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Abstract. Community detection in social network graphs plays a vital role in uncov-
ering group dynamics, influence pathways, and the spread of information. Traditional
methods focus primarily on graph structural properties, but recent advancements in
Large Language Models (LLMs) open up new avenues for integrating semantic and
contextual information into this task. In this paper, we present a detailed investigation
into how various LLM-based approaches perform in identifying communities within
social graphs. We introduce a two-step framework called CommLLM, which leverages
the GPT-4o model along with prompt-based reasoning to fuse language model out-
puts with graph structure. Evaluations are conducted on six real-world social network
datasets, measuring performance using key metrics such as Normalized Mutual In-
formation (NMI), Adjusted Rand Index (ARI), Variation of Information (VOI), and
cluster purity. Our findings reveal that LLMs, particularly when guided by graph-
aware strategies, can be successfully applied to community detection tasks in small
to medium-sized graphs. We observe that the integration of instruction-tuned models
and carefully engineered prompts significantly improves the accuracy and coherence
of detected communities. These insights not only highlight the potential of LLMs in
graph-based research but also underscore the importance of tailoring model interactions
to the specific structure of graph data.

Keywords: Large Language Model (LLM), Social Network Graphs, Com-
munity Detection, Data mining

1 Introduction

Community detection in social networks is crucial for understanding the
underlying structure [16] and dynamics of complex systems. It helps un-
cover groups of nodes with dense internal connections, revealing patterns
such as shared interests, behaviors, or functions. This technique is widely
applied across domains like marketing (to target consumer groups), cy-
ber security (to detect malicious clusters), biology (to identify functional
modules in protein networks), and politics (to map ideological communi-
ties). As networks [15,3] grow more intricate, traditional methods struggle
with scalability and adaptability. Recently, large language models (LLMs)
[13,7,33] have emerged as powerful tools in this field. Their ability to
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reason over text and structure enables them to detect nuanced relation-
ships and community patterns in both textual and graph data. LLMs
are increasingly being integrated into research workflows, outperform-
ing many classical algorithms in terms of flexibility, interpretability, and
cross-domain applicability.

Despite their impressive capabilities across a wide range of natural
language tasks, existing large language models (LLMs) encounter sig-
nificant challenges when applied to community detection within social
network graphs. One of the primary limitations is their lack of innate
access to graph-structured data; LLMs are fundamentally designed to
process sequential text rather than inherently parallel or interconnected
structures such as graphs [6]. This sequential bias limits their ability to
model complex topological features, such as node centrality, clustering
coefficients, and higher-order neighborhood interactions, all of which are
critical for accurately identifying communities. Moreover, LLMs do not
naturally encode graph-specific inductive biases—such as permutation in-
variance or localized neighborhood aggregation—which are essential for
tasks like node clustering and structural role identification. Their inabil-
ity to capture hierarchical or multi-scale structures within graphs often
results in shallow representations that fail to generalize across diverse net-
work topologies. While techniques such as graph embeddings or hybrid
models attempt to bridge this gap, these approaches typically decouple
the graph topology from the language modeling process, which can lead
to a loss of structural fidelity and semantic nuance.

Scalability is another core issue. LLMs, especially those deployed on
large-scale or dynamic social networks, suffer from computational inef-
ficiencies and memory bottlenecks. Representing large graphs in a form
consumable by LLMs (e.g., through serialization or textual descriptions)
becomes increasingly infeasible as network size grows. Additionally, LLMs
lack temporal awareness and dynamic reasoning capabilities required to
model evolving communities or time-sensitive interactions in dynamic so-
cial graphs. Furthermore, most LLMs are trained on general-purpose cor-
pora and lack task-specific fine-tuning for graph mining or community
detection tasks [32]. As a result, they often struggle with domain adap-
tation, interpretability, and robustness when applied to network analysis.
They may also be susceptible to spurious correlations or biases embed-
ded in the training data, which can skew the understanding of social
graph dynamics and community boundaries. Lastly, LLMs typically do
not incorporate explicit constraints or priors related to graph theory, such
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as modularity maximization or spectral properties, which are central to
many traditional community detection algorithms.
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Fig. 1. Illustration of CommLLM that includes two main steps: graph-to-text conver-
sion and then LLM Reasoning to detect the communities in the graph

In contrast, our work introduces a novel approach CommLLM (as
shown in Figure 1) powered by GPT-4o [23] that empowers large lan-
guage models (LLMs) to detect communities more effectively by inte-
grating graph-aware text representations with language-based reasoning.
By embedding structural information directly into the input, our method
preserves the topology of the network while leveraging the LLM’s capac-
ity for pattern recognition and inference. This hybrid strategy allows the
model to understand both the semantic and relational aspects of nodes. It
enables nuanced community detection, even in complex or sparsely con-
nected graphs. Additionally, our approach improves interpretability and
generalization across different types of networks. Our contributions are
summarized as follows:
– We propose method CommLLM, which uses GPT-4o to detect com-

munities in social network graphs. It includes two main steps: graph-
to-text conversion and then prompt engineering to detect the commu-
nities in the graph. (See Figure 1)

– The results on real datasets indicate that CommLLM outperforms
the baseline LLM methods in context to community detection. Fur-
thermore, prompt comparison experiments reveal that the designed
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prompt effectively aids LLMs in understanding the graph communi-
ties.

– The dataset used and graph-to-text conversion script in this study is
publicly available at link1 for better reproducibility of the research.

2 Literature Review

2.1 Traditional Community detection

Community detection in complex networks has garnered significant at-
tention, leading to the development of a wide range of methodologies.
Modularity-based approaches, such as the Louvain algorithm [5], aim to
maximize a modularity score to identify groups of nodes with dense intra-
community connections relative to a null model. Spectral clustering tech-
niques utilize the eigenvectors of graph Laplacians to reveal partitions
in the network structure [20]. Label propagation algorithms [26] itera-
tively update node labels based on neighbor consensus, offering scalabil-
ity and simplicity. Statistical inference methods, including the Stochastic
Block Model [18], model networks probabilistically, often capturing assor-
tative and disassortative structures. Hierarchical clustering builds dendro-
grams of nodes through agglomerative or divisive strategies, while edge
betweenness-based methods [10] sequentially remove edges with high cen-
trality to expose community boundaries. Random walk-based techniques,
such as Walktrap, cluster nodes based on transition probabilities, whereas
clique percolation methods identify overlapping communities through ad-
jacent k-cliques. Information-theoretic frameworks like Infomap [27] aim
to compress the description of network flows. More recent approaches in-
clude graph embedding techniques (e.g., DeepWalk [25,2]), which learn
low-dimensional node representations for clustering, and deep learning-
based models like graph neural networks (GNNs) that jointly learn fea-
tures and community assignments [19]. Additionally, matrix factorization
methods (e.g., NMF) decompose adjacency matrices to detect latent com-
munity structure. Bayesian methods incorporate prior distributions into
community inference [24], while evolutionary algorithms apply genetic
operations for optimization. Tensor decomposition-based community de-
tection [14,8] leverages multi-dimensional data representations to uncover
complex community structures in networks. By decomposing high-order

1 https://drive.google.com/drive/folders/1IKV-Qi_

oz0hjAJHqCszLIbwlACmgNWXM
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tensors (e.g., user-item-time) into latent factors, it captures hidden re-
lationships and overlapping communities [28,11] that traditional meth-
ods might miss. Multi-resolution methods [15] further enable detection of
communities at varying scales, addressing limitations related to resolution
limits in modularity-based techniques.

2.2 LLMs in graph reasoning

In recent years, researchers have increasingly investigated the use of large
language models (LLMs) for graph reasoning tasks [31]. The paper [30]
highlighted LLMs’ capabilities in graph reasoning and introduced the NL-
Graph dataset to assess these skills. The paper [17] further underscored
the importance of graph encoding strategies in shaping how LLMs inter-
pret and generate outputs. To facilitate LLM-based graph understand-
ing, encoding methods such as Adjacency and Incident [9] have been de-
veloped, using integer-based node encoding with differing edge encoding
schemes. While these methods mainly encode graph topology, they often
fall short in addressing task-specific requirements like community detec-
tion. To bridge this gap, we propose a novel encoding method inspired by
Incident, specifically tailored for the community detection domain by in-
tegrating community-aware structural cues. Additionally, although task-
oriented prompts—like the Chain-of-Thought [34] and Build-a-Graph [30]
have been proposed to enhance LLM performance in graph reasoning,
they lack the domain-specific context needed for community detection.
Recently, the paper [21] introduced detecting community structure with
large language models. Our work provide how different LLM models per-
form on the same task and it bridges the current gap in LLMs applicability
to the community detection for social network graphs.

3 Approach

Traditional community detection algorithms, such as modularity maxi-
mization, spectral clustering, or label propagation, often rely on graph-
theoretic computations. In contrast, we explore a novel approach CommLLM
(Figure 1) by leveraging the reasoning capabilities of a large language
model (LLM), specifically a GPT-4o, to infer community assignment di-
rectly from graph connectivity data.

Let G = (V,E) be an undirected graph, where V = {0, 1, 2, . . . , n−1}
is the set of nodes and E ⊆ V ×V is the set of edges representing connec-
tions between nodes. Each node is associated with a set of neighboring
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nodes N(i), defined as:

N(i) = {j ∈ V | (i, j) ∈ E}

Our goal is to partition the graph into a set of communities C =
{C1, C2, C3 . . . CN}, such that nodes within the same community are more
densely connected to each other than to nodes in other communities.
Mathematically as follow:

k⋃
ℓ=1

Cℓ = V, Ci ∩ Cj = ∅ for i ̸= j

3.1 Graph-to-Text Conversion

Graph-to-text conversion is a fundamental task in natural language gener-
ation that entails the translation of structured graph data into coherent,
informative, and contextually rich natural language descriptions. This
process is essential for interpreting and communicating complex relational
information embedded within graphs, facilitating a deeper understanding
of the network’s structure and the interactions between its components.
The goal is to generate textual summaries that not only describe the
raw data but also convey the underlying patterns, behaviors, and trends
represented by the graph.

To achieve this, we first extract salient features from the graph, such
as node roles, edge weights, community affiliations, and subgraph struc-
tures. These elements serve as the foundational data for our approach,
CommLLM, and are carefully analyzed to capture the most relevant and
informative aspects of the graph’s topology. By encoding these features
in a way that maintains the integrity of the graph’s structure, we can pro-
duce textual summaries that highlight key relationships and important
dynamics within the network.

For example, consider a graph, as shown in figure 2, which consists of
34 nodes and 78 undirected edges, representing frequent communication
patterns among individuals in a social network. In this case, the nodes
correspond to individuals, and the edges reflect the communication inter-
actions between them. Through graph-to-text conversion, we can generate
a descriptive narrative that summarizes the network’s key characteristics,
such as identifying central or influential nodes, the strength of relation-
ships between nodes (based on edge weights), and any notable community
structures that emerge within the network. This process not only aids in
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Fig. 2. Illustration of Karate Club Network

understanding the graph’s overall organization but also provides valuable
insights into the social dynamics at play.

The Graph-to-text conversion will be as follow:

Node 0 is connected to: 1, 2, 3, 4, 5, 6, 7, 8, . . . .
Node 1 is connected to: 0, 2, 3, 7, 13, 17, . . . .
...
Node 33 is connected to: 8, 9, 13, 14, 15, 18, . . . .

3.2 Community Detection via LLM Reasoning

We propose a novel community detection method CommLLM that for-
mulates the problem as a text-based reasoning task. The input to the
language model is a natural language description of node connections in
the form as given in section 3.1 and the prompt to the model is:

Graph Details + ”A community is a group of nodes that are more
densely connected to each other internally than to the rest of the
network. You are doing community detection. Based on these node
connections, which community each node belongs? Give outcome as
Node:<node id>; Community:<Community id> format. Do not give
any other text.”

The LLM implements an implicit function:
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Dataset #V #E #C directed

Karate Club 34 78 2 N

Football 115 613 12 N

WebKB 187 298 5 Y

Terrorist Attacks 645 3172 6 Y

Cora 2708 5278 7 Y

CiteSeer 3279 4552 6 Y

Table 1. Real world social network dataset. V = Number of nodes; E = Number of
Edges; C: Number of communities in the graph.

f : T (G) → C

f : Connectivity Descriptions −→ Community Assignments

where T (G) denotes a textual representation of the graph (i.e., the con-
nectivity format described above), and C is the resulting community as-
signment. The model infers clusters by identifying patterns in the de-
scribed node relationships, without explicit optimization of an objective.
This approach treats the LLM as a zero-shot or few-shot reasoning en-
gine over structural information conveyed via text, rather than a model
trained explicitly on community detection tasks or graph statistics.

The output of CommLLM is captured as:

Node:0; Community:1
Node:1; Community:3
. . .
Node:33; Community:2

In summary, CommLLM re-frames community detection as a language-
based reasoning task, requiring no structural assumptions or predefined
models. By leveraging GPT-4o’s capability to interpret connectivity pat-
terns through natural language prompts, we demonstrate a flexible and
generalizable approach to discovering community structures in graph data.

4 Experiments

In this section, we answer following research questions:
– Q1: Does CommLLM able to provide relevant communities for differ-

ent social network graphs?
– Q2: Is there effect of number of nodes on CommLLM?
– Q3: Does CommLLM is sensitive to different prompts?
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We execute all methods for 10 times to handle hallucinations and average
score is reported.

4.1 Dataset

To evaluate the proposed framework at scale, we use 6 real world datasets
[12] as show in table 1. The dataset is publically avaiable to explore at
link2.

4.2 Baselines

To evaluate the performance of CommLLM, we compare CommLLM with
LLM based methods namely gpt-3.5-turbo [22], llama3-3-70b-instruct
[29], claude-3.5-sonnet [1], and gemini-1.5-pro [4].

4.3 Evaluation metrics

The evaluation metrics Normalized Mutual Information (NMI), Adjusted
Rand Index (ARI), Variation of Information (VOI), and Purity are used
to evaluate the detected communities. A lower VOI value indicates a more
similar clusters, while a higher VOI value suggests that the clusters are
more different. For other metrics larger value implies a better algorithm
performance.

4.4 Experiment Results

Results on networks We evaluate CommLLM, our reasoning-based
community detection method, across six benchmark datasets and com-
pare its performance against leading large language models (LLMs). The
results are shown in Table 4 and Figure 3. For Karate Club TribeLLM
achieves NMI = 0.90 outperforming all baselines by a significant mar-
gin (see Figure 3). Competing models like LLama3 and Claude strug-
gled, with NMI values around 0.34, indicating a poor match with ground
truth. For Football dataset, CommLLM leads with NMI = 0.91 while
keeping VOI low at 0.31. Gemini-1.5-pro was a close second in com-
munity detection quality but had a notably higher VOI (0.40), show-
ing CommLLM’s superior consistency. For WebKB dataset, CommLLM
substantially outperforms others in both NMI (0.38) and ARI (0.39),
whereas competitors score below 0.25. This is particularly noteworthy

2 https://drive.google.com/drive/folders/1IKV-Qi_

oz0hjAJHqCszLIbwlACmgNWXM
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Fig. 3. Illustration of community assignment by CommLLM for the graphs

given the relatively low ARI scores of all other models (≤ 0.19), high-
lighting proposed method’s robustness in web graph structures. For Ter-
rorist Attacks dataset, CommLLM achieves competitive scores (NMI =
0.37, ARI = 0.34) and maintains low VOI (1.14). Claude outperforms in
NMI (0.50) and Purity (0.73), but CommLLM remains close while offer-
ing better balance across all metrics. For Cora and CiteSeer, CommLLM
is the only model to complete inference successfully with high-quality
scores (NMI = 0.35, ARI = 0.36). Other models either ran out of tokens
(Claude, Llama3) or underperformed, indicating CommLLM’s efficiency
with larger graphs.

CommLLM demonstrates superior generalization and reasoning abil-
ity across diverse datasets, particularly excelling in both well-defined and
noisy graph structures. It consistently outperforms baseline LLMs, many
of which fail due to token limits, lack of contextual reasoning, or insuf-
ficient robustness in community assignment inference. This answer our
Q1.

Effect of the number of nodes on CommLLM As the number of
nodes in the graph increases, the input and output token requirements
for the proposed method grow proportionally as shown in table 2, since
the entire graph structure is embedded within the prompt provided to the
CommLLM model. This results in larger message sizes, directly impact-
ing memory consumption and model processing capacity. Additionally,
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Dataset #V Time Consumption Input Tokens

Karate Club 34 20 777

Football 115 25 4, 573

WebKB 187 41 3, 144

Terrorist Attacks 645 65 23, 618

Cora 2708 176 57, 146

CiteSeer 3279 552 58, 453

Table 2. Effect of the number of nodes on CommLLM in terms of Time (seconds) and
token used. For Cora and CiteSeer model can only predict partial nodes at a time.

increased token length leads to longer inference times due to the model’s
attention mechanism scaling with input size. These factors collectively in-
troduce computational overhead, making scalability a key consideration.
Efficient graph encoding or summarization strategies to mitigate these
effects in larger graphs will be part of our future research work and is out
of scope for this work. This answer our Q2.

Karate Club Dataset

Method NMI ARI Purity VOI Input Tokens

Prompt 1 0.78 0.84 0.90 0.22 778

Prompt 2 0.64 0.68 0.75 0.56 770

Prompt 3 0.55 0.63 0.66 0.85 793

CommLLM 0.90 0.93 0.98 0.11 777

Table 3. Performance of CommLLM w.r.t different variation of prompts.

Prompt comparisons We performed experiment on Football dataset
using 3 different version of CommLLM prompt as given below.
– Prompt 1: A community is a group of nodes that are more densely

connected to each other internally than to the rest of the network.
Based on these node connections, output in the format Node:< nodeid >;
Community:< Communityid >.

– Prompt 2: You are doing community detection. Assign each node
to a community. Give outcome as Node:< nodeid >; Community:<
Communityid > format. Do not give any other text.

– Prompt 3: A community is a group of nodes that are more densely
connected to each other internally than to the rest of the network.
You are doing community detection. Along with assigning communi-
ties, provide a brief justification for each decision. Format as Node:<
nodeid >; Community:< Communityid >; Reason:< reason >.
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– Prompt 4 (CommLLM): A community is a group of nodes that are
more densely connected to each other internally than to the rest of
the network. You are doing community detection. Based on these node
connections, which community each node belongs? Give outcome as
Node:<node id>; Community:<Community id> format. Do not give
any other text.
Table 3 shows the results of this experiment. The first prompt doesn’t

explicitly say the task is community detection, leaving the intent un-
clear and missing critical information. However, LLM was able to stick
to the community detection work. The second prompt is incomplete and
lacks the actual node connections or network structure to base decisions
on. The proposed method performance degrades with incomplete infor-
mation. The third prompt is closer to actual ask but does not ask for
“no extra text” constraint and introduces justification, which diverted
the model from a concise mapping. The performance is lower of all the
prompt for this. The forth prompt gives the best results and we choose
this as our model’s prompt for evaluating the other datasets. As we know
that language models are highly sensitive to wording, context, and phras-
ing. variation in inference is expected behavior, as these models rely on
learned statistical patterns and subtle variations can shift the model’s
interpretation or emphasis. This answer our Q3.

5 CONCLUSIONS AND FUTURE WORK

In conclusion, our proposed method CommLLM leverages the capabili-
ties of GPT-4o to perform effective community detection in social network
graphs through a two-step process: graph-to-text conversion followed by
LLM-based reasoning. Traditional LLMs struggle with directly processing
large and complex graphs due to input size limitations and lack of native
graph understanding. Our approach addresses this by designing a struc-
tured conversion technique and tailored prompts that enable the LLM to
capture both the semantics and topology of the graph. Experimental re-
sults confirm that this method significantly enhances the model’s ability
to understand graph structures and accurately detect communities. For
future work, we aim to extend this framework to handle much larger and
dynamic graphs, pushing the boundaries of scalable community detection
using language models. Overall, this study contributes a novel methodol-
ogy for incorporating LLM reasoning into structured graph tasks, offering
practical guidance and foundational understanding for future work at the
intersection of natural language processing and graph analytics.

168                                   Computer Science & Information Technology (CS & IT)



Karate Club

Method NMI ARI Purity VOI

gemini-1.5-pro 0.84 0.88 0.97 0.16

gpt-3.5-turbo 0.82 0.85 0.87 0.23

llama3-3-70b-instruct 0.34 0.26 0.76 0.62

claude-3.5-sonnet 0.34 0.27 0.77 0.61

CommLLM 0.90 0.93 0.98 0.11

Football

Method NMI ARI Purity VOI

gemini-1.5-pro 0.87 0.82 0.87 0.40

gpt-3.5-turbo 0.52 0.28 0.48 1.37

llama3-3-70b-instruct 0.54 0.32 0.57 1.54

claude-3.5-sonnet 0.53 0.31 0.53 1.55

CommLLM 0.91 0.84 0.91 0.31

WebKB

Method NMI ARI Purity VOI

gemini-1.5-pro 0.24 0.18 0.57 1.42

gpt-3.5-turbo 0.25 0.19 0.58 1.29

llama3-3-70b-instruct 0.16 0.12 0.55 1.22

claude-3.5-sonnet 0.10 0.11 0.58 1.15

CommLLM 0.38 0.39 0.67 0.89

Terrorist Attacks

Method NMI ARI Purity VOI

gemini-1.5-pro 0.33 0.32 0.53 2.04

gpt-4-turbo 0.35 0.31 0.50 1.14

llama3-3-70b-instruct 0.41 0.30 0.61 2.34

claude-3.5-sonnet 0.50 0.36 0.73 1.12

CommLLM 0.37 0.34 0.56 1.14

Cora

Method NMI ARI Purity VOI

gemini-1.5-pro 0.23 0.13 0.41 1.58

gpt-4-turbo 0.25 0.27 0.54 1.23

llama3-3-70b-instruct − − − −
claude-3.5-sonnet − − − −
CommLLM 0.35 0.36 0.56 1.18

CiteSeer

Method NMI ARI Purity VOI

gemini-1.5-pro 0.18 0.12 0.23 1.88

gpt-4-turbo 0.15 0.17 0.38 1.53

llama3-3-70b-instruct − − − −
claude-3.5-sonnet − − − −
CommLLM 0.21 0.22 0.38 1.32

Table 4. Performance of CommLLM w.r.t state-of-art methods. Bold letter shows
which method outperformed for the dataset. Symbol − indicates model was out of
tokens for full data and performance in terms of NMI was low (< 0.1). The performance
variance for each dataset is between ±0.01 and ±0.03.
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