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Abstract. Accurate text classification requires both deep contextual
understanding and structural representation of language. This study ex-
plores a hybrid approach that integrates transformer-based embeddings
with graph-based neural architectures to enhance text classification per-
formance. By leveraging pre-trained language models for feature extrac-
tion and applying graph convolution techniques for relational modeling,
the proposed method captures both semantic meaning and structural
dependencies in text. Experimental results demonstrate improved classi-
fication accuracy over traditional approaches, highlighting the effective-
ness of combining deep contextual learning with graph-based represen-
tations in NLP tasks.
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1 Introduction

Text classification is a foundational task in Natural Language Processing (NLP),
involving the assignment of labels to text units such as documents, sentences,
or phrases. It supports various applications including sentiment analysis, spam
detection, and topic categorization. Traditional approaches relied on manual
feature engineering and shallow models, but the advent of deep learning has
shifted focus toward automatic representation learning.

Recent contextual language models like BERT (Bidirectional Encoder Repre-
sentations from Transformers) have transformed NLP by leveraging self-attention
and large-scale pretraining to learn rich semantic and syntactic patterns. While
effective for capturing sequential dependencies, such models lack mechanisms
to explicitly encode structural relationships that can influence document-level
classification.

Graph Neural Networks (GNNs) are designed to operate on structured data,
enabling the modeling of both local and global dependencies through graph-
based message passing. When applied to text, GNNs represent words and doc-
uments as nodes, with edges denoting syntactic, semantic, or statistical co-
occurrences. Graph Convolutional Networks (GCNs), a prominent GNN variant,
have been particularly effective in capturing global word-document relations.
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This work proposes a hybrid model combining semantic embeddings from a
fine-tuned BERT with structural representations derived from GCNs built on
document-word graphs. Unlike prior methods treating these aspects indepen-
dently, the proposed framework unifies them to leverage their complementary
strengths.

We begin with a literature review on text classification and graph-based
approaches. Then, we detail our methodology, including preprocessing, graph
construction, embedding generation, and fusion techniques. Experimental re-
sults demonstrate the benefits of this integration over individual models. Fi-
nally, we discuss observed limitations and suggest future improvements involving
attention-based GNNs and extended evaluation on diverse datasets.

2 Related Work

The study of human-AI interaction has gained attention, especially regarding
user prompt formulation for Large Language Models (LLMs). Desai [4] explores
prompting strategies such as Zero-Shot and Few-Shot learning to enhance model
responses on platforms like ShareGPT and Midjourney.

Desai [6] presents a market analysis of India’s electric vehicle (EV) land-
scape, examining policy, technology trends, and adoption challenges. Pricing
models using machine learning are addressed in [7], which applies Random For-
est regression to predict product prices based on key features.

Active learning in text classification is studied in [3], showing how minimal
annotation effort can yield strong performance. Desai [5] also investigates Pro-
gressive Web Applications (PWAs) for scalable inventory systems as efficient
alternatives to native apps.

In immersive technologies, Ganji [9] discusses the role of Augmented Reality
(AR) in real-world enhancement for sectors like healthcare and education. Sri-
vastava and Singh [19] focus on intrinsic motivation in reinforcement learning
agents.

Patel [15] studies neural network robustness under rotated semantic segmen-
tation datasets. Patel also explores Knowledge Graph Embeddings (KGEs) for
question answering [17], and evaluates blockchain security in PoS systems [14].
Further contributions include improving video streaming QoS [16] and decen-
tralized computing models [13].

These studies highlight interdisciplinary advancements across AI, machine
learning, NLP, and blockchain systems.

3 Methods

Section 3 describes the proposed hybrid framework, including dataset prepara-
tion, graph construction, contextual and structural embedding generation, fusion
strategies, and classification.
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Fig. 1: Model Architecture

3.1 Model Overview

The model integrates semantic and structural insights by combining Distil-BERT
and GCN embeddings. The GCN captures global structural dependencies, while
Distil-BERT encodes contextual features. These representations are fused and
passed to a classification layer. The architecture is shown in Figure 1.

3.2 Dataset Description

We use the 20 Newsgroups dataset [huggingface20news, 1], which includes
18,846 articles across 20 categories. It is split into 11,314 training and 7,532 test
documents. The dataset’s diversity in content and structure makes it suitable
for benchmarking text classification.

3.3 Document-Word Graph Construction

The dataset is modeled as a heterogeneous graph with words and documents as
nodes. Edges capture word-word co-occurrence and word-document associations.
The graph’s structure is represented by an adjacency matrix A, while the feature
matrix X ∈ Rn×n is initialized with one-hot vectors, where n = ndoc+ |V |. This
ensures unbiased node representations prior to training.

The adjacency matrix is defined as:

Aij =


PMI(i, j) if i, j are words and PMI > 0

TF-IDFij if i is a document and j a word

1 if i = j

0 otherwise

(1)
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3.4 Adaptive Graph Learning via Learnable Adjacency

To improve flexibility, we introduce a learnable adjacency matrix Ã that com-
bines the fixed structure with a trainable component Â. This approach allows
the model to discover latent relationships during training.

Ã = αÂ+ (1− α)A (2)

The parameter α ∈ (0, 1) determines the contribution of the learnable struc-

ture, and the gradient updates apply only to Â, allowing the model to preserve
essential fixed relationships while discovering new ones.

3.5 Graph Neural Network Encoding

For structural embedding, we use a two-layer Graph Convolutional Network
implemented via the PyTorch Geometric library [pyg]. The model propagates
information across connected nodes using the learnable adjacency matrix.

The propagation follows this recursive formulation:

L(j+1) = ρ
(
ÃL(j)Wj

)
(3)

For our two-layer GCN, the final output is:

Z = softmax
(
Ã · ReLU(ÃXW0)W1

)
(4)

The loss function used is the cross-entropy over labeled documents:

L = −
∑
d∈YD

F∑
f=1

Ydf logZdf (5)

Here, YD denotes the indices of labeled documents, and F is the number of
target classes. The intermediate document embeddings are extracted from the
following equations:

E1 = ÃXW0 (6)

E2 = Ã · ReLU(ÃXW0)W1 (7)

We use E1 as the document representation, giving each node a 200-dimensional
vector, denoted as .

3.6 Contextual Embeddings via Distil-BERT

For semantic representation, we fine-tune Distil-BERT on the 20NG dataset
using the Hugging Face Transformers library [huggingface]. Each document is
tokenized and processed through 13 transformer layers, producing contextual
vectors of shape (13, 768).

To create a unified document embedding, we extract the output of the fi-
nal layer (13th) as a 768-dimensional vector, denoted as . Alternative pooling
strategies (e.g., mean or max pooling) may also be used but are not explored
here.
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3.7 Fusion Strategies for Embedding Aggregation

The two embeddings— and —are combined using one of the following strategies:

Concatenation In this approach, we directly concatenate the two vectors:

= [||], ∈ R968×1 (8)

Element-wise Summation To perform element-wise addition, we first reduce
the BERT embedding to match the GCN’s dimensionality using PCA:

= PCA200() (9)

= +, ∈ R200×1 (10)

Trainable Trade-off This method introduces a learnable scalar λ to balance
the contributions:

= [λ||(1− λ)], ∈ R968×1 (11)

= λ+ (1− λ), ∈ R200×1 (12)

3.8 Classification Layer

The final representation is passed through a fully connected layer to generate
class probabilities. The classifier is defined as:

zdoc = softmax(W ), W ∈ Rndoc×ddoc (13)

The prediction output zdoc corresponds to the probability distribution over
class labels for each input document.

4 Results

This section presents a detailed analysis of the experimental outcomes observed
across multiple configurations of our model. We evaluate the effectiveness of the
GCN and Distil-BERT modules independently and examine the performance
when their representations are integrated using our proposed aggregation strate-
gies (refer to aggregation). Additionally, we compare the final outcomes with
well-established state-of-the-art (SOTA) models on the 20 Newsgroups dataset
to understand the competitiveness of our approach.
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4.1 Performance of GCN Models

To begin with, we assess the performance of our graph-based model in isolation.
Here, document classification is performed solely based on structural embeddings
generated by the Graph Convolutional Network (GCN). We explore both static
and learnable graph connectivity matrices, as described in sec:methods. The
GCN is evaluated across two architectural setups: a shallow two-layer model
and a deeper three-layer variant. The nomenclature used is as follows: GCNi,j,k

refers to a GCN with hidden layer sizes i, j, k, and L-GCNi,j,k incorporates the
learnable adjacency mechanism.

Table 1: Accuracy scores of standalone GCN models using different architectures
and adjacency matrix variants.

Model Configuration Training Accuracy (%) Test Accuracy (%)

GCN200,20 100.00 66.50
L-GCN200,20 100.00 67.50
GCN2000,200,20 100.00 60.80
L-GCN2000,200,20 100.00 60.70

From tab:results:gnn, we observe that incorporating a learnable adjacency
matrix slightly improves test accuracy in shallower configurations. However,
deeper architectures (2000 → 200 → 20) experience performance degradation,
suggesting possible overfitting or gradient vanishing.

4.2 Distil-BERT Results

Next, we evaluate the semantic classification power of Distil-BERT, fine-tuned
on the same 20 Newsgroups dataset. The model was trained over 30 epochs
using the Hugging Face Transformers library. The accuracy plateaued around
the 29th epoch, indicating convergence. The training and validation losses along
with final test accuracy are provided in table:bertresults.

Distil-BERT alone achieves a test accuracy of 70.05%, outperforming all
GCN-only configurations. This underscores the strength of transformer-based
embeddings for contextual understanding.

4.3 Performance of Hybrid Model (GCN + BERT)

This section evaluates the combined framework, where embeddings from the
GCN and Distil-BERT are aggregated before classification. While several fusion
techniques were implemented, the concatenation strategy yielded the highest
accuracy across all model variants, and thus only these results are reported
in tab:results:combined.
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Table 2: Distil-BERT training performance over epochs with validation accuracy.

Epoch Training Loss Validation Loss Accuracy (%)

1 1.1764 1.217 65.64
2 .7607 1.174 68.12
3 .5118 1.440 67.90
...

...
...

...
28 .0684 3.372 69.98
29 .0817 3.397 70.05
30 .0799 3.404 69.99

Table 3: Document classification performance of hybrid models using concate-
nated GCN and Distil-BERT embeddings.

GCN Architecture Aggregation Method Test Accuracy (%)

GCN200,20 Concatenation 67.20
L-GCN200,20 Concatenation 69.70
GCN2000,200,20 Concatenation 64.90
L-GCN2000,200,20 Concatenation 63.20

These results confirm that integrating structural and semantic information
benefits classification. The model L-GCN200,20+Distil-BERT comes close to the
standalone performance of Distil-BERT, achieving 69.70% accuracy.

4.4 Comparison with State-of-the-Art Models

To contextualize our findings, we benchmark the performance of our models
against popular state-of-the-art methods evaluated on the same dataset. The
comparison is illustrated in tab:results:sota. Notably, while our models do not
reach the upper echelons of transformer-based ensembles, they still outperform
traditional and early deep learning approaches.

Our best-performing hybrid model delivers accuracy competitive with early
BERT-based solutions and provides a balance between computational efficiency
and interpretability. While transformer-GCN hybrids such as BertGCN or RoBERTaGCN
yield superior results, they often require extensive resources and fine-tuning
strategies that are outside the scope of this study.

5 Discussion

This section discusses the implications of the experimental results and addresses
limitations encountered during model design and implementation.
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Table 4: Comparison of our models with existing baselines and SOTA methods
on the 20NG dataset.

Model Test Accuracy (%)

PV-DM [le14paragraph] 51.10
LSTM [hochreiter97lstm] 65.70
L-GCN (Ours) 67.50
L-GCN + Distil-BERT (Ours) 69.70
Distil-BERT Fine-Tuned (Ours) 70.05
RoBERTa [liu2019roberta] 83.80
BERT [8] 85.30
TextGCN [22] 86.30
RoBERTaGAT [23] 86.50
BertGAT [18] 87.40
SGC [21] 88.50
BertGCN [12] 89.30
RoBERTaGCN [23] 89.50

5.1 Reflection on Experimental Outcomes

The experimental findings provide valuable insights into the strengths and lim-
itations of our proposed hybrid framework. While our model did not outper-
form the highest-ranking state-of-the-art (SOTA) models on the 20 Newsgroups
dataset, it showed promising performance when compared to conventional and
early deep learning approaches. Specifically, the integration of graph-based and
transformer-based representations through aggregation techniques led to consis-
tent improvements over standalone GCNs and approached the performance of
fine-tuned Distil-BERT.

The best results were achieved when combining the learnable GCN (L-GCN200,20)
with Distil-BERT embeddings using simple concatenation. This combination re-
sulted in a test accuracy of 69.70%, which, although slightly below the standalone
Distil-BERT accuracy (70.05%), demonstrated that structural information still
contributes meaningfully. These findings validate the hypothesis that semantic
and relational features can complement each other when effectively integrated,
particularly for complex classification tasks involving inter-document or inter-
word dependencies.

5.2 Implementation Challenges

Throughout the project, we encountered several implementation-level challenges
that affected both the design choices and the resulting performance.

Dataset Variability and Labeling Inconsistencies One of the foremost difficulties
was related to the nature of the 20 Newsgroups (20NG) dataset. While the origi-
nal benchmark has been widely used in semi-supervised contexts—particularly in
works like [11, 22]—our version of the dataset was sourced from the Hugging Face
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Datasets Library [huggingface20news], where all documents are fully labeled.
This discrepancy posed complications in aligning our experimental protocol with
prior works.

Most notably, the Graph Convolutional Network (GCN) model in PyTorch
Geometric is designed primarily for semi-supervised learning, where only a sub-
set of labeled nodes contributes to the training loss. To adapt this to our fully
supervised setup, we configured the entire training split as the labeled subset.
While this workaround allowed for training, it may have limited the GCN’s per-
formance due to architectural misalignment with the dataset’s labeling structure.

Architectural Rigidity in PyTorch Geometric The second challenge stemmed
from the constraints imposed by the PyTorch Geometric framework. Its GCN
implementation assumes that the graph structure and node indices remain static
during training. As a result, adopting an inductive setting—where new, unseen
graphs or nodes are expected at test time—was non-trivial. This limitation re-
stricted our ability to experiment with fully inductive learning strategies or dy-
namic graph updates during training.

Overfitting in Deep GCNs When exploring deeper GCN architectures such as
GCN2000,200,20, we observed diminishing returns in test performance, despite
perfect training accuracy. This suggests the model was overfitting to structural
patterns in the training data. The lack of regularization or attention mechanisms
in basic GCN layers may have contributed to poor generalization.

5.3 Potential Improvements and Future Work

Building on the lessons learned from the current implementation, several promis-
ing directions can be pursued to enhance both accuracy and robustness of our
framework:

Adopting Inductive GCN Architectures One major improvement would be to
transition the framework to a fully inductive learning pipeline. Models such as
FastGCN [2] provide the flexibility to work with unseen nodes at inference time
and significantly reduce computational overhead by introducing importance-
based sampling. This adaptation would better align with our fully labeled dataset
and allow for broader generalization beyond the training graph.

Incorporating Graph Attention Mechanisms Another enhancement could involve
integrating attention-based GNN architectures such as Graph Attention Net-
works (GATs) [20] or Attention-GCN [10]. These models dynamically assign
varying importance to neighboring nodes, thereby capturing more expressive
structural features than fixed aggregation methods. Replacing or augmenting
basic GCN layers with attention-enhanced components may help address the
over-smoothing and uniformity problems commonly observed in deeper GCNs.
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Dynamic Graph Construction and Updating Future iterations could explore the
use of adaptive or task-specific graph generation strategies. Instead of using static
graphs constructed via pointwise mutual information (PMI) and TF-IDF, one
could use learnable edge weights or employ reinforcement learning to optimize
the graph structure jointly with the classification task.

Multimodal Fusion Strategies While our current model employs simple con-
catenation or weighted sums to combine embeddings, more advanced fusion
techniques—such as bilinear pooling, cross-modal transformers, or co-attention
mechanisms—may yield richer representations. These could better capture the
interaction between semantic and structural modalities.

Exploring Broader Benchmarks While the 20NG dataset provides a controlled
environment for experimentation, validating the model on larger and more di-
verse corpora (e.g., AG News, Reuters, or multi-label datasets) would help es-
tablish its generalizability and practical utility.

6 Conclusion

In summary, this study proposed a hybrid framework that leverages both graph-
based and transformer-based models for document classification. Through exten-
sive experimentation, we demonstrated that the fusion of GCN-derived struc-
tural embeddings and Distil-BERT contextual embeddings yields competitive
performance, even if not surpassing the latest SOTA benchmarks. Our findings
support the complementary nature of semantic and relational features in text
classification tasks.

While the project encountered several implementation bottlenecks, especially
related to dataset structure and GCN training protocols, the insights gained lay a
strong foundation for future enhancements. With adjustments toward inductive
graph learning, attention mechanisms, and more sophisticated fusion strategies,
the hybrid modeling approach holds considerable promise for scalable and accu-
rate text classification across diverse NLP tasks.
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