated, non-overlapping security domain enforced by 
CHERI's hardware. This architecture eliminates privilege flattening, prevents capability reuse, 

and supports scalable multi-tenant isolation without performance-heavy TEE constructs. 

 

3.6. Security Model 
 

The security design of cWAMR is rooted in CHERI’s hardware-backed capability system, which 
enforces spatial memory integrity, provenance validity, and explicit compartment boundaries at 
the instruction level—eliminating dependence on cryptographic attestation, encrypted paging, or 
external marshalling commonly required in TEE-based designs. 
 
Hardware-Enforced Memory Integrity and Capability Provenance 

 
In cWAMR, all internal runtime structures—including stack frames, linear memories, and 

external references—are represented as CHERI capabilities. Each capability tightly couples: 
 

● bounds that constrain valid address ranges, 
● fine-grained permissions (read, write, execute, seal), 
● and provenance metadata that tracks derivation chains. 

 
This ensures that memory accesses cannot exceed their authorized object boundaries, fabricated 

pointers are invalidated by tag checks, and stale references after deallocation cannot regain 
privileges—directly preventing classes of vulnerabilities such as buffer overflows, use-after-free, 
and pointer aliasing attacks. 
 
Speculative and Out-of-Order Safety 

 
Unlike traditional sandboxed runtimes or TEEs that remain vulnerable to transient execution 

attacks due to speculative misuse of stale or forged pointers, cWAMR leverages CHERI’s 
architectural guarantees. Specifically: 
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● The capability check pipeline ensures that speculative loads cannot dereference invalid or 

out-of-bounds pointers, in alignment with CHERI’s proposed Capability Speculation 
Contracts (CSC). 

● This prevents speculative memory leaks through bounds or permissions violations, 
maintaining the invariant that no memory access can occur without architectural 
authorization. 

 
By executing within a sealed, capability-constrained compartment, cWAMR inherently 
minimizes side-channel exposure surfaces tied to speculative control flow or indirect jumps. 
 
Explicit Capability-Scoped Multi-Tenancy 

 
cWAMR implements a strict multi-compartment model, where each WebAssembly module runs 
inside its own CHERI compartment with dedicated sealed capabilities. There is no implicit 
sharing of memory or resources: 
 

● Inter-module communication, shared buffers, or host API accesses require explicit 
capability delegation. 

● This zero-trust design sharply contrasts with enclave-based TEEs, which typically 
assume a single large trusted memory region for all enclave code, raising risks of internal 
privilege escalation. 

 

Eliminated Trusted Host Dependence 

 
Traditional TEEs or sandboxed runtimes often rely on external marshalled OCALLs (e.g., for file 

I/O or cryptographic operations) that expose privileged host interfaces to untrusted guest data. In 
contrast, cWAMR’s integration of cWASI ensures that all system interactions are mediated 
through capability-qualified interfaces, with: 
 

● no unbounded raw pointers crossing runtime boundaries, 
● no dependence on privileged host code outside the CHERI trust perimeter. 

This substantially reduces the trusted computing base (TCB) and simplifies formal reasoning 
about security, aligning with CHERI’s goals of minimal, well-defined hardware-enforced 

software compartments. 
 

4. IMPLEMENTATION AND SYSTEM INTEGRATION 
 
The cWAMR [24] runtime is derived from the WebAssembly Micro Runtime (WAMR) [13] and 
has been deeply refactored to align with CHERI's capability system. The implementation focuses 
on replacing unsafe linear memory operations with CHERI-enforced references while preserving 
compatibility with unmodified WebAssembly binaries. 
 

4.1. Cheri Adaptations in Wamr 

 
To make the WAMR runtime CHERI-compliant, several subsystems were overhauled: 
 

● Memory Allocation: The mem_alloc, heap_malloc, and runtime linear memory 
initialization functions were updated to use CHERI-safe memory via 
__builtin_cheri_bounds_set and related intrinsics. This ensures that memory blocks 

returned from the allocator are bounds-restricted and provenance-tracked. 
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● ExecEnv Refactoring: The exec_env context was modified to hold sealed capabilities 
for the stack and runtime frame pointers. This prevents frames or modules from forging 
or traversing invalid stack memory during WASM invocation. 

● CHERI-Safe Host Intrinsics: Built-in hostcalls (e.g., memcpy, strcpy, and indirect 

function tables) were patched to validate capabilities before dereferencing. Unsafe 
constructs like mem_access_addr = base + offset were eliminated and replaced with 
capability-aware access patterns. 

● System Call Interface: WASI call sites were entirely rewritten in native_wasi_api.c to 
replace raw pointer arguments with __capability-qualified parameters. The internal 
function tables, WASM-native to host mappings, and argument unwrapping logic were 
modified to decode and enforce CHERI metadata. 
 

4.2. Toolchain and Build Integration 

 
cWAMR modules are compiled using a multi-stage CHERI-native pipeline to ensure end-to-end 
capability safety: 
 

● AoT Path (wasm2c → CHERI-LLVM): WebAssembly modules are converted to ANSI 

C using wasm2c. The resulting source is then compiled using CHERI-Clang (cheri-
clang) [22] targeting hybrid or purecap mode (-mabi=purecap)[23]. This preserves the 
WASM logic while emitting capability-enforced ELF modules. 

● Object Wrapping: Each compiled module is statically linked with a minimal CHERI-
safe runtime shim, which initializes the exec_env, populates sealed memory regions, and 
registers capability-secure host imports. The linker script ensures that function pointers 
and tables reside in compartmentalized address spaces. 

● Linkage with cWAMR Core: The CHERI-safe ELF [22] objects are integrated with the 
modified cWAMR runtime, including patched app_manager, runtime_memory, and 
native_symbol modules to handle sealed references, validated host imports, and cross-
module delegation. 

● Target Validation: The final binary is deployable on CHERI-enabled QEMU [23] and 
Morello platforms. Execution is validated using capability trap monitoring 
(cheri_ccheck_fail), runtime permission tracing, and AoT validation against native 

WAMR output to ensure semantic consistency. 
 
This toolchain enables high-assurance, capability-native WebAssembly execution, bridging open 
standards (WASI, WAMR) with hardware-enforced security guarantees via CHERI. 
 

 
 

Figure 6. Implementation 
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5. VALIDATION 

 
To verify cWAMR’s correctness and readiness for CHERI-enforced environments, we built a 
comprehensive validation framework integrated into the Verifoxx cWAMR repository. 
Benchmarks are automated via a custom autorun script and organized for both hybrid-mode and 
purecap deployments on the Arm Morello SoC [23]. 
 

Benchmark Suites 

 

Adapted to CHERI via dedicated scripts: 
 

● CoreMark, Dhrystone, Polybench, and Sightglass—each includes a cheri_build.sh 
wrapper for hybrid and purecap compilation, ensuring seamless integration into the 
CMakePresets.json build system. 

 

Execution Modes 

 
Workloads are exercised in: 
 

● Interpreted mode: using the CHERI-modified WAMR core. 
● Ahead-of-Time (AoT) mode: employing wasm2c + CHERI-LLVM and sealed memory 

regions. 

 

Automated Harness 

 

● The autorun_benchmark script detects the target—Morello hybrid or purecap—launches 
applicable runtime, optionally builds AoT modules, executes tests, and aggregates results 
for analysis. 

 

5.1. Functional Validation and Capability Enforcement 

 
Through interactive testing and coverage inspection, we've confirmed at these initial stages: 
 

● WASM modules executed correctly under CHERI enforcement, both in hybrid and 
purecap configurations. 

● Capability traps were triggered as expected when attempting to access out-of-bounds 
memory or dereference forged pointers. 

● Memory access integrity was preserved across all benchmark workloads using sealed and 
bounded CHERI capabilities. 

● No raw pointer dereferencing occurred during system call handling due to integration 
with the capability-aware CHERI-WASI layer. 

 
These results validate that: 
 

● The porting of WAMR to CHERI is successful and stable. 

● WASM modules are able to operate securely under CHERI’s architectural constraints. 
 

5.2. Next Steps  
 
With the current implementation, cWAMR [24] has successfully demonstrated secure and stable 
execution of WebAssembly modules on CHERI-enabled platforms, validating key architectural 
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goals including memory safety, compartmentalized execution, and CHERI-compliant system 
interfacing. These outcomes establish a strong technical foundation for capability-aware 
WebAssembly runtimes. 
 

Having established the architectural correctness and stability of cWAMR on CHERI platforms, 
our immediate roadmap focuses on: 
 

● Comprehensive benchmarking: quantifying execution overheads introduced by CHERI 
capability checks versus software bounds models, under typical WASM computational 
and I/O-heavy loads. 

● Deeper compiler pipeline integration: refining AoT support with CHERI-LLVM to 
minimize sealing/unsealing overhead and ensure fine-grained capability propagation. 

● Enhanced toolchain automation: improving reproducibility and developer ergonomics 
with robust presets, debug tooling, and portable CI pipelines for both Morello hardware 
and CHERI-QEMU [23] emulation. 

● Security explorations beyond memory safety: such as integrating with architectural 
speculation contracts (e.g., CHERI CSC) [34] to evaluate transient execution 
containment. 

 

The benchmarking harness—along with build scripts, test presets, and AoT integrations—is 
being actively extended to support these goals. Progress is tracked in the Verifoxx cWAMR 
repository, with upcoming updates focused on scaling test suites and reducing integration 
friction. With this cWAMR aims to mature into a developer-friendly platform for secure, high-
assurance WebAssembly applications in both research and production environments.  
 

6. CONCLUSION 
 
This paper presents cWAMR, the first WebAssembly runtime ported to natively leverage 
CHERI’s hardware-enforced capability system. By embedding fine-grained bounds, permission 

checks, and provenance directly into WASM execution semantics, cWAMR transitions away 
from reliance on software-only sandboxing and enclave-centric trust models—enabling least-
privilege, hardware-backed isolation for untrusted code. 
 
Our port demonstrates that CHERI’s compartmentalization primitives can secure both WASM 
linear memory and its external interfaces, without enclave exit overhead, or coarse VM 
boundaries. Functional validation on CHERI Morello confirms correct capability propagation, 
trap behavior on violations, and stable execution of AoT and interpreted WASM modules. 

 
As an open-source contribution under the UK Digital Security by Design (DSbD) initiative, 
cWAMR establishes a practical foundation for deploying secure-by-construction WebAssembly 
runtimes. Future work will expand toward systematic performance characterization, enhanced 
compiler-level optimizations, and security explorations — driving cWAMR toward a robust 
ecosystem complete with streamlined toolchain support, developer-friendly workflows, and 
rigorous security assurances — enabling practical, high-assurance WebAssembly deployments 

for privacy-preserving and multi-tenant computing. 
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