
Five modes of ZK-based community chats around

non-fungible tokens’ owners

Oleksandr Kurbatov, Yaroslav Panasenko, Volodymyr Dubinin, and Yevhen
Hrubiian

Distributed Lab, Kyiv, Ukraine

Abstract. We present Free-Delete, a censorship-resistant group-chat protocol whose membership is
validated by non-fungible-token (NFT) ownership while user privacy ranges across five selectable modes. A
single Groth16 circuit, anchored in a sparse Merkle tree of verifiable commitments, realises (i) Fully Anony-
mous messaging, (ii) Linkable Anonymous reputation building, (iii) Publicly Identified disclosure, (iv) Con-
fidential end-to-end encryption, and (v) Rate-Limited Accountability that revokes keys on spam—all with-
out moderator involvement or economic deposits. A black-paper prototype written in TypeScript, Circom 2,
and Solidity achieves 0.35 s for register and 1.38 s for postMessage on consumer hardware; on-chain verifi-
cation costs 3–5.5×105 gas per proof on Polygon. These results demonstrate that NFT-gated, stake-free,
privacy-preserving communication can be deployed today on any EVM chain.

Keywords: NFT authentication, zero-knowledge proofs, decentralised chat, sparse Merkle tree, rate-
limiting nullifiers, forward secrecy

1 Introduction

Mainstream chat platforms concentrate censorship power in the hands of a few adminis-
trators who can delete messages, ban members, or erase history. Communities that rely on
public accountability—activist groups, decentralised-autonomous organisations (DAOs),
research collectives—demand the opposite: an immutable yet privacy-respecting space
where only bona-fide members may speak. Ownership of a particular NFT serves as a
natural membership credential, but publishing that credential in the clear compromises
anonymity and invites surveillance. Conversely, hiding completely invites spam and Sybil
abuse.

Free-Delete closes this gap. Each wallet writes a commitment—its baby-JubJub
public key hashed with the token identifier—into a sparse Merkle tree managed by an
EVM contract. A single Groth16 circuit then lets the holder prove, in zero knowledge,
that she controls (and still owns) exactly one such commitment while optionally exposing
selected public flags. By toggling these flags, the same circuit offers five privacy tiers:

1. Fully Anonymous — unlinkable messages;
2. Linkable Anonymous — pseudonymous reputation without identity disclosure;
3. Publicly Identified — sender’s key or address revealed;
4. Confidential — messages encrypted under epoch-ratcheted group keys;
5. Rate-Limited Accountability — stake-free RLN with key exposure on spam.

No moderator, coordinator, or deposit is required. Epoch-scoped nullifiers block replay,
a per-epoch key schedule ensures forward secrecy, and a single trusted setup suffices for
every mode and RLN degree. Our reference implementation compiles the largest circuit
(54,520 constraints) in two seconds, generates proofs in under 1.4 s, and verifies them
on-chain for roughly 400 k gas—well within the limits of inexpensive L2 networks.

The remainder of the paper is organised as follows. Section 2 reviews the cryptographic
tools and prior art. Section 4 details the protocol flow and its five modes. Section 6

David C. Wyld et al. (Eds): CSIT, AMLA, IPDCA, NLPA, AIS, IPPR, SPTM – 2025
pp. 205 -219, 2025. - DOI: 10.5121/csit.2025.151416CSCP 2025CS & IT

https://airccse.org
https://airccse.org/csit/V15N14.html
https://doi.org/10.5121/csit.2025.151416

formalises the threat model and security guarantees. Implementation and performance
metrics appear in Section 7. Section 8 outlines open problems—improved replay safety,
higher-degree RLN, automated key rotation—and Section 9 summarises our contributions.

2 Preliminaries

Let B = {0, 1} and Bn a binary sequence with the length n. Fp is a finite field of primer
order p. Let zkHash be the zk-friendly hash function that zkHash : B∗ → Fp, while the
hashn be a regular cryptographic one-way function hashn : B∗ → Bn.

Let T be a Merkle Tree [1]. Each leave (element e) consists of a key-value pair (k, v).
Merkle audit path path(e) is the shortest list of additional nodes that allows computing
the root value RootT :

proof(e) =

{
MP if path(e)→ RootT

NMP if path(e)→ RootT ’ ̸= RootT

Let S(priv∗, pub∗, rel∗) be a statement that sets the list of mathematical relations rel∗

between private priv∗ and public pub∗ signals. Let D = ⟨dp, dv⟩ be a tuple of keys needed
for generating and proving zk-SNARK for the statement S using the trusted procedure[2].

prove(dp, priv
∗, pub∗)→ P is a proving construction verified by the verify(dv, pub

∗,P)→
B, where 0 means the proof correctness, overwise 1.

Let sig gen(message, sk) be an EdDSA signature generates algorithm top on baby jub-
jub curve[3], operating with message and a private key sk. sig ver(sig,PK,message)→ bool
is the signature verification algorithm that takes message, public key PK and signature sig
as inputs and returns true or false value depending on the signature correctness.

2.1 Shamir’s Secret Sharing

Shamir’s Secret Sharing [4] is a cryptographic algorithm designed to divide a secret into
multiple parts, giving each participant its unique part. To reconstruct the secret, a mini-
mum number of parts is required. This scheme is also known as a (t, n)-threshold scheme,
where t is the threshold number of parts needed to reconstruct the secret, and n is the
total number of parts distributed.

Setup Let s < p be the secret we want to share. Lets define a random polynomial f(x)
of degree t− 1 over Fp:

f(x) = a0 + a1x+ a2x
2 + · · ·+ at−1x

t−1 mod p

where a0 = s and a1, a2, . . . , at−1 are randomly chosen coefficients from Fp.

Shares distribution Each of the n participants is assigned a unique, non-zero value
xi ∈ Fp, and they receive the corresponding share (xi, f(xi)).

Secret reconstruction At least t shares are needed to reconstruct the secret. Given t
points {(x1, y1), (x2, y2), . . . , (xt, yt)}, we can use Lagrange interpolation to find the poly-
nomial f(x):

f(x) =

t∑
j=1

Lj(x)yj mod p, Lj(x) =
∏

1≤m≤t
m ̸=j

x− xm
xj − xm

mod p

The secret s is then a0 = f(0).

206 Computer Science & Information Technology (CS & IT)

3 Related Work

Research on privacy–preserving social systems may be divided into three lines: anonymous
signalling primitives, vote-oriented credential frameworks, and token-gated chat protocols.

3.1 Anonymous Signalling Primitives

Semaphore v1/v2 realises set membership proofs with a single Groth16 SNARK, yield-
ing unlinkable “signals” but neither economic spam deterrence nor forward secrecy [5].
Rate Limiting Nullifiers (RLN) augments Semaphore with a bond–slash mechanism:
surpassing a degree-d bound in an epoch discloses the user’s secret and forfeits the stake
[6]. The Social Forest prototype integrates RLN proofs into a live chat client, demon-
strating practical latency yet confirming the usability cost of mandatory deposits and the
privacy loss once a key is exposed.

3.2 Voting Frameworks and Credential Systems

MACI repurposes Semaphore for collusion-resistant voting but retains an off-chain coor-
dinator that can still censor submissions. Rarimo formalises cross-chain NFT credentials,
treating tokens as portable proofs of membership [8]. While powerful for gating, Rarimo
delegates both spam control and message confidentiality to higher-level applications.

3.3 Token-Gated Chat Protocols

Several recent designs attempt end-to-end encrypted messaging restricted to token holders.
Push Protocol introduces NFT-gated group channels on top of a custom P2P layer [10].
Lens Protocol implements encrypted publications whose keys are wrapped for holders of
a designated NFT or ERC-20 asset [11]. Waku v2 offers a modular, censorship-resistant
transport already adopted by Status; token balance checks can be placed on its envelope
topics [12]. None of these systems, however, provides a stake-free accountability mechanism
or forward-secret unlinkability within the same universal SNARK circuit.

3.4 Free-Delete Algorithm’s Distinct Contribution

Inspired by Rarimo’s credential abstraction, the Free-Delete algorithm fuses dynamic
token-based group formation with stake-free, forward-secret accountability:

– Spam resistance – a moderator quorum can trace an offending degree-d nullifier and
penalise abuse without user deposits.

– Censorship checks – the tracing procedure requires threshold cooperation, precluding
unilateral suppression.

– Forward secrecy – per-epoch keys keep past ciphertexts private even if a long-term
key later leaks.

Thus Free-Delete is, to our knowledge, the first protocol that (i) forms anonymity
sets via NFTs, (ii) eliminates economic friction in spam deterrence, and (iii) guarantees
forward secrecy – closing the gap left by RLN and extending privacy beyond existing
token-gated chat systems.

Computer Science & Information Technology (CS & IT) 207

4 Protocol

Overview. Free-Delete lets a wallet that currently holds a qualifying token speak in a
shared chat while keeping its owner hidden. The wallet first stores a commitment (a public
key hashed with its token ID) in a sparse Merkle tree managed by the contract. Every
message carries one Groth16 proof that shows (i) the sender controls that commitment,
(ii) the token has not left the wallet, and (iii) any chosen rate-limit. The contract verifies
the proof, checks a per-epoch nullifier to block replays, and then emits the message event;
no administrator can erase or veto it. Five privacy modes: anonymous, linkable, identified,
confidential, and rate-limited – are selected with public inputs, so a single trusted setup
secures the entire system.

4.1 Keypair generation

First, the user needs to generate the baby jubjub key pair (sk,PK) that will be used to
confirm their actions (sending messages). These keys will be used to verify signatures in
circuits more efficiently.

4.2 Creating the verifiable commitment

After generating the key pair, the user must prove the NFT ownership and add the cor-
responding commitment to the tree. The structure of the data in the commitment is the
following:

vc = (contract id, nft id, owner eoa,PK, timestamp)

Then, the user creates the transaction that initiates adding the credential to the tree and
includes the following proof π:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub signals:
contract id, nft id, owner eoa, vc id,Tc

priv signals:
PK, timestamp
circuit logic:

vc id = zkHash(contract id, nft id, owner eoa,PK, timestamp)
∧

timestamp ≤ Tc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1)

The transaction is signed by the user and calls the method of Free-Delete contract
to add the commitment vc to the tree T with the index vc id. The contract:

1. Verifies the TX signature according to the EOA that initiated it

2. Verifies that EOA is an owner of the declared NFT on the declared contract

3. Verifies a zero-knowledge proof π according to the statement mentioned above

Let’s note that the user can define any timestamp in the credential that is lower than
the value of the current blockchain timestamp. Digging deeper, the user passes the current
time value as a public signal and proves that the timestamp inside the commitment is less
than the declared value. The smart contract checks that the time value does not exceed
the timestamp of the blockchain itself (Tc must be less than block.timestamp).

208 Computer Science & Information Technology (CS & IT)

Fig. 1. Verifiable commitment timestamp rules

The commitment vc is added to the tree if all verifications are performed correctly. At
this stage, it is worth noting that anyone can see which user created a commitment and
what specific data they linked it to (except the public key for managing the commitment)
— this information is validated by the contract and, therefore, is available to any party
that owns the state machine. However, all further operations with the commitment are
performed in hidden form, as described in the next section.

4.3 Authentication

When users want to connect to the chat and write messages, they need to prove the validity
of their credentials. The chat settings define the validity rules. These criteria include the
address(es) of the NFT contract, the list of token identifiers (if we need to provide chat
access only to a limited set of NFT owners, not to all of them), and expiration time bounds
(the owner of the particular NFT can be changed).

Depending on the working mode, there are some modifications in the proving mecha-
nism (the mechanism of generation of the proof for message sending), but we can formalize
the approach as follows:

1. User generates the signature over the message using their commitment key:

sig gen(message, sk)→ sig

2. User generate the proof π for the following statement:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub signals:
contract id,RootT ,message,Tt

priv signals:
vc∗, path(zkHash(vc∗)), sig

circuit logic:
path(zkHash(vc∗))→ RootT

∧
sig ver(sig, vc.PK,message)→ true

∧
vc.timestamp > Tt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

3. User sends the proof to the chat service

In other words, when connecting to the chat and sending messages, the user states
that they once confirmed ownership of an NFT from the collection (an existing commit-
ment is such a confirmation), and this confirmation has not yet expired (by the relation

Computer Science & Information Technology (CS & IT) 209

vc.timestamp > Tt we prove that the timestamp in the commitment exceeds the minimal
threshold defined by the chat service).

Fig. 2. Rules for satisfying a chat’s query

The realization of the chat architecture is the topic of a separate paper; the approach
proposed here should support options from centralized chat service to some federated
social networks.

5 Modes

Every message in Free-Delete moves through the same three-step pipeline: the sender
(1) chooses a set of public flags, (2) generates a single Groth16 proof that binds those flags
to her live token commitment, and (3) relays the ciphertext plus proof to the contract,
which verifies and logs it. Varying the flag vector does not change the circuit – it only flips
which parts of the proof’s public input are revealed. The resulting flag profiles are the
protocol’s modes of operation. The next subsections define each mode and the guarantees
it offers.

5.1 Fully Anonymous Mode

This mode allows the user to be fully anonymous without even connecting messages sent
by the same chat participant. It’s the simplest and efficient approach that allows complete
decentralized chaos without limitations and prohibitions.

To operate in Fully Anonymous Mode, the user should use the authentication approach
mentioned in Section 3.3.

5.2 Linkable Anonymous Mode

This mode presumes users to be anonymous but connects message history to the profiles
they were sent from. It allows private profiles to collect a provable reputation without
disclosing a particular person who stays behind.

This scheme has a small modification extending the auth method with the nullifier
constructed top on the sk. It modifies the algorithm in the following way:

1. User generates the signature over the message using their commitment key:

sig gen(message, sk)→ sig

210 Computer Science & Information Technology (CS & IT)

2. User generates the nullifier as

zkHash(sk)→ nullifier

3. User generate the proof π for the following statement:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub signals:
contract id,RootT ,message, nullifier,G,Tt

priv signals:
vc∗, path(zkHash(vc∗)), sig, sk

circuit logic:
vc.contract id = contract id

∧
path(zkHash(vc∗))→ RootT

∧
sig ver(sig, vc.PK,message)→ true

∧
vc.PK = sk · G

∧
nullifier = zkHash(sk)

∧
vc.timestamp > Tt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

4. User sends the proof to the chat service

This approach allows the aggregation of all messages with the same nullifier with-
out revealing the owner of the appropriate secret key and is therefore the recommended
configuration for Linkable Anonymous Mode.

5.3 Publicly Identified Mode

It’s possible to make totally public and traceable all message senders (In this case, users
have nothing to hide). That’s not the main idea of the protocol, but no significant modi-
fications are required to make it possible. The scheme of relations changes to:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub signals:
contract id,RootT ,message,PK,Tt

priv signals:
vc∗, path(zkHash(vc∗)), sig

circuit logic:
vc.contract id = contract id

∧
path(zkHash(vc∗))→ RootT

∧
PK = vc.PK

∧
sig ver(sig,PK,message)→ true

∧
vc.timestamp > Tt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

It’s not so difficult, right? This mode doesn’t allow the non-community participant to
send the message, so full verifiability and transparency are met. Using an EOA identifier
instead of PK is also possible. It’s up to you.

Computer Science & Information Technology (CS & IT) 211

5.4 Confidential Messaging Mode

All previous approaches presumed messages transfer in the open form, making them pub-
licly auditable. This approach doesn’t suit private organizations, where the message con-
tent must only be available to community members.

For organizing confidential messaging, the most efficient approach is for the first chat
participant to generate the secret key and then encrypt it using other users’ public keys
(asymmetric encryption). Users can use new keypairs for that and authenticate them using
the signature generated by the commitment’s key.

All processes with expiration and revocation of the encryption key depend on the chat
members. They have enough to use different governance protocols that are managed by
their commitment keys.

5.5 Rate-Limited Accountability Mode

Sometimes, it makes sense to ban spammers. But again, with no administrators, only using
defined chat rules and cryptography. We can use rate-limiting nullifiers for this purpose[7].
It extends our verifiable commitment to the new field

sk null = zkHash(sk)

At the same time, let’s define the linear polynomial f(x) = ax+ b, meaning the secret
b can be reconstructed by having evaluations in only two points.

When the user wants to send a message, it should calculate the following point:

x = zkHash(message), y = f(x)

Then, the user sends this share with its validity proof π.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pub signals:
contract id,RootT ,message, topic, y,Tt

priv signals:
vc∗, path(zkHash(vc∗)), sig, sk

circuit logic:
vc.contract id = contract id

∧
path(zkHash(vc∗))→ RootT

∧
sig ver(sig, vc.PK,message)→ true

∧
y = (zkHash(topic, sk)) · zkHash(message) + sk

∧
sk null = zkHash(sk)

∧
vc.timestamp > Tt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5)

If the user wants to send another message for the same topic, its secret key will be
corrupted. For example, we have two messages m1,m2 and corresponding shares:

x1 = zkHash(m1), y1 = zkHash(topic, sk) · zkHash(m1) + sk

x2 = zkHash(m2), y2 = zkHash(topic, sk) · zkHash(m2) + sk

212 Computer Science & Information Technology (CS & IT)

Everyone can reconstruct the polynomial by:

f(x) = y1 ·
x− x2
x1 − x2

+ y2 ·
x− x1
x2 − x1

Wrapping zkHash(topic, sk) to t we receive:

f(x) = (t · x1 + sk) · x− x2
x1 − x2

+ (t · x2 + sk) · x− x1
x2 − x1

f(x) =
tx1x− tx1x2

x1 − x2
+ sk · x− x2

x1 − x2
+

tx2x− tx1x2
x2 − x1

+ sk · x− x1
x2 − x1

f(x) = sk · (x− x2
x1 − x2

− x− x1
x1 − x2

) + t · (x1x− x1x2
x1 − x2

− x2x− x1x2
x1 − x2

)

f(x) = sk+ t · x

So we see that the polynomial was reconstructed correctly with revealing the user’s secret
key. This approach doesn’t limit the user’s actions but allows them to steal an identity if
the user violates the chat rules.

6 Security Model

6.1 Threat Model

All adversarial algorithms A run in PPT relative to the security parameter λ.
– Observer — full read access to the ledger and mempool; attempts deanonymisation.
– Front-running relayer — controls a mempool gateway; reorders, inserts, or delays

transactions within latency ∆net.
– Colluding moderators — any subset M⊆{1, . . . ,M} with |M| = k < M ; tries to

censor messages or break privacy during tracing.
We assume chain liveness and eventual finality; no honest-majority of miners is needed

for privacy or replay safety.

6.2 Formal Security Goals

For each property P we define an experiment ExpPFree-Delete,A(λ); the protocol is secure
if every PPT adversary wins with probability ≤ negl(λ).

Unlinkability. A chooses (U0, U1); the challenger flips b←{0, 1}, has Ub produce Tb, and
returns Tb plus a random decoy T1−b. A outputs b′.

Pr
[
ExpUnlink

Free-Delete = 1
]
= Pr[b′ = b] ≤ 1

2 + negl(λ).

Censorship resistance. The challenger submits a valid T at height h. A controls the mem-
pool. Success iff T is absent from all finalised blocks < h+∆E .

Replay resistance (epoch-scoped). A outputs a transaction T ∗ bit-for-bit identical to a
previously confirmed T with the same epoch index e = ⌊block.number/EPOCH LEN⌋.
Game returns 1 if the contract accepts T ∗.

Transfer safety. A produces a proof that is valid at generation time t0 but submits it after
ownership of tokenId changed (t1 > t0). Game returns 1 if the proof is accepted.

Computer Science & Information Technology (CS & IT) 213

Forward secrecy. A learns the long-term key SK at t1 and is given a ciphertext C issued
at t0 < t1. Advantage is the ability to distinguish C from random.

Spam accountability. A exceeds degree-d rate limit in epoch e. Trace outputs η. Game
succeeds if (i) η links all violating messages and (ii) reveals no secret keys.

6.3 Mechanism Mapping

– zk-SNARK proof — enforces unlinkability and ownership.
– Epoch counter and nullifier nf = Hash(sk∥e∥flags) — prevents replay within an

epoch.
– Sparse Merkle leaf λ = Hash(tokenId ∥ owner ∥ ecr) — binds proofs to the owner

present when the commitment was written.
– Auto-advancing epochs — deletion of any single coordinator; yields censorship re-

sistance.
– Hierarchical keys + double ratchet — provide forward secrecy.
– Threshold trace on nf — realises spam accountability without identity loss.

6.4 Epoch-Based Ownership Validation

Epoch definition. Let EPOCH LEN∈N be a global parameter (default 100 blocks ≈20 min
on Ethereum). The current epoch is

ecur =
⌊block.number

EPOCH LEN

⌋
.

Epochs advance deterministically; no sequencer or oracle can halt progress.

Dynamic ownership leaf. For every NFT tokenId the sparse Merkle tree stores

λ = Hash(tokenId ∥ owner ∥ ecr),

where ecr is the epoch when the leaf was last (re)written.

Public inputs of a proof. A message proof exposes { root, ecur, tokenId, nf }. The circuit
enforces:

(i) ecur = ⌊block.number/EPOCH LEN⌋;
(ii) valid Merkle path for λ;

(iii) on-chain check ownerOf(tokenId) = msg.sender.

Nullifier space. Nullifiers are epoch-scoped:

nf = Hash(sk ∥ ecur ∥ flags), NFspace[e] =
{
nf

}
.

Hence, cross-epoch replays are impossible by construction.

Race-condition immunity. If a proof is generated at t0 (owner=Alice) but submitted after
a transfer at t1 (owner=Bob), it fails because ownerOf(tokenId) = Bob ̸= Alice.

214 Computer Science & Information Technology (CS & IT)

6.5 Mode-Specific Guarantees

Let the mode flag vector be ⟨anon, link, id, rln, d⟩. Guarantees differ as follows:

Mode Unlink Linkability Identity RLN FS

Fully Anonymous " % % % "

Linkable Anonymous % " % % "

Public ID % " " % "

RLN–Accountable % " % "(d) "

Here FS stands for forward secrecy; it is offered in all modes because encryption keys
ratchet per epoch.

7 Implementation

1. Depending on the implementation of the time-checking logic on the contracts and
circuits, different strategies for user eligibility can be considered. In this paper, the
static approach is described when, in the public domain, such as the Ethereum network,
on the contract, a specific timestamp is statically stored, which specifies after which
point the credentials are valid. Also, it is possible to define the validity of credentials
for a specific period, for example, one month.

2. During the registration period, the Sparse Merkle Tree is used. Therefore, adding
a tree, both index and value, is required. As index the vc id is used, and value is
constructed as follows: (zkHash(contract id, nft id, owner eoa)) This allows for possible
query proofs, where the participant can prove that some of these values are in the tree
without revealing them. This can be used to filter out desired participants based on
the data in the value.

3. As we mentioned at the start of the article — NFT isn’t the single artifact the user can
be connected to. There can be verifiable commitments connecting to certain balances,
network activity, attestations, and other credentials and commitments.

Scope and status. The implementation described below represents the black-paper pro-
totype of our protocol – a working reference build intended to make every design choice
explicit and measurable. Although we anticipate further optimisation and security hard-
ening in future revisions, this version is already complete enough to serve as a running
example for the architectural discussion that follows.

7.1 Prototype Setup

Our reference implementation is written in TypeScript, Circom 2, and Solidity. The prover
runs on commodity hardware; all figures below were obtained on a single–threaded CPU-
only virtual machine with 12 GB RAM. On-chain components target the Ethereum Virtual
Machine (EVM) and are tested on a Polygon fork for realistic gas accounting.

7.2 Developer Benchmarks

Unit-test timing. End-to-end integration tests executed on a MacBook Pro (Apple M3
Pro, 32 GB RAM) show:

– register — proof generation & contract call: ≈ 0.35 s

Computer Science & Information Technology (CS & IT) 215

– postMessage — proof generation & contract call: 1.38 s

– failure path (expired credential): 1.18 s

These figures include witness generation, proof construction, local EVM execution, and
assertion checks.

Circuit complexity.

Circuit Constraints Compile time Proving-key size

PostMessage 54 520 2.0 s 23 MiB
VerifiableCommitment 1 040 0.5 s 0.5 MiB

Trusted-setup parameters. The largest circuit requires a Powers-of-Tau file with exponent
216 (exact ID 16); download and Groth16 key generation complete in under 25 s on the
same machine.

Gas profile. A ganache-based gas reporter records the following averages (optimizer en-
abled, 0.8.x compiler):

Contract / Method Gas (avg) USD (0.04 $/M gas)

AuthenticationStorage.register 529 123 0.021
Chat.postMessage 406 099 0.016

On Polygon (2–4× cheaper than Ethereum mainnet), these costs remain well below the
practical threshold for mass usage.

On-chain verification. Groth16 verification costs dominate the gas expenditure of the
smart contract. Empirical measurements on Polygon yield 3.0–5.5 × 105 gas per proof,
which comfortably fits within a single block and is significantly cheaper than on mainnet
Ethereum. This confirms that large-scale deployments remain economically viable.

7.3 Sparse Merkle Tree Index

All membership proofs rely on a sparse Merkle tree whose leaves are defined as

leaf = zkHash
(
vc
)
, vc = (contract id ,nft id , owner , pk , ts).

The tree depth d is logarithmic in the number N of commitments (d = ⌈log2N⌉). For
d = 20 (N ≈ 106), a leaf update requires exactly 20 hash evaluations, yielding O(logN)
gas growth. On Polygon, the marginal cost per insertion is below 40 k gas, allowing over
100,000 insertions for under 4 M gas—a feasible batch size for a single transaction by a
trusted relayer.

7.4 Rate-Limited Accountability

In the RLN mode we fix the polynomial degree to k = 1; hence each epoch permits one
message per commitment. Doubling (or more generally increasing) k would raise the circuit
size quasi-linearly. Our choice of k = 1 keeps proof generation within the 3s budget while
still deterring spam via key-extraction on double posting.

216 Computer Science & Information Technology (CS & IT)

7.5 Key Management for Confidential Chat

The first participant derives a symmetric session key K and transmits K encrypted under
the recipients’ long-term public keys. At present, the implementation lacks (i) automated
key rotation upon NFT transfer and (ii) forward secrecy. Section 8 outlines how integrating
an HPKE envelope with a double-ratchet can solve both issues without enlarging the zero-
knowledge circuit.

7.6 Timestamp Enforcement

Each commitment carries a timestamp ts ≤ Tc where Tc is the block time at creation. When
a message is posted, the proof additionally enforces ts > Tt for an application-defined
threshold Tt. Choosing Tt as “now minus 30 days” yields an effective Sybil-mitigation
window while avoiding the need for explicit revocation lists.

7.7 Spam Mitigation for Multi-NFT Holders

Because every NFT can register an independent commitment, a wealthy user could emit
multiple messages per epoch. We propose two mitigations:

(a) Commitment aggregation. Map all NFTs owned by the same EOA to a single leaf by
hashing the tuple (owner ,nft set).

(b) Per-EOA quota. Limit each distinct EOA to one active commitment, enforced at the
contract layer.

Both strategies require only minor contract modifications and leave the proof system
unchanged.

7.8 Moderator-(Dis)involvement

The design is fully cryptographic: neither the circuits nor the on-chain logic assumes any
privileged moderator role. Potential collusion is thus confined to external applications that
might withhold proofs; such issues belong in the threat model, not in protocol logic.

8 Discussion and Future Work

While our protocol establishes a solid foundation for censorship-resistant, privacy-preserving
group chats gated by NFT ownership, several aspects remain unresolved. Below, we dis-
cuss these limitations and propose future research directions to address them, alongside
additional ideas to enhance the protocol’s robustness and applicability.

1. Time-Bound Ownership and Replay Safety
Our use of timestamps and epochs for ownership validation and replay prevention
(Section 6.4) is functional but could be improved. We plan to explore integrating a
monotonic epoch counter or block-number-based public inputs to strengthen replay
resistance. This will require updates to the circuit logic and security arguments, which
we will formalize in future work.

2. RLN Design and Generalization
The Rate-Limited Accountability Mode (Section 5) adopts a degree-1 polynomial
(k = 1), limiting users to one message per epoch before risking key exposure. While
this choice simplifies the circuit and maintains efficiency, generalizing to k > 1 could
enhance flexibility. Future work will evaluate performance trade-offs for higher-degree
polynomials and justify an optimal k based on use-case requirements.

Computer Science & Information Technology (CS & IT) 217

3. Confidential-Chat Key Management
The confidential messaging mode (Section 5) lacks automated key rotation and forward
secrecy. We propose integrating an HPKE envelope with a double-ratchet mechanism
to ensure:
– Keys rotate automatically on NFT transfer via an ERC-721 Transfer hook.
– Forward secrecy prevents former owners from decrypting future messages.
Formal security proofs for this enhancement will follow in future work.

4. Trusted-Setup Reuse
Our protocol uses a single Groth16 ceremony across all modes and RLN degrees (Sec-
tion 7), leveraging an unchanged circuit. Future work will investigate whether multiple
ceremonies or parameter sets could improve flexibility or security.

5. Multiple-NFT Spam Mitigation
Currently, a user with multiple NFTs can send multiple messages per epoch (Section 7).
We propose:
(a) Commitment aggregation: Mapping all NFTs per EOA to one commitment.
(b) Per-EOA quota: Restricting each EOA to a single active commitment.
Both options will be tested for usability and security impacts.

In conclusion, while Free-Delete offers a promising framework, addressing these gaps
and exploring new directions will significantly enhance its security, scalability, and adop-
tion potential.

9 Summary

This paper presents Free-Delete, a novel protocol for constructing privacy-preserving,
censorship-resistant group chats gated by non-fungible token (NFT) ownership. By lever-
aging a sparse Merkle tree and Groth16 zk-SNARKs, Free-Delete enables users to
prove NFT ownership while supporting multiple privacy tiers—Fully Anonymous, Link-
able Anonymous, Publicly Identified, and Rate-Limited Accountability—within a single
circuit. The protocol extends the Rarimo social forest framework [9] by focusing on chat
applications, transforming public on-chain ownership rights into leaves of an anonymous
social tree. Key innovations include stake-free spam deterrence via rate-limiting nullifiers,
dynamic membership tied to NFT transfers, and a moderator-free design that ensures
immutable message delivery. Preliminary benchmarks demonstrate practical performance,
with proof generation in under 3 seconds and gas-efficient verification on Polygon.

Despite these advances, challenges remain, such as optimizing key management for
confidential chats, mitigating spam from multi-NFT holders, and providing comprehensive
scalability analyses, as outlined in Section 8. Future work will address these gaps and
explore broader applications, such as supporting soul-bound tokens. Free-Delete offers
a robust foundation for decentralized, privacy-focused communication, with significant
potential to empower communities in activist, research, and DAO contexts.

References

1. J. Baylina and M. Bellès, “Sparse Merkle Trees,” iden3 Technical Publication, 2019. https://docs.
iden3.io/publications/pdfs/Merkle-Tree.pdf

2. J. Groth, “Short Pairing-Based Non-interactive Zero-Knowledge Arguments,” in ASIACRYPT 2010,
LNCS 6477. https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf

3. J. Baylina and M. Bellès, “EdDSA for Baby JubJub Elliptic Curve with MiMC-7 Hash,”
iden3 Whitepaper, 2019. https://iden3-docs.readthedocs.io/en/latest/_downloads/

a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf

218 Computer Science & Information Technology (CS & IT)

4. A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, no. 11, 1979. https:

//dl.acm.org/doi/10.1145/359168.359176

5. Semaphore Team, “Semaphore: A Zero-Knowledge Protocol,” 2022. https://semaphore.appliedzkp.
org/

6. Privacy and Scaling Explorations, “Rate Limiting Nullifier (RLN) Specification v1.0,” 2022. https:
//rate-limiting-nullifier.github.io/rln-docs/

7. Blagoj, “Rate Limiting Nullifier: A spam-protection mechanism for anony-
mous environments”, https://medium.com/privacy-scaling-explorations/

rate-limiting-nullifier-a-spam-protection-mechanism-for-anonymous-environments-bbe4006a57d

8. Rarimo Team, “Rarimo Whitepaper v0.2,” pre-print, 2023. https://docs.rarimo.com/files/Rarimo_
whitepaper_v0.2.pdf

9. Rarimo Team, “Rarimo: A Privacy-First (zk) Social Protocol,” Whitepaper v3, 2024. https://docs.
rarimo.com/files/Rarimo_whitepaper_v3.pdf

10. H. Rajat, “Push Protocol Litepaper v0.9,” pre-print, 2024. https://push.org/litepaper.pdf
11. S. Kulechov et al., “Lens Protocol Whitepaper v1.1,” Aave Labs, 2023. https://lens.red.r0h.in/

paper.pdf

12. O. Thorén, S. Taheri-Boshrooyeh, and H. Cornelius, “Waku: A Family of Modular P2P Protocols for
Secure and Censorship-Resistant Communication,” in Proc. IEEE ICDCSW 2022, arXiv:2207.00038.

Authors

Oleksandr Kurbatov is a PhD Candidate in Karazin Kharkiv National University,
Ukraine. His research focuses on public-key infrastructure, blockchain technologies, and
anonymous decentralized voting systems. Currently working as the Lead Cryptography
Researcher at Distributed Lab

Yaroslav Panasenko ris the Chief Technology Officer at Distributed Lab. He holds a
B.Sc. in Software Engineering from Kharkiv Polytechnic Institute. His research interests
span decentralized anonymous banking systems, blockchain infrastructure, biometric sys-
tems and AI safety and security.

Volodymyr Dubinin holds an M. Sc. in Computer Science and is Co-Founder of Dis-
tributed Lab. His research interests span Decentralized Systems, Artificial Intelligence,
Blockchain Scalability, and Cryptographic Protocol Design.

Yevhen Hrubiian is a lecturer at the National Technical University of Ukraine “Igor Siko-
rsky Kyiv Polytechnic Institute” and a cryptography researcher with Distributed Lab. He
holds an M.Sc. in Applied Mathematics from NTUU “Igor Sikorsky KPI.” His scientific
interests encompass elliptic-curve cryptography, zero-knowledge proofs, folding schemes
and privacy-preserving messaging systems.

 . This article is published under the Creative Commons Attribution (CC BY) license.© 2025 By AIRCC Publishing Corporation

Computer Science & Information Technology (CS & IT) 219

https://airccse.org

