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ABSTRACT

A crucial component of any zero-knowledge system is operations with finite fields. This, in
turn, leads to the implementation of the fundamental operation: multiplying two big
integers. In the realm of Bitcoin, this problem gets revisited, as Bitcoin utilizes its own
stack-based and Turing-complete scripting system called Bitcoin Script. Inspired by Elliptic
Curve scalar multiplication, this paper introduces the w-windowed method for multiplying
two numbers. We outperform state-of-the-art approaches, including BitVM’s
implementation. Finally, we also show how the windowed method can lead to optimizations
not only in big integer arithmetic but in more general arithmetic problems.
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1. INTRODUCTION

Introduced in 2009, Bitcoin has drastically changed the world of digital finance and led to the
broad adoption of blockchain technology [1]. Being the first cryptocurrency, it put into action
numerous novel concepts such as decentralization, digital security, and programmable conditions
for operating with digital currency [2],[3]. However, by design, Bitcoin Smart Contract
functionality is very limited. Essentially, one can only perform verifications on basic primitives
such as ECDSA/Schnorr signatures, hashlocks, or timelocks. Despite such a limited set of tools,
the Bitcoin community managed to come up with a multitude of exciting and complex protocols
such as Atomic Swaps [4],[5], Anonymized Taprootized Swaps [6], Lightning Network [7],[8],
RGB protocol [9], LRC-20 [10] etc.

Despite all the community’s efforts, one of the most anticipated technologies yet to be fully
developed is the L2 zero-knowledge (zk) rollup on top of Bitcoin. Currently, the adoption of L2
zk-rollups allows achieving much better scalability on Ethereum [11], resulting in lower fees and
a higher number of transactions per second while maintaining the same security as in the L1 layer
(that is, Ethereum blockchain itself). This is achieved through zero-knowledge technology, which
allows for the formation of succinct validity proof for verification. One of the most widely used
L2 zk-rollups are Aztec, Scroll, Polygon zkEVM, zkSync, Starknet, etc[12]. The majority of them
(besides Starknet), one way or another, rely on the Succinct Non-Interactive Argument of
Knowledge (SNARK), allowing building proofs of certain statements with the size �(log|�|)



46 Computer Science & Information Technology (CS & IT)

where |�| is the number of gates in the arithmetic circuit � , describing arbitrary logic that we
want to prove and verify [13].

While there are many endeavors to achieve a similar SNARK-based zk-rollup on Bitcoin,
currently, to the best of our knowledge, there is yet to be a production-ready system on top of
Bitcoin Mainnet. For the most part, as we mentioned, the primary reason is the limitation of
Bitcoin Script. In spite of all the limitations, there is significant progress in writing the full zero-
knowledge SNARK verifier in Bitcoin Script. One of notable examples include BitVM[14] and
Alpen Labs with SNARKnado[15], but current implementations still require more optimizations
of the underlying primitives.

1.1. Our Contribution

A crucial component of any SNARK system is performing finite field arithmetic, which
inherently involves the fundamental task of multiplying two large integers. Performing such
arithmetic on Bitcoin is particularly challenging. Bitcoin Script is intentionally non-Turing
complete and stack-based, designed with simplicity and security in mind. Hence, it lacks built-in
support for complex arithmetic operations and has constraints on the size and number of stack
elements. Implementing efficient big integer multiplication requires innovative techniques to
work within these constraints.

Inspired by Elliptic Curve optimization tricks, this paper introduces the �-windowed method for
multiplying two 254-bit prime (BN254 curve [16]) integers, along with additional optimization
techniques. Our approach improves upon the work done by the BitVM team, reducing script size
for multiplication by roughly 3.2k opcodes and is integrated into the BitVM code base due to
superior performance. In addition, our optimization can be used in any application involving big
integer arithmetic, suchas Groth16 [17] or fflonk [18], which are both currently implemented in
BitVM. Even more notably, our approach can lead to even more optimizations for more general
tasks such as multiple integer multiplication or fixed integer multiplication, so we expect that the
methods considered are not limited to the multiplication of two integers solely.

All the code with implementation is available through the following
link:https://github.com/distributed-lab/bitcoin-window-mul

The paper is structured as follows: in 2 we will give a basic overview of Bitcoin Script and fast
multiplication methods. In 3 we will list scripts to conduct the windowed multiplication (our
primary proposed method). Finally, in 4 and 5, we will compare our performance with state-of-
the-art and draw a conclusion.

2. PRELIMINARIES

2.1. Bitcoin Script

2.1.1. Basic Structure

Bitcoin Script is a stack-based, not Turing-complete language used for specifying conditions on
how UTXO can be spent [19]. Informally, this condition is called scriptPubKey, while the data
that must be provided to meet this condition is called scriptSig. To verify that the condition is met
based on scriptSig provided, one should first concatenate scriptSig ∥ scriptPubKey, execute the
script and verify that the resultant stack contains a non-false value (meaning, anything except for
0).
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The stack consists of the values placed in the script and the so-called opcodes — keywords that
operate with the elements in the stack. Let us consider some examples to introduce notation and
describe how the script gets executed.

Example 1. The script  ⟨�⟩  ⟨�⟩  OP_ADD  ⟨�⟩  OP_EQUAL  verifies whether given �, �, � satisfy
� + � = �. We first push two integers � and � to the stack, then OP_ADD will consume � and �
(meaning, they get removed) and output � ← � + �, so the stack becomes  ⟨�⟩  ⟨�⟩  OP_EQUAL  .
Finally, OP_EQUAL takes � and � and outputs OP_TRUE if � + � = � , and OP_FALSE,
otherwise. Note that such notation is commonly called the Reverse Polish Notation in the
literature [20].

Example 2. Suppose our condition on spending the coins is providing the pre-image of the given
hash value ℎ (that is, providing a message � such that ℎ = �(�)), which is called the Hashlock
Script. In this case, our scriptPubKey looks as follows:

 OP_HASH160  ⟨ℎ⟩  OP_EQUAL 

Note, though, that in the placeholder   ⟨ℎ⟩we should push 0x20 followed by 20 bytes of h.Suppose
we brought a message �, our scriptSig. Concatenating scriptSig and scriptPubKey would result
in the following script:

 ⟨�⟩  OP_HASH160  ⟨ℎ⟩  OP_EQUAL 

Execution in this case would proceed as follows:

1. First, � is added to the stack.
2. Next, OP_HASH160 will hash the provided value ℎ' ← �(�) , so the stack would

become  ⟨ℎ'⟩  ⟨ℎ⟩  OP_EQUAL  .
3. Finally, after executing OP_EQUAL, we will either get OP_TRUE on the top of the

stack if ℎ = ℎ', or OP_FALSE otherwise.

Note that we get OP_TRUE (meaning, we can spend the coins) only if ℎ' = ℎ or, equivalently,
�(�) = ℎ, what was needed from the start.

2.1.2. Arithmetic in Bitcoin

To implement the SNARK verifier on Bitcoin, one must implement the finite field arithmetic
over the elliptic curve scalar field �� . The bitsize of such scalar field is typically from 254 bits
(as for BN254[16]) to 381 bits and more (as for BLS12-381[21]). Currently, the common choice
is the BN254 based on 254-bit prime order � , which, for example, is currently used for elliptic
curve precompiles in Ethereum[11]. Although further discussion is valid for any fairly large�, our
implementation was focused on 254-bit �.

Finite field arithmetic over � -bit � (where � = 254 for BN254, for example) includes
implementing the widening multiplication of two � -bit numbers, resulting in a 2� -bit integer.
Why is this a problem in Bitcoin at all? The main issue is that Bitcoin does not have a
multiplication opcode. To make matters worse, integers on the stack are 32-bit, meaning that
representing large integers requires some additional workload. Therefore, we will use the base �
representation of an integer.
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Definition 1.Given positive integer � ∈ ℤ≥0, base � representation is an expression

� =
�=0

�−1

��� × ��,

where each limb�� is between 0 and � − 1, and � is the length of such representation. We further
denote such representation by (�0, �1, …, ��−1)�.

Empirically, it seems that using larger bases results in smaller scripts. The main reason is that
larger bases result in the shorter representation of integers. However, this does not mean better
methods with shorter integers will not produce shorter scripts in the future. Therefore, we pick
� = 230: it is the power of two, which would come in handy later, and we will not run out of 32
bits when performing arithmetic (doublings, additions, etc.). Also, assume the limb size in bits is
� = 30.

Moreover, Bitcoin does not have loops (recall that Bitcoin Script is not Turing complete!),
meaning that the length of our representation must be fixed. It means that � = ⌈�/�⌉, or,� = 9 in
our particular case.

All things combined, Figure 1 shows how to preprocess the given integer � and push the
representation to the stack.

Figure 1. Pushing given integer to the stack.

2.2. Multiplication Methods

2.2.1. Karatsuba Algorithm

The Karatsuba Algorithm is a fast multiplication algorithm to multiply two integers using
divide and conquer approach [22]. In contrast to naive �(�2) complexity, the Karatsuba method
allows to reduce the asymptotic complexity to �(�log23).

Assume that we have integers � and � , represented in base � with � limbs. We divide each
number into two halves: high bits ��, �� and low bits ��, �� as follows:

� = ���⌈�/2⌉ + ��,  � = ���⌈�/2⌉ + ��

Then, a simple multiplication formula gives us:

�� = ������ + (���� + ����)�⌈�/2⌉ + ����
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Which requires multiplying four times: ����, ����, ����, ���� . Now, the Karatsuba algorithm
consists in calculating these four expressions using only three multiplications. Indeed, calculate:
�0 = ����, �1 = ����, then �2 = (�� + ��)(�� + ��) − �1 − �0, and then

�� = �0�� + �2�⌈�/2⌉ + �1

Karatsuba Multiplication is currently widely used in various applications [23, 24, 25, 26]such as
implementation of Arithmetical Logic Unit (ALU), modulators or cryptosystemsdue to much
better assymptotics. Due to such efficiency, the Karatsuba Algorithm is used in the current BitVM
approach, where to represent the 254-bit number, one uses 29 × 9 representation (that is, � =
29, � = 9 ), resulting in roughly 74.9k opcodes [14]However, as it turns out, there is a more
efficient wayto implement the multiplication. Interestingly, we will consider the optimizations
usedin the implementation of elliptic curve arithmetic and how they relate to regular integer
arithmetic.

2.2.2. Elliptic Curve Scalar Multiplication

Ideas from methods used for Elliptic curve scalar multiplication will be helpful in further
optimizations. Subsequent methods will bemainly based on the explanations of [27]which are
heavily employed in moderncryptography frameworks such as gnark [28].

Assume that (�(��), ⊕ ) is the group of points on an elliptic curve under operation ⊕ over some
prime field �� of a prime order �. Suppose � ∈ �(��) and � ∈ ℤ� and denote by [�]� adding � to
itself � times (for � = 0 assume [0]� = � where � is the point at infinity). Also, assume that � is,
again, �-bit sized for notation simplicity.

The basic classical approach of multiplying point � by � is specified in Figure 2.

Figure 2. Double-and-add method for scalar multiplication

As can be seen, the complexity of such an approach is �(log2�). Specifically, suppose � is the
cost of addition while � is the cost of doubling. Remark, that� is slightly easier to perform than
� since doubling is a special case of addition.In this case, the maximal total cost is roughly
�� + �� . However, we can do better by using the � -width approach. The main idea is to
decompose the scalar � into the �-width format.

Definition 2.The �-width form of a scalar � ∈ ℤ≥0 is a base 2� representation, that is
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� =
�=0

�−1

��� × 2��,    0 ≤ �� < 2�

Let the length of such decomposition be � : =: =: = ⌈�/�⌉ . We denote such decomposition by
(�0, �1, …, ��−1)�.

Now, what does this form give us? Let us consider algorithm shownin Figure 3. At first glance,
the overall complexity is still �(log2�) , but a closer inspection reveals that the number of
additions is significantly lower for a suitable choice of �. Indeed, the number of doublings is still
roughly � , but the number of additions is now approximately �/� . Of course, this comes at a
cost of initializing the lookup table: to initialize 2� values we need roughly 2�−1 additions and
2�−1 doublings (to calculate [2�]� we can always double [�]� , while for calculating [2� +
1]�, add � to already precomputed [2�]�). So the overall cost is:

2�−1� + 2�−1� +
�
�

� + ��

Note that the cost of initializing the lookup table grows exponentially with respect to � , so
typically, the best choice is � = 4. This way, instead of having roughly 254 additions maximum,
we get 64 instead.

Figure 3. �-width windowed method for scalar multiplication

Yet another effective approach is �-width non-adjacent form (NAF). Let us introduce it first.
Definition 3.Again, assume � ≥ 2. A width-w NAF of � ∈ ℤ≥0 is an expression � = �=0

�−1 ��� 2�

where each non-zero coefficient �� is odd, |��| < 2�−1 , and at most one of any � consecutive
digits is non-zero.

The main properties of width-� NAF are listed in the next theorem.

Theorem 1.Let � ∈ ℤ≥0. Then,

1. � has a unique width-� NAF, denoted by (�0, …, ��−1)�,���.
2. The length of width-� NAF is at most one more than the binary representation of �.
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3. The average density of non-zero digits in width-� NAF is approximately 1/(� + 1).

Among the three listed properties, probably the most important is the third one. Indeed, if we take
a random �-sized width-� NAF of some integer, most likely it would have only �/(� + 1) non-
zero digits, so the average number of additions would be �/(� + 1) – this is slightly lower than
�/� which we had before. The resultant algorithm is identical to the algorithm shownin Figure 3,
except for the fact that it suffices to precompute only odd products {[1]�, [3]�, …, [2�−1 − 1]�}
and their negatives (where negative is easily computed in case of �(��) using relation ⊖ � =⊖
(��, ��) = (��, − ��)).

However, this method has not provided us with fewer opcodes for the reasons provided in
subsequent sections.

3. IMPLEMENTATION

3.1. Binary and Window Decomposition

First things first, we need to decompose our integer to the binary form using Bitcoin Script. Since
we have chosen our base to be the power of two, it suffices to decompose the limbs to the binary
form and then concatenate the result (this is the primary reason for using � = 2� and not any
other limb base). The implementation is specified in Figure 4.

Figure 4. Decomposing a limb to the binary form

The idea here is quite straightforward: we first make the stack in a form

 ⟨21⟩  ⟨22⟩  ⟨23⟩ … ⟨2�⟩  ⟨�⟩ 

Then, we duplicate top-stack elements to get … ⟨2�⟩  ⟨�⟩  ⟨2�⟩  ⟨�⟩  , then checking whether 2� ≤
�. If not, we remove 2� and push  ⟨0⟩  to the altstack, otherwise we modify � to be � − 2� , push
 ⟨1⟩  to the altstack and proceed.
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We then repeat this process for each limb (�0, �1, …, ��−1)� . This way, we have a script  
OP_TOBEBITS_TOALTSTACK   which takes an �-bit integer in the main stack and pushes all
bits to the altstack in the big-endian format.

Having this expansion, we can easily convert it to the �-width form using the algorithm shown in
Figure 5. The idea is similar to one used in algorithm shown in Figure 1 from 2.1.2: we split the
binary expansion to the chunks of size � (except for, maybe, the last chunk, which might have a
size less than � ), suppose that the chunk is {��}�=0

�−1 , then the corresponding limb in � -width
representation is �=0

�−1 ��� 2� . Then, having all limbs in the main stack, we can easily, if needed
(which is the case), push it to the altstack.

All things considered, to get the � -width format, we simply call  
OP_TOBEBITS_TOALTSTACK and algorithmin Figure 5sequentially, and push resultant limbs
to the altstack.

Figure 5. Decomposing a limb to the �-width form

3.2. Addition and Doubling

To implement multiplication, we need to implement two additional “opcodes”: OP_ADD, which
takes two � -bit integers and adds them up, and OP_2MUL, which takes � -bit integer and
doubles it. In both cases, we assume no overflow occurs (which will be the case for our
multiplication algorithm), meaning that the result is still an �-bit integer.

Addition. Let us start with addition. We will do addition limb-wise with handling the carry bit.
For that reason, we need an intermediate opcode OP_LIMB_ADD_CARRY, which takes
 ⟨�⟩  ⟨�⟩  ⟨�⟩  – two limbs �, � and base �, and outputs  ⟨�⟩  ⟨�⟩  ⟨�⟩  , where � is the carry bit,
while � is the sum (� + � if � = 0 and (� + �) − � if � = 1). We specify the algorithm in Figure
6.
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Figure 6. Adding two limbs with carry bit

Now we are ready to add two integers: seein Figure 7. Note that we use the helper opcode
OP_ZIP, which converts the stack

 ⟨��−1⟩  ⟨��−2⟩ … ⟨�1⟩  ⟨�0⟩  ⟨��−1⟩  ⟨��−2⟩ … ⟨�1⟩  ⟨�0⟩ 

to the following stack:

 ⟨��−1⟩  ⟨��−1⟩  ⟨��−2⟩  ⟨��−2⟩ … ⟨�1⟩  ⟨�1⟩  ⟨�0⟩  ⟨�0⟩ 

which makes it easy to perform subsequent element-wise operations. We do not concretize its
implementation, but it is quite straightforward. Also, since we rely on the fact that � + � is still
an � -bit integer (which, of course, is not always the case) when processing the last two limbs
 ⟨��−1⟩  ⟨��−1⟩  ⟨�⟩  with a carry bit � , handling the case when ��−1 + ��−1 + � ≥ � is
unnecessary.

Figure 7. Adding two integers assuming with no overflow
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Figure 8. Doubling the limb with carry bit

Doubling. The doubling is performed similarly to addition, but we can avoid making the OP_ZIP
operation and simply duplicate the last limb in the stack at each step. In this particular case, we
need an additional opcode OP_LIMB_DOUBLING_STEP, which takes  ⟨�⟩  ⟨�⟩  ⟨�⟩  – limb,
base, and carry bit, and outputs  ⟨�⟩  ⟨�'⟩  ⟨�⟩  – base, new carry bit �' , and � = 2� + � . The
implementation is specified in Figure 8. Additionally, we need the same version, but without �,
which is executed at the beginning of the doubling, which we call
OP_LIMB_DOUBLING_INITIAL. The corresponding implementation is specified in Figure 9.
Now, all we are left to do is perform the algorithm similar to algorithm in Figure 7, but with
small optimizations, accounting for the fact that we do not need OP_ZIP. The implementation is
specified in Figure 10.

Figure 9. Doubling the limb without the carry bit
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Figure 10. Doubling the integer without overflowing

3.3. Binary Multiplication

Now comes the most interesting part: we will use methods from elliptic curve scalar
multiplication to implement the product of two integers. Indeed: in algorithm in Figure 2 and
algorithm in Figure 3 we might easily change �(��) to any other set, equipped with the addition
operation (for example, any abelian group). In our particular case, when implementing � × �, we
will interpret the � as a scalar, while � as an element to be added/doubled. So let us implement
the algorithm 2 in Bitcoin Script first. Note the following: although our initial number is �-bit,
we expect the product � × � to be 2�-bit, so in the intermediate steps, when performing additions
and doublings, we should account for the fact that they can easily overflow � bits. The
straightforward workaround is simply performing operations over the extended big integer of size
2�. This is, of course, not the best approach, and we will revisit it in 3.5later on.
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Figure 11. Double-and-add integer multiplication

Since currently we have multiple various integers to work with, we will use notation
BigInt<�>::{OPCODE} to denote calling the OPCODE of an � -bit big integer. So, calling
BigInt<2�>::{OPCODE} would call the OPCODE of a 2� -bit integer. Additionally, assume
OP_PICK, OP_ROLL and OP_DROP are implemented for integers of arbitrary bitlength. These
methods are relatively trivial compared to OP_ADD and OP_2MUL, considered before: all one
needs to do is to operate with integers “limbwise”.

So the implementation of algorithm 2 in Bitcoin Script is specified in Figure 11. As can be seen,
the cost (in opcodes) of conducting the double-and-add algorithm is �� + (� − 1)� . Note that
when analyzing the cost in 2.2, we specified the maximal number of additions that get performed,
but here the situation is different: the number of additions is exactly �, despite the fact that the
OP_IF branch might be executed only a few times.

This is the primary reason why NAF methods did not significantly boost our performance:
although additions might be called fewer times, we still need to include the logic in the script for
each loop iteration. Therefore, we are interested in reducing the number of places where we need
to place addition operations, not the number of times they get executed.
3.4. Windowed Multiplication

Now, let us implement the windowed method from algorithm in Figure 3. Again, similarly to
how it was done in 3.3, we conduct the following steps:

1. Decompose � to the width-� form using opcode from algorithm in Figure 5.
2. Push the resultant decomposition to the altstack. Call first and second steps as

T::OP_TOBEWINDOWEDFORM_TOALTSTACK.
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3. Extend � to be 2�-bit by appending zero limbs.
4. Precompute lookup table {0, �, 2�, 3�, …, (2� − 1)�}.
5. Conduct the rest as described in algorithm 3, assuming that additions and doublings

never overflow (all intermediate are less than ��, which is a 2�-bit number at worst).

Steps 1-3 were already covered in our discussion, so let us discuss our strategy for implementing
the lookup table. It looks as follows:

1. Push 0 and � to the stack.
2. On each step if we need to calculate 2� × �, simply BigInt<2�>::OP_PICK the element

� × � and double it using  BigInt<2�>::OP_DUP  BigInt<2�>::OP_ADD  .
3. If, instead, we need to calculate (2� + 1) × � , copy the last element in the stack via

BigInt< 2� >::OP_DUP (which is 2� × � ), then copy � and add them together via
OP_ADD.

The aforementioned strategy, as discussed before, costs (2�−1 − 1)� and (2�−1 − 1)� , which
reduces to 7� and 7� for � = 4. Let us further encapsulate the logic of pushing {0�, 1�, …, (2� −
1)�} to the stack as BigInt<2�>::OP_INITWINDOWEDTABLE(�).
Now we are ready to define the algorithm itself: see Figure 12.

Figure 12. Windowed integer multiplication
3.5. Gradual Bitsize Increase
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Finally, notice that extending an integer from � bits to 2� bits from the very beginning is not
optimal. For example, consider the first iteration of a loop in the windowed integer multiplication,
where we multiply by 2� and then add the precomputed value. Notice that if we begin from the
256-bit number, for instance, multiplying by 16 and adding the 256-bit number would result in
the 261-bit number maximum (in fact, 260-bit number, as we will see later). Similarly, when
conducting the next iteration, we would not exceed 264 bits and so on. This motivates us to
handle the size dynamically: when � limbs are insufficient to conduct the operations without
overflowing, we push the zero limb (to extend an integer to � + 1 limbs) and conduct the rest as
usual. This would save tons of opcodes, as the number of useless additions of zero limbs is
considerable.

Now, let us consider the following theorem.

Theorem 2. Suppose that algorithm 12 is conducted using two �-bit integers, the window size of
� with � = ⌈�/�⌉ limbs. For each �th step, it suffices to extend the temporary variable � to � +
�� bits, resulting in ⌈(� + ��)/�⌉ limbs for � = 2� − �(� − 1).

Proof. Let us examine the first step. We decompose � to the width-� form, resulting in � =

�=0
�−1 ��� 2�� , where each 0 ≤ �� < 2� . Next, we initialize the lookup table, which involves

calculating {0, �, 2�, …, (2� − 1)�}. Finally, we initialize the temporary variable � ← 0 and set it
to the value ��−1� (since multiplication by 2� would leave � = 0 unchanged).

Now, � is � bits in size. An interesting question is the size of ��−1 in bits. Recall that � =
��−12�(�−1) + ��−22�(�−2) + … + �0 is an �-bit number which means that ��−12�(�−1) should
also be � bits. If the size of ��−1 in bits is �, then the size of ��−12�(�−1) is � + �(� − 1) which
is � maximum. Meaning, � ≤ � − �(� − 1) = (� + �) − ��.

All in all, we conclude that the size of � in the beginning (call it �) is 2� − �(� − 1) . Then,
suppose that we are at step � with a value ��. In this case,

��+1 = 2��� + ��−��,  �0 = ��−1�

This is a recurrence relation which is quite tough to solve generically as ��−� term is different for
each step. For that reason, assume the worst case: suppose ��−� = 2� − 1 for each � > 1 and
consider the recurrence relation

��+1 = 2��� + (2� − 1)�,  �0 = �0 = ��−1�

In this case, �� < �� for each � > 1, so �� is our upper bound. Now, this is an equation of form
��+1 = ��� + �, which has a closed solution �� = ���0 + ��−1

�−1
�, so we get

�� = 2���0 + (2�� − 1)�

Notice that 2���0 has a bitsize of �� + � , while (2� − 1)� is � + � bits in size. Notice this
addition always results in the integer of bitsize �� + �. Indeed:

�� < 2��(2� − 1) + (2�� − 1)(2� − 1) < 2��+� + 2��+� < 2��+�+1,
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so �� fits in � + �� bits. Thus, as �� < ��, �� also fits in � + �� bits, concluding the proof.∎
With theorem 2 in hand, we are ready to optimize the algorithm in Figure 12 by introducingthe
algorithm in Figure 13.

Figure 13. Windowed integer multiplication with gradual bitsize increase

4. DISCUSSION

4.1. WindowWidth Choice

One of our key claims is that the width parameter � = 4 provides the best performance. which is
a common choice in the elliptic curve arithmetic literature [27]. Let usinformally see why we use
this particular value. Note that for BN254 we have � = 254 ,so the algorithm in Figure12
requires approximately 2� + 254/� addition operations accordingto Section 2.2: the first 2�
additions initialize the lookup table, while the latter number254/� corresponds to the number of
additions in the loop. Notice that although increasing � results in a smaller number of addition
operations, it exponentially increases the cost ofinitializing the lookup table: so we do not expect
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� to be significantly larger than∼6–7. The simple substitutions � ∈ {1, . . . , 6}shows that � = 4
indeed provides the best cost.

Now, we rigorously justify this claim. For that reason, we provide the following theorem.

Theorem 3.Suppose that algorithm in Figure12 is performed over two � -bit integers, and the
cost of the addition of 2�-bit integers is �� ∈ ℕ and the cost of doubling is �� ∈ ℕ . Then, the
optimal width parameter � is approximately �� ∈ ℝ, where �� satisfies:

��22�� =
2�

log2 ⋅
��

�� + ��

In particular, if�� ≈ ��, then this reduces to ��22�� = �/log2.

Remark 1. To simplify the analysis, we consider the algorithm 12, which operates over extended
integers. The analysis for optimized version algorithm 13 would be ideologically similar but quite
cumbersome, so let us stick to the simpler version.

Proof. The total cost � of width-� multiplication is, as mentioned in 2.2 is approximately
(without accounting for operations not depending on the chosen � ) given by the following
formula:

�(�) = 2�−1(�� + ��) +
���

� + ���

Therefore, it suffices to apply a simple calculus to find the optimal value of � . If �� ∈ ℝ is the
optimal width, it should satisfy �'(��) = 0 which gives us:

�'(�) = (�� + ��)2�−1log2 −
���

�2 ⟹ ��22�� =
2�

log2
⋅

��

�� + ��

To see why this gives a minimum, compute the second derivative:

�″(�) = (�� + ��)2�−1log22 +
2���

�3 ,

which is positive for any � > 0 (which is the case). The relation ��22�� = �/���2 follows
immediately after substituting �� = ��.∎

So, now, let us substitute values corresponding to our implementation. We use � = 254, and the
cost of the addition is 363 bytes (so we set �� : =: =: = 363), while doubling takes 245 bytes (thus we
set �� : =: =: = 245). Thus, approximately, ��22�� ≈ 437.5 , yielding �� ≈ 4.45 . After checking both
� = 4 and � = 5, we conclude that � = 4 isthe optimal choice.

Out of curiosity, we plot the dependence �(�) for different �’s and �’s. The result is depicted in
Figure 14. Interestingly, for larger integers (in particular, for � = 512 or � = 1024 ), � = 4
most likely would no longer be the optimal choice.
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Figure 14. Dependence of multiplication cost ��(�) on the window size � for various integer bit-sizes (�).
We plotted the dependence for four integers: 128 bits, 256 bits, 512 bits, 1024 bits. The dashed line in

blue is most closely related to our case (� = 254). Here, we assumed that ��/�� ≈ 0.675, corresponding
to our multiplication.

4.2. Performance Comparison

Now, we compare our multiplication implementation with the state-of-the-art approaches
currently used.

1. BitVM “Overflow” Multiplication: BitVM provides the default library to operate with big
integers (therefore, called bigint) that implements the mul operation. The catch is that,
based on two �-bit integers, this function also returns a �-bit integer, reduced modulo 2�

(essentially, the lower limb in 2�-bit integer representation �0 + �1 × 2�) — we call this
“overflow multiplication”. Therefore, for comparison, we adapted algorithm 12 to have
the same functionality, and also tweaked the BitVM’s implementation to give the 2�-bit
integer as the result.

2. Cmpeq’s Implementation: Quite recently, on Bitcoin Forum, cmpeq claimed to have
roughly 100k opcodes in his multiplication of two 255-bit integers. The result is a 510-
bit integer, compared to bigint multiplication from BitVM. Although it was claimed to
have roughly 100k opcodes, after uploading the script, it appears that the real number of
opcodes is, in fact, 200k. This probably happens because pushing a single integer to the
stack does not always cost one opcode. For example, pushing 103 costs 3 opcodes while
105 costs 4.

3. BitVM 29 × 9 Karatsuba Multiplication: This is the most recent version that BitVM
mostly relies on that uses the Karatsuba multiplication (see 2.2.1) with (� = 29, � = 9)
to represent a 254-bit integer.

The comparison results are depicted in Table 1.

Table 1. Comparison of our multiplication implementation with the current state-of-the-art. N/A means
“non-applicable”: that is, the algorithm is not adapted to the corresponding type of task.

Approach Overflowing Multiplication Widening Multiplication
Cmpeq N/A 201879
BitVM bigint 106026 200334
BitVM Karatsuba N/A 74907
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Our �-width method 55710 71757
Most likely, our current version is not best-optimized. In particular, we list what can help to
possibly reduce the number of opcodes even further:

1. Small polishes in gadgets used underneath (extending big integers to handle larger limbs,
more effective addition or doubling, etc.).

2. We have not achieved any boost using NAF methods, but that does not mean these
methods are not applicable: it is curious whether something can be achieved with them.
In particular, �-NAF form might possibly decrease the number of additions from �

�
to

�
�+1

and the cost of precomputing values. On the other hand, this would require
implementing subtraction and sign handling, which might be troublesome.

3. Using different bases: we achieved the best results using 30-bit limbs to represent an
integer, but maybe smaller limbs might result in something more effective.

4.3. Limitations

Although our implementation greatly optimizes the fundamental mathematical block inzk-
SNARKs — big integer arithmetic, to achieve practicality (such as launching L2 ontop of
Bitcoin), much more research on the Bitcoin-based zk-SNARK scheme is needed. Indeed,
although with our approach one needs only∼74.9k opcodes for a single multiplication, this is
typically done hundreds of times when launching more complex structures suchas bilinear pairing.
This is exactly what BitVM2 [29] and recently publishedBitVM3 [30] try to achieve. We believe
that our implementation will serve as the fundamental way to optimize native big integer
arithmetic in subsequent protocol implementations (not limited to BitVM), but it cannot solve the
aforementioned issue exclusively.

5. CONCLUSIONS

This paper introduced an innovative approach to performing big integer arithmetic within Bitcoin
Script using the �-windowed method for multiplying 254-bit integers. Inspired by Elliptic Curve
optimization techniques, our method reduces the BitVM’s script size needed for multiplication,
reducing approximately 3.2k opcodes. Moreover, we believe the applied approach opens the door
to other optimizations involving multiple integer multiplication or fixed integer multiplication,
which are frequently used in the realm of Elliptic Curves arithmetic.

Our findings enable more efficient complex arithmetic operations. This advancement opens new
possibilities for integrating advanced cryptographic protocols (and, in particular, L2 zk-rollup)
within the Bitcoin ecosystem. For those interested in the technical details, our implementation
code is available on GitHub through the provided link (see 1.1).
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