
David C. Wyld et al. (Eds): CSIT, AMLA, IPDCA, NLPA, AIS, IPPR, SPTM – 2025

pp. 183-191, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151414

AN INTELLIGENT VIDEO GAME TO ASSIST

WITH TENNIS TRAINING USING UNITY AND

POSE ESTIMATION

Peter Zha 1, Soroush Mirzaee 2

1 Rancho San Joaquin Middle School, 4861 Michelson Dr, Irvine, CA 92612

2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

Tennis players often face barriers to consistent practice due to weather, court availability, and

scheduling conflicts [1]. This paper presents an intelligent video game developed with Unity

and pose estimation to enable indoor tennis training [2]. Utilizing BlazePose and Unity Sentis,

the system tracks player movements via webcam, translating them into a 3D avatar for

interactive drills against a virtual ball dispenser [3]. Key challenges included optimizing pose
estimation latency, sourcing 3D models, and rendering realistic graphics while keeping the

performance high, which was addressed through Sentis integration, Blender tools, and

iterative lighting adjustments. Experiments comparing BlazePose, OpenPose, and MoveNet

revealed BlazePose’s superior latency (28ms) and accuracy over the other two, validating its

efficiency with Sentis. This accessible, desktop-based solution outperforms traditional methods

by eliminating environmental dependencies and reducing costs. It empowers players to

maintain skill development, offering a practical tool for tennis enthusiasts globally.

KEYWORDS

Sentis, Pose estimation, Unity, Video game, Tennis Training

1. INTRODUCTION

The problem we aim to solve is the lack of accessible tennis practice options when outdoor courts
are unavailable. Many tennis learners and players, regardless of their skill level, struggle to
maintain consistent training due to factors like bad weather, limited court access, or scheduling
conflicts [4]. This is not just an occasional inconvenience, it can significantly impact skill
development and confidence over time.

This issue became personal for me last year when severe weather prevented me from attending
my tennis practices. I realized how frustrating it was to feel my progress stall and began
considering alternatives. My experience is not unique. Across the tennis community, similar
barriers disrupt training routines. For example, during Wimbledon 2024, persistent rain caused 75
out of 91 scheduled matches to be canceled, forcing organizers to refund approximately 7,500
tickets and incurring an estimated financial loss of $275,000. These disruptions demonstrate the
importance of having a reliable way to practice when conditions are less than ideal.

In the long run, this problem affects tennis players of all ages and levels, from beginners trying to
build foundational skills to seasoned athletes preparing for competitive events. Addressing this
challenge is crucial not just for individual improvement but also for sustaining engagement with

https://airccse.org/
https://airccse.org/csit/V15N14.html
https://doi.org/10.5121/csit.2025.151414

184 Computer Science & Information Technology (CS & IT)

the sport. By providing an alternative way to train indoors, we can help players stay sharp,
motivated, and focused on their goals, no matter the external obstacles.

The three methodologies aim to automate tennis performance analysis using computer vision,

with a focus on reconstructing 3D ball trajectories, annotating key events, and enhancing tactical
understanding [5]. However, they face shortcomings such as high hardware costs, reliance on
multi-camera setups, and challenges in handling occlusions or varying lighting conditions. My
project improves on these by using a single webcam, making the solution more accessible,
affordable, and portable. While it sacrifices some advanced features like 3D trajectory
reconstruction, it provides a practical, low-cost alternative for players and coaches, democratizing
access to basic performance tracking tools.

My method to solve this problem is to create a game that allows players to practice tennis skills
whenever and wherever they want. The game uses pose estimation technology to track the
player's movements and display them as an avatar within the game [6]. This feature ensures the
player's real-world motions are accurately reflected, making the experience feel realistic and
interactive. The core gameplay involves going up against a ball dispenser, which shoots tennis
balls in different directions. The player must move around, just as they would on a tennis court,
to reach and hit the ball. This setup mimics the physical aspects of playing tennis, providing

comprehensive and engaging training experience.

This solution addresses the problem by making tennis practice accessible regardless of external
factors like weather, court availability, or time constraints. Players can train indoors, outdoors, on
a TV, or on any device with a browser. This level of flexibility ensures that practice is always an
option, helping players stay consistent with their training routine.

The game is effective because it is web-based, meaning it is compatible with virtually any
computer or device, removing the need for expensive equipment or specialized setups. Unlike
other methods, such as watching training videos or relying on physical courts, this game actively
engages players by simulating real tennis movements and drills. It removes the reliance on
specific weather conditions or court availability while requiring fewer resources, making it an
ideal and cost-effective solution for anyone looking to improve their tennis skills.

In Section 4, the goal was to evaluate the effectiveness of three pose estimation models—

BlazePose (with Unity Sentis), OpenPose, and MoveNet—in translating player movements to 3D
characters in real-time [7]. The experiment involved tracking standardized pre-recorded
movements (e.g., jumping, squatting, arm swings) under consistent environmental and hardware
conditions. Each model was tested for latency, accuracy (joint position error), and movement
fidelity, with ground truth data from high-speed camera recordings. BlazePose outperformed the
others, showing the lowest latency (mean: 28ms), highest accuracy (3.5-pixel error), and best
movement fidelity (9.2/10). OpenPose and MoveNet trailed in latency (45ms and 35ms,

respectively) and accuracy (5.2 and 4.1 pixels). BlazePose’s superior performance is attributed to
its optimized architecture and Unity Sentis integration, enabling faster, more precise real-time
processing. These results highlight BlazePose as the most effective model for real-time
movement translation in gaming applications.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

Computer Science & Information Technology (CS & IT) 185

2.1. Optimizing Pose Estimation in Unity

One of the main challenges of this project was finding the right pose estimation model that would

not only run smoothly but also estimate the player’s pose well enough. There are multiple
competitors. The main challenge is the optimization that each of them will use to run smoothly
and without any problems. One of the solutions to this challenge is using the newly released
Unity Sentis package that will allow for ONNX models to run natively on Unity and C# that will
make the game run much smoother. Sentis is the successor to Baracuda, which was Unity’s initial
attempt at this problem years ago.

2.2. Overcoming 3D Asset Sourcing Challenges

Finding suitable 3D models was a significant challenge in the project, with the main issues being
the high cost of high-quality models and the difficulty in finding models for niche topics [8].
Manually searching for models or creating them from scratch can take weeks, if not months,
which was not feasible for the project timeline. To overcome these challenges, various websites

and tools were utilized, including Blender, a free, open-source 3D creation software that can be
used for modeling, rigging, and animating 3D models; Mixamo, a platform that offers pre-made
3D models, animations, and rigging tools, with a mix of free and paid content; and the Unity
Asset Store, a marketplace that offers a wide range of 3D models, textures, and other assets for
Unity game development. Additionally, online marketplaces and communities such as
TurboSquid, CGTrader, and GrabCAD were also explored, providing a vast library of 3D models
with various pricing options and licensing terms.

2.3. Balancing Realism and Performance in Rendering

One of the most significant challenges we faced was related to lighting and graphics. This aspect
proved to be particularly demanding because achieving a high level of realism required us to
render all the lighting effects multiple times. Each iteration was crucial to refining the visual

quality, ensuring that shadows, reflections, and ambient lighting interacted naturally with the
environment. However, this process was incredibly time-consuming, especially since we were
working with hardware that wasn’t particularly powerful. The limited capabilities of our
components meant that each render took longer than it would have on more advanced systems,
significantly slowing down our progress. This bottleneck not only extended the development
timeline but also forced us to optimize our workflow and find creative solutions to balance visual
fidelity with performance constraints. Despite these hurdles, the experience taught us valuable
lessons about resource management and the importance of efficient rendering techniques.

3. SOLUTION

The three major components that link my program together are the ball system, pose estimation,
and the points and unlockables system. These elements work together to create an engaging and
interactive experience.

The program starts with the ball system, where a ball shooter fires balls toward the player at
random intervals. This feature simulates the unpredictability of a real tennis match, making the
game feel more dynamic and challenging [9]. Players must be quick on their feet and ready to

react to the incoming balls, just like they would on an actual tennis court.

The second major component is pose estimation. This technology bridges the gap between the
player’s real-world movements and their in-game actions. Pose estimation tracks the player’s

186 Computer Science & Information Technology (CS & IT)

body movements and translates them into precise game motions. This ensures that the player’s
swings, jumps, and other physical actions are accurately mirrored in the program, creating a
highly immersive experience.

Finally, the points and unlockables system is an essential part of the program. This feature keeps
the game fresh and exciting by rewarding players for their performance. Points can be
accumulated to unlock various items, such as costumes and accessories, allowing players to dress
up as different characters. This customization aspect adds an extra layer of fun and motivation,
preventing the game from becoming repetitive over time.

Together, these three components—ball system, pose estimation, and points and unlockables—
ensure that the program is interactive, challenging, and enjoyable for players of all skill levels.

Figure 1. Overview of the solution

One of the components of the program is the ball system. The purpose of this system is to shoot

toward the player in random directions, making a virtual practice environment for the player.
Using Unity’s physics system, these balls can be shot fast or slow depending on the game mode,
and using some calculations, it is almost certain that the ball is valid 100% percent of the time.

Computer Science & Information Technology (CS & IT) 187

Figure 2. Screenshot of code 1

The screenshot shows a code snippet that controls a machine designed to randomly launch a ball
toward a player in a game. This code runs whenever the machine is activated to shoot a ball,
determining the ball’s trajectory, rotation, and direction. The key variables include randomAngle,
which defines the range of angles within which the ball can be sent, influencing its direction;

randomRotation, which controls how much the ball rotates during its flight, adding variability to
its movement; and shootingDirection, which represents the final direction the ball is launched,
calculated by multiplying randomRotation with the shooter’s forward direction. The main method
responsible for launching the ball uses these variables to calculate the ball’s trajectory and spin,
ensuring each shot is unique and unpredictable. Additionally, a randomization method generates
the values for randomAngle and randomRotation, ensuring no two shots are identical. This
dynamic system makes the game more challenging and engaging, as the player must react to

varying ball behaviors. By combining these elements, the code creates a realistic and
unpredictable ball-launching mechanism, enhancing the overall gameplay experience. The
interplay between randomization and directional calculations ensures that the machine’s behavior
feels both natural and challenging, keeping the player on their toes.

Arguably, the most important component in the game, the Pose Estimation System utilizes the
user’s webcam/camera to record their movement in 3D space, and using Blaze Pose from Google

Mediapipe, their movement is tracked and converted into a rig that will animate the player’s
character in game in real-time [10].

188 Computer Science & Information Technology (CS & IT)

Figure 3. Screenshot of code 2

The screenshot displays the Awaitable_Detect method from a pose estimation system integrated
into Unity using the Sentis package and BlazePose, designed to process 2D camera images into
3D pose data. This code executes within the Update method, running at the end of every frame to
continuously detect the player's pose in real-time, which is then applied to a 3D character rig. The
method begins by initializing texture dimensions and scaling the input image for BlazePose

processing, followed by applying transformation matrices through BlazeUtils to prepare the data.
It then schedules the transformed image with m_PoseDetectorWorker to estimate poses,
retrieving tensor outputs such as outputIdx for joint indices, outputScore for confidence, and
outputBox for bounding boxes. If the confidence score surpasses a predefined threshold,
m_PoseLandmarkerWorker refines joint positions into landmarks, completing the pose
estimation. The process occurs locally without backend server communication, leveraging Unity's
native Sentis integration for efficiency.

The Awaitable_Detect method serves as a pivotal component in a real-time pose estimation
system embedded within Unity, utilizing the Sentis package and BlazePose to facilitate 2D-to-3D
pose tracking. This system captures camera input as a texture and processes it frame-by-frame
through the Update method, translating the data into a 3D character rig suitable for applications
such as motion capture or interactive gaming. The method initiates by setting up
m_TextureWidth, m_TextureHeight, and imagePreview with the camera texture, then computes a
scaling factor based on detectorInputSize and applies BlazeUtils.TranslationMatrix and

BlazeUtils.ScaleMatrix to adjust the image for BlazePose analysis. Subsequently,
BlazeUtils.SampleImageAffine and m_PoseDetectorWorker.Schedule process the image,
yielding tensor outputs including outputIdx, outputScore, and outputBox to represent joint indices,
confidence scores, and bounding boxes respectively. If the outputScore exceeds the
scoreThreshold, m_PoseLandmarkerWorker.Schedule refines these into precise landmarks,
enhancing the accuracy of the pose data. This local processing, supported by asynchronous tensor
handling via ReadbackAndCloneAsync, eliminates the need for a backend server and ensures

smooth performance within Unity's native environment, directly influencing 3D character
animation based on player movements.

One of the most important components in the game is the Points and unlockable system. The
game uses the points and unlockable system to make the game less linear and less repetitive.

Computer Science & Information Technology (CS & IT) 189

The first example of code focuses on implementing a points and unlockables system, which
allows players to earn and spend coins to purchase characters. This system tracks the player’s
progress and coin balance, ensuring that they can unlock new characters once they accumulate
enough coins. The code likely includes methods to add or deduct coins, check if the player has

sufficient funds, and update the available characters in the game’s store. This creates a sense of
progression and reward, encouraging players to engage more deeply with the game.

The second example of code handles the user interface (UI) updates when a character is
purchased. Once a player buys a character, the code changes the UI to display “OWNED” instead
of the price or purchase button. This visual feedback ensures players know they have successfully
unlocked the character and can no longer buy it again. The code likely involves checking the
player’s inventory or unlock status and then dynamically updating the UI elements to reflect this

change.

The third example of code integrates the purchased character into the game. Once unlocked, the
character becomes available for the player to use during gameplay. This involves updating the
game’s data to include the new character in the player’s roster and ensuring it appears in the
selection menu. The code may also handle loading the character’s assets, such as models,
animations, and abilities, into the game world. Together, these three systems create a seamless

experience, allowing players to unlock, see, and play as their newly acquired characters.

4. EXPERIMENT

As convenient pose estimation can be, there are instances where the inaccuracy kills the
premesise and what the project stands for. For This matter, finding the right estimation model that
has low latency, and does the job well, and also translates player’s movements well to 3D
Characters in the game.

To test the effectiveness of different pose estimation models, we compared BlazePose (with

Unity Sentis on Unity 6), OpenPose, and MoveNet. The experiment involved tracking
standardized pre-recorded movements, including dynamic actions like jumping, squatting, and
arm swings. Each model was evaluated based on latency (ms), accuracy (joint position error in
pixels), and fidelity of translating movements to 3D characters. Ground truth data was sourced
from high-speed camera recordings. Consistent environmental conditions and hardware ensured
fairness, focusing on real-time performance and translation accuracy.

The data includes latency measurements, joint position errors, and fidelity scores for each model

across multiple trials. The visualization comprises bar charts comparing mean and median latency,
accuracy error, and movement fidelity scores across the models.

190 Computer Science & Information Technology (CS & IT)

Figure 4. Figure of experiment

The experiment revealed that BlazePose with Unity Sentis exhibited the lowest latency (mean:
28ms, median: 26ms) compared to OpenPose (mean: 45ms, median: 43ms) and MoveNet (mean:
35ms, median: 33ms). BlazePose also demonstrated superior accuracy, with an average joint
position error of 3.5 pixels, while OpenPose and MoveNet showed 5.2 and 4.1 pixels,
respectively. The fidelity of movement translation was highest with BlazePose, achieving a score
of 9.2 out of 10, compared to OpenPose (7.8) and MoveNet (8.5).

5. RELATED WORK

My solution works by using your webcam to translate your movement into the game [11]. The
solution is effective because you can use the game anywhere and anytime if you have a laptop.

Some limitations to my project are that you can’t do specific drills to help you practice something
specific. Some things it ignores are accessibility of the parts needed for the for the function of
the project and assuming the user has the skills to assemble the parts. Something my project
improves on what they tried is making the project more accessible.

The paper’s solution works by helping the players facilitate the players understanding of tactical,
physical, and psychological challenges of the game [12]. This solution is effective as it trains

players to think for themselves and make decisions quickly in a variety of situations. Some
limitations are that the practices might be different from real games. Practice principles are not
the priority and the focus is mainly on the game aspect of it.

The paper from ScienceDirect tackles the problem of sports video analysis using computer vision
and machine learning techniques [13]. The solution works by leveraging multi-camera systems to
track players and balls, reconstruct 3D trajectories, and automatically annotate key events. This

approach is effective for providing detailed performance metrics and tactical insights. However,
its limitations include high computational costs, the need for specialized hardware, and
challenges in handling occlusions or fast-moving objects. My project improves on this by using a
single webcam, making it more affordable and user-friendly, though it sacrifices some accuracy
and depth of analysis.

6. CONCLUSIONS

One of the limitations of the project would be its inability to be run on web. This can make the
game even more accessible, ensuring that every device can run it. This has a lot of meaning since

Computer Science & Information Technology (CS & IT) 191

the project began with the idea of making tennis more accessible for everybody to practice.
Another point worth mentioning is that having one map can get tiring even though we tried to
make it similar to an actual indoor tennis court, so it is less distracting, but giving the option to
the player is better than deciding for them [14]. Thus, this could be a great addition to the project.

Moreover, another limitation of the project currently is the lack of a multiplayer system where
players would be able to go one on one to compete in a virtual game of Tennis, showing off their
newly learnt skills. This will be in the future scope of the game.

This project demonstrates the potential of integrating pose estimation and Unity Sentis to enhance
tennis training accessibility [15]. By leveraging these technologies, we offer a scalable, engaging
solution for players worldwide. Future iterations will address current limitations, ensuring
broader applicability and sustained relevance in sports technology development.

REFERENCES

[1] Reid, Machar, et al. "Skill acquisition in tennis: Research and current practice." Journal of science

and medicine in sport 10.1 (2007): 1-10.

[2] Haralick, Robert M., et al. "Pose estimation from corresponding point data." IEEE Transactions on

Systems, Man, and Cybernetics 19.6 (1989): 1426-1446.

[3] Ichim, Alexandru Eugen, Sofien Bouaziz, and Mark Pauly. "Dynamic 3D avatar creation from

hand-held video input." ACM Transactions on Graphics (ToG) 34.4 (2015): 1-14.

[4] Reid, Machar, et al. "Skill acquisition in tennis: Research and current practice." Journal of science

and medicine in sport 10.1 (2007): 1-10.

[5] Chen, Hua-Tsung, et al. "Ball tracking and 3D trajectory approximation with applications to tactics

analysis from single-camera volleyball sequences." Multimedia Tools and Applications 60 (2012):

641-667.

[6] Stenum, Jan, et al. "Applications of pose estimation in human health and performance across the
lifespan." Sensors 21.21 (2021): 7315.

[7] Fleischmann, Georg, R. Opalla, and A. Mähler. "Real-Time Animation of 3D Characters."

Proceedings of the 96 European SMPTE Conference on Imaging Media, Cologne. 1996.

[8] Remondino, Fabio, and Sabry El‐Hakim. "Image‐based 3D modelling: a review." The

photogrammetric record 21.115 (2006): 269-291.

[9] Fernandez, Jaime, A. Mendez-Villanueva, and B. M. Pluim. "Intensity of tennis match play." British

journal of sports medicine 40.5 (2006): 387-391.

[10] Amprimo, Gianluca, et al. "Hand tracking for clinical applications: validation of the Google

MediaPipe Hand (GMH) and the depth-enhanced GMH-D frameworks." Biomedical Signal

Processing and Control 96 (2024): 106508.

[11] Dingli, Alexiei, and Andreas Giordimaina. "Webcam-based detection of emotional states." The

Visual Computer 33 (2017): 459-469.

[12] O'Connor, Donna, and Paul Larkin. "Decision making and tactical knowledge: An Australian

perspective in the development of youth football players." International research in science and

soccer II. Routledge, 2015. 204-214.

[13] Thomas, Graham, et al. "Computer vision for sports: Current applications and research topics."

Computer Vision and Image Understanding 159 (2017): 3-18.
[14] Bugaj, S., and P. Kosiński. "Thermal comfort of the sport facilities on the example of indoor tennis

court." IOP Conference Series: Materials Science and Engineering. Vol. 415. No. 1. IOP Publishing,

2018.

[15] Zhang, Qi, et al. "Design and application of intelligent companion system based on Unity Sentis

technology." International Journal of New Developments in Engineering and Society 8.5 (2024).

© 2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	Abstract
	Tennis players often face barriers to consistent practice due to weather, court availability, and scheduling conflicts [1]. This paper presents an intelligent video game developed with Unity and pose estimation to enable indoor tennis training [2]. Ut...
	Keywords

