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Abstract. Modern Arabic ASR systems such as wav2vec 2.0 excel at word- and sentence-level transcrip-
tion, yet struggle to classify isolated letters. In this study, we show that this phoneme-level task, crucial
for language learning, speech therapy, and phonetic research, is challenging because isolated letters lack
co-articulatory cues, provide no lexical context, and last only a few hundred milliseconds. Recogniser sys-
tems must therefore rely solely on variable acoustic cues, a difficulty heightened by Arabic’s emphatic
(pharyngealized) consonants and other sounds with no close analogues in many languages. This study
introduces a diverse, diacritised corpus of isolated Arabic letters and demonstrate that state-of-the-art
wav2vec 2.0 models achieve only 35 % accuracy on it. Training a lightweight neural network on wav2vec
embeddings raises performance to 65 %. However, adding a small amplitude perturbation (¢ = 0.05) cuts
accuracy to 32 %. To restore robustness, we apply adversarial training, limiting the noisy-speech drop to 9
% while preserving clean-speech accuracy. We detail the corpus, training pipeline, and evaluation protocol,
and release, on-demand, data and code for reproducibility. Finally, we outline future work extending these
methods to word- and sentence-level frameworks, where precise letter pronunciation remains critical.
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1 Introduction

Accurately recognizing the pronunciation of isolated Arabic letters is a challenging task
in speech recognition, compounded by the rich phonetic characteristics of Arabic and the
variability introduced by different speakers. Arabic features a diverse set of phonemes,
including several emphatic (pharyngealized) consonants and other sounds with no direct
equivalent in many languages. These subtle phonetic distinctions can be difficult for auto-
matic systems to capture, especially when presented with a single spoken letter devoid of
any surrounding context. As a learning task, for non-native speakers, the challenge is even
greater: many Arabic sounds (e.g., the pharyngeal ’ayn or the emphatic s) are unfamiliar
and often conflated with more common sounds, leading to mispronunciations. An isolated
letter offers no lexical or syntactic context to aid recognition, so the system must rely en-
tirely on acoustic cues that may vary widely across speakers and recording conditions. This
lack of context, combined with inter-speaker variability and L2 pronunciation errors, makes
high-accuracy classification of spoken Arabic letters a non-trivial problem. Indeed, even
though Arabic is one of the most widely spoken languages globally, it remains relatively
under-resourced in speech technology research, and fine-grained tasks like phoneme-level
recognition pose significant hurdles [I]. State-of-the-art speech recognition models such as
wav2vec 2.0 [2] have demonstrated impressive performance on word-level and sentence-
level speech tasks by leveraging self-supervised learning on large corpora. However, these
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models are typically optimized for continuous speech and may not be directly adequate
for isolated letter/phoneme classification. wav2vec 2.0’s powerful transformer-based ar-
chitecture learns contextualized representations from long audio sequences; as a result, it
expects and exploits surrounding context to aid recognition.

In this paper, we are concerned with the problem of automatically classifying and scor-
ing phoneme-level tasks, where each input is an extremely short utterance (often a single
consonant or vowel sound), the lack of context can lead to suboptimal feature represen-
tations and confusion between acoustically similar letters. Recent studies have noted that
applying wav2vec 2.0 to phonetic classification requires careful adaptation for example,
providing additional padding or context around a target phoneme to achieve reasonable
accuracy [3]. This indicates that a vanilla wav2vec 2.0 model, if used without modifica-
tion, might struggle to distinguish certain Arabic phonemes in isolation. In essence, models
trained and tuned on high-level speech units do not inherently capture the fine-grained ar-
ticulatory nuances needed for reliable letter-level recognition. This gap calls for dedicated
approaches that bridge the difference in granularity, ensuring that each Arabic sound can
be recognized on its own, even when spoken by learners with imperfect pronunciation.

Motivation. Beyond the technical difficulty, the ability to correctly classify and score
spoken Arabic letters has broad significance in several domains. In language learning
and Computer-Assisted Pronunciation Training (CAPT), providing feedback on individual
phoneme pronunciation is crucial for helping students master a second language. Arabic,
in particular, is learned by millions of non-native speakers worldwide for both communica-
tive and religious reasons [4]. Precise automatic evaluation of a learner’s pronunciation at
the phoneme level can enable personalized feedback detecting which specific Arabic letters
a learner struggles with (e.g., distinguishing ha’ from ha’) and guiding them on how to
improve. This is especially important because Arabic is a phonetic language where pronun-
ciation errors at the letter level can propagate to word-level misunderstandings. Similarly,
in both news broadcasting and clinical speech therapy contexts, training often begins with
isolated sounds or letters whether to help reporters refine articulation or to support chil-
dren with speech sound disorders before progressing to full words and sentences. Another
critical domain is Quranic recitation and Tajweed, where correct pronunciation of each
letter is mandated. Tajweed rules require delivering every letter of the Quran with its due
articulation characteristics; even slight deviations in pronouncing a letter (for instance,
not properly emitting the deep qaf or the throaty ha’) are considered errors that can alter
meanings or reduce the recitation’s correctness.

Related work. There has been some prior work aimed at Arabic phoneme and letter
classification, but it remains relatively limited, and several gaps persist. Early approaches
to Arabic phoneme recognition often relied on traditional machine learning and acoustic
features, achieving only modest success on restricted phoneme sets. More recently, re-
searchers have started to apply deep learning to this problem. For example, Almekhlafi et
al. (2022) introduced a dedicated Arabic Alphabet Phonetics Dataset (AAPD) and trained
various deep neural network models for isolated letter classification [I]. Their benchmark
systems, using features like Mel-frequency cepstral coefficients (MFCCs) and architec-
tures ranging from simple DNNs to CNNs (including a VGG-based model), reported high
classification accuracy (on the order of 95% for clean, native-speaker audio). This work
demonstrates the feasibility of Arabic letter classification with deep learning, and provides
a strong baseline. However, there are notable limitations. Many existing studies, including
AAPD, focus primarily on data from native speakers or well-articulated audio; they may
not fully capture the variability and accented pronunciations introduced by non-native
learners. Moreover, these models are typically evaluated in ideal conditions, and their re-
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liability can degrade in more realistic settings with noise, reverberation, or speaker accent
shifts.

Crucially, previous works have generally not addressed the robustness of Arabic phoneme
classifiers i.e., how stable the predictions are when the input speech is slightly perturbed
or when facing deliberate attempts to confuse the model. There is also a lack of explo-
ration into integrating modern self-supervised speech models (like wav2vec) specifically for
letter-level recognition prior successes in Arabic ASR mostly pertain to word or sentence
recognition, or to detecting pronunciation errors within spoken phrases [4]. This leaves a
gap in understanding how well advanced ASR networks perform on minimal speech units,
and whether additional techniques are needed to make them effective in that regime. It
has been shown that perturbations in an audio signal can cause even state-of-the-art ASR
systems to produce incorrect outputs or transcriptions [5]. Robustness to perturbations
is crucial; models deployed in real-world scenarios, must handle background noise, mi-
crophone variation, and other distortions without confusion. A common method to guar-
antee robustness against multiple types of noise, is adversarial training. Recent surveys
and studies highlight the vulnerabilities of current ASR models and exploring defenses to
harden them against perturbations [6]. These techniques have been well investigated to
improve resilience of ASR models, but remain under-explored in analyzing the robustness
of phoneme-level classifiers.

Outline. In this paper, we first construct a new dataset of spoken Arabic letters,
collected from a diverse pool of speakers including both native Arabic speakers and non-
native learners. We acquired a carefully curated corpus of isolated letter recordings. The
data was collected, via a specially designed mobile and web app, from geographically
diverse, gender- and age-balanced speakers; performed expert-level annotation to establish
a high-fidelity ground truth. This dataset encompasses the diacritized Arabic consonant
phonemes pronounced in isolation, providing a broad coverage of accents and pronunciation
qualities.

Using this resource, we evaluate the performances of the state-of-the-art ASR model
(wav2vec 2.0) on this dataset in the context of Arabic letter-level classification. Our
analysis, showed poor results of the state-of-the-art model. We then fine-tune a neural
network on this dataset and show that it highly outperformed the (wav2vec 2.0)model.
Furthermore, a core component of our work is a thorough stability analysis of the resulting
models. We subject the classifiers to a range of perturbations to probe their robustness.
This includes infusing the dataset with perturbations of various amplitudes, the latter
modelling synthetic noise, minor time/frequency distortions, and generating adversarial
examples that attempt to confuse the model into misclassification. By evaluating model
performance under these conditions, we can identify specific vulnerabilities (e.g., particular
letters that are easily mistaken for others under noise) and gauge improvements from any
defense techniques we incorporate (such as adversarial training or data augmentation).
The introduction of adversarial testing in the context of Arabic phoneme classification is,
to our knowledge, a novel aspect of this work, shining light on an often-neglected dimension
of model performance.

2 Data collection

We begin by describing the collection and filtering of isolated Arabic letter recordings,
followed by the processing steps used to prepare the data for model training.
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2.1 Data acquisition

Obtaining high-quality data for Arabic speech research presents multiple challenges. First,
geographic dispersion of native speakers makes it difficult to gather consistent recordings,
especially when aiming for balanced representation across regions, age groups, and genders.
Second, annotation is particularly challenging due to the absence of reliable phonetic
aligners for Arabic and the limitations of existing transcription models. Accurate labeling
requires reference to a consistent pronunciation standard, which is not readily available.
To overcome these barriers, we developed a web-based and a mobile based application to
facilitate data acquisition and storage.

— Web application: larabic-pronunciation.abudhabi.nyu.edu
— Mobile application: |Arabic Pronunciation Android app on Google Play

Figure [1] illustrates the graphical user interface of the mobile application which is sim-
ilar to the web application. The user chooses a pronunciation model that is a syllabus
comprising an Arabic consonant followed by a vowel, making each datapoint a diacritized
letter. Each recording is labelled as [ = (A, D) such that A is one of the Arabic letters
and D is one of the four diactrics: "fatha” /a/, "kasra” /i/, ”damma” /u/, and ”sokoon”
(absence of any vowel). The total number of classes is therefore 112. The user records
his pronunciation, reviews his recording, and then chooses to either submit or discard his
contribution. Additionally, meta-data related to the speaker (gender, age, nativeness, con-
tinent) are also collected. In its current state, the “Horouf” (“Letters” in Arabic) dataset
has a total number of approximately ten thousand recordings. The data is anonymous and
safely stored on NYU Abu Dhabi secure servers. Arabic speakers are welcome to contribute
to the dataset.

" Arabit iatio
Arabic pronunciation app EBblC e oow

Fig. 1. An android mobile app and a web app are developped to facilitate data acquisition of the “Horouf”
dataset, a model of each pronunciation is proposed for the user to follow before recording and submitting
their pronunciation.

2.2 Pre-processing steps

In this section we detail the pre-processing steps of the collected audio samples. Even
though the user chooses the class before submitting his recording, the data is carefully
annotated by linguistic experts and checked against the class to ensure phonetic accuracy
and consistency, this step is the most lengthy and costly one. We perform the following
processing steps:
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— Remove beginning and end silences. Silence detection is done by weighing the average
signal energy measurement against a small threshold, followed by a manual verification.

— Manual labeling and cleaning of the data by Arabic language experts, any inaccu-
rate pronunciation or non-conforming example to the provided model is discarded.
On average, 11% of the data was rejected either due to high noise levels or improper
pronunciation.

— Prior to being used for training, the data is split 80% as training data and 20% as test
data.

— The 80 % (around 8K samples) were augmented using the following techniques: Gaus-
sian white noise, Random pitch shift, Random time-stretch and circular time shift.
The final number of samples after augmentation reaches 30K samples.

2.3 Embedding of the raw audio files

Pre-training the raw waveform with wav2vec 2.0 provides a powerful sequence of contex-
tualized feature vectors. In our pipeline, we feed each 16kHz signal into the publicly
released wav2vec2-large -XLSR-53-Arabic [7] checkpoint, which is built on a 1024-
dimensional Transformer encoder trained in a self-supervised fashion on 53 languages.
The model returns a matrix H € R7*1024 whose rows correspond to 20 ms speech frames,
with T" the duration of the utterance and h; the embedding vector at time ¢t. We convert
this variable-length matrix into a fixed-length utterance embedding vector e by taking the
arithmetic mean over the time axis:

1T
e= — h;,
T;t

yielding a single 1024-dimensional vector per file. Temporal mean-pooling is a simple
yet effective aggregation strategy used in various speech tasks to produce utterance-level
representations [8/9], preserving phonetic content while discarding timing variability and
noise. Despite the incredibly short duration of the collected audio data from “Horouf”,
the resulting embeddings inherit the multilingual phonetic knowledge encoded by wav2vec
2.0 [210], making them well suited for downstream classification of isolated Arabic letters.
The computed vectors are now used as input for all sequel operations described in the next
sections.

3 Transcription and data classification

First we shed light on the identified gap in state of the art. The state of the art transcrip-
tion model on the Arabic language (named ”wav2vec2-large-xlsr-53-arabic”) had a 37%
accuracy on our dataset to recognize the diacritized letters. As the transcription model
could indicate multiple correct transcriptions of the same pronunciation, we performed the
scoring of the model manually by Arabic language experts. The experts were instructed
to be very generous while scoring the model: if the consonant part of the pronunciation is
correct followed by the correct diacritic (“damma”, “fatha” or “kasra”, regardless whether
or not a “madd” (elongation) exists, the model transcription is graded as correct, and it
is graded incorrect in all other situations.

To establish a baseline for classification, we trained on “Horouf” training data, a simple
multilayer perceptron (MLP) neural network using PyTorch. We intentionally chose a
lightweight, easily-reproducible MLP to serve as a lower-bound reference and to isolate the
contribution of the Wav2Vec embedding. The architecture consists of three fully connected
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layers: the input layer projects to 256 hidden units, followed by a ReLLU activation and
a dropout layer with a 0.3 rate to reduce overfitting. This is followed by another hidden
layer of 128 units, again using ReLU and dropout, and finally a linear output layer that
maps to the number of target classes. The model was trained using the Adam optimizer
with a learning rate of le-3, and cross-entropy loss was used as the training objective.
Figure [2| shows an accuracy of 76.6% on validation and 66% on test data obtained after
9 epochs. Figure [3] shows the class-wise accuracy of the MLP classifier on the train set.
Figure [4 shows a class-wise comparison of the prediction accuracy on the test set between
the trained MLP classifier and wav2vec 2.0 XLSR-53. The average over classes yields an
accuracy of 67.84 % for the MLP classifier. Although the number of samples is the same
for all classes during train and test, notice that there is an imbalance in the prediction
accuracy, showing that, based on the “Horouf” dataset, at phoneme-level, some letters are
much harder to predict correctly than others and could require more samples for those
specific classes.

175 Accuracy of validation vs. test across training epochs

—— Validation accuracy
75.0 1 —— Test accuracy

72,5

£ 700

z

2675

3

£ 65.01
62.5 1
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Fig. 2. Accuracy of validation vs. test data from “Horouf” of a classical multilayer perceptron (MLP)
neural network over 9 epochs. State-of-the-art model showed 37% accuracy on the test data.
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Fig. 3. Percentage of correct predictions on train set for all 112 classes of diacritized Arabic letters pro-
nunciation.

The goal of building the classifier was only to serve as a baseline, but not as a practically
used classifier model. The obtained accuracy is high, indicating that the data is of good
quality. The MNIST [I1I] dataset, considered as a high-quality benchmark in computer
vision, with just 10 classes, has a total of 70k samples of digits (0 to 9). The “Horouf”
dataset, in its current form, is therefore considered small to be fit for building a classifier



Computer Science & Information Technology (CS & IT) 29

Class-wise accuracy on test set (percentage)
80

2 60
>
2
40
20 ‘ ‘
0 + ‘ ‘ y
5 65

Fig. 4. Correct predictions on test set for all 112 classes for a trained classical MLP and state-of-the-art
for “wav2vec2-large-xlsr-53-arabic”.
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from scratch. Practically speaking, “Horouf” can help optimise state-of-the-art models
to close the gap in Arabic phoneme-level pronunciation detection and classification. For
this end, we fine-tuned “wav2vec2-large-xlsr-53-arabic” using “Horouf”. The fine tuning
showed an increase in accuracy on the train data reaching 82 % on the validation set and
65 % on the test data.

4 Stability analysis and robust training

Motivation. In this section, we analyze the stability and robustness of a classifier trained
on the “Horouf” Arabic letter pronunciation dataset, focusing on its performance un-
der adversarial perturbations. Classically trained neural networks are often vulnerable to
small changes in the input data, which can lead to significant drops in accuracy. Our goal
is to develop a model that remains resilient to such perturbations, including variations
in translation, speed, and noise. To this end, we adopt an adversarial training strategy
based on Projected Gradient Descent (PGD) [12] a widely used and powerful method for
generating adversarial examples in deep neural networks. PGD is applied during training
to expose the model to worst-case perturbations within an e-ball, improving its robustness
to perturbations. We evaluate the model accuracy before and after PGD-based adversarial
perturbations and find that our approach significantly enhances the classifier’s stability
and resistance to input-level distortions. Robustness is particularly critical in audio-level
letter recognition because real-world pronunciation varies in ways that are hard to capture
with clean, studio-quality recordings. Speakers naturally change speaking rate (e.g., rapid
conversational speech vs. slow, deliberate articulation), introduce prosodic shifts such as
emphasis or lengthening, and exhibit subtle co-articulation effects when a target letter is
embedded in different phonetic contexts. In addition, recordings collected “in the wild” are
subject to channel distortions (microphone mismatch, room reverberation), environmental
noise (traffic, background voices), and even mobile-phone post-processing (automatic gain
control, compression). Each of these factors can be modeled as a small but potentially
adversarial perturbation in the input waveform that pushes the classifier away from the
decision boundary learned during standard training. Training with PGD-generated per-
turbations that mimic time-stretching, pitch-shifting, and additive noise within an e-ball,
we force the network to learn representations that are invariant to realistic variations in
speed, pitch, and recording conditions. This yields models that not only resist white-box
adversarial perturbations but also maintain consistently high accuracy across speakers, de-
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vices, and acoustic environments an outcome that is essential for dependable deployment
in language-learning apps, assistive speech tools, and low-resource field recordings.

Adversarial training. Adversarial training [I2] can be formulated as a min-max
optimization problem that aims to improve the robustness of a neural network. Given a
model parameterized by 6, a dataset of input-label pairs (x,y), and a perturbation budget
€, adversarial training seeks to find model parameters that minimize the worst-case loss
within an e-ball around each data point. Formally, the objective is

mein E(3,y)~D |I|16r1H3L§x6 L(fo(x +0),y)

where ¢ is the adversarial perturbation constrained by ||d|| < €, and £ denotes the
loss function, such as the cross-entropy loss. The inner maximization problem corresponds
to generating adversarial examples that fool the model, while the outer minimization
encourages the model to correctly classify these adversarial examples, thereby enhancing its
robustness against potential perturbations. The same MLP model is adversarially trained,
reaching 67.5% validation accuracy and 58.96 % test accuracy. It is well established that
adversarially trained models, while more robust to perturbations, typically exhibit lower
average test accuracy than the same architectures trained with standard (non-adversarial)
procedures.

Projected Gradient Descent. The Projected Gradient Descent (PGD) perturbation
is a widely used method for generating adversarial examples that exploit the vulnerabilities
of neural networks. PGD is widely acknowledged as the strongest first-order adversarial
perturbation. Hence, a model that remains accurate under PGD perturbations is conven-
tionally considered robust to all other gradient-based (and therefore weaker) adversarial
perturbations. Starting from an initial perturbation, typically a random point within an
e-ball around the input z, the PGD perturbation iteratively updates the adversarial ex-
ample by taking gradient steps to maximize the loss function. Formally, at each iteration
t, the adversarial perturbation ¢; is updated as

Ot41 = Hj5<c (6 + o - sign (Vo L(fo(z + 0t),y)))

where a denotes the step size, £ is the loss function, and I1|5<, represents the projection
operator that ensures § remains within the e-ball. After multiple iterations, PGD generates
adversarial examples that are often more effective than single-step perturbations such as
FGSM [13], thus serving as a powerful tool for evaluating and improving the robustness
of machine learning models.

Results. Figure [5| presents the classification accuracy of the adversarially trained
(robust) model versus the vanilla (non-robust) model under Projected Gradient Descent
(PGD) attacks of increasing strength. Across all perturbation levels, the robust model
shows only a modest decline in accuracy, whereas the non-robust model degrades rapidly as
the perturbation amplitude grows. We should observe the same pattern under alternative
perturbation schemes, reinforcing the common finding that robustness to PGD tends to
generalize to a broad range of perturbations.

5 Discussion, segmentation and word-level classification

Current end-to-end transcription models are ill-suited to letter-level pronunciation assess-
ment; they treat words such as “abi” (“father”) and the near-homophone “api” as indis-
tinguishable because both share a similar acoustic envelope, even though the /b/—/p/
substitution is a common error among non-native speakers. As a result, these systems fail
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100% Accuracy of robust and non-robust MLP classifier for different perturbation intensity of a PGD attack
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Fig. 5. Accuracy comparison between an MLP classifier trained on “Horouf” and an adversarially trained
classifier having the same architecture, for Projected Gradient Descent (PGD) perturbations with different
intensities.

to deliver per-phoneme feedback and cannot be used to grade articulation quality. To close
this gap, we aim to leverage existing Arabic grapheme-level segmenters, well documented
in the literature, to partition each diacritized word into its constituent letters (e.g., “abi”
— a — bi). We then aim to couple the segmenter with a dedicated letter-based classifier
that outputs a confidence score for every segment and an aggregate score for the entire
utterance. Extending the segmenter’s pipeline to propagate these letter-specific scores, the
combined system would deliver fine-grained feedback that enables language learners, to
pinpoint and remediate individual misarticulations. Our future work will focus on refin-
ing this integration across continuous speech, thereby bringing robust letter-level scoring
into word- and sentence-level evaluation frameworks without losing the nuanced phonetic
distinctions vital to accurate Arabic pronunciation.

6 Conclusion

This study supports closing a critical gap in Arabic speech technology: the reliable recogni-
tion of isolated letter pronunciations. We showed that state-of-the-art wav2vec 2.0 mod-
els, while excellent at word- and sentence-level transcription, falter on single-phoneme
classification, a weakness that undermines applications in language learning, speech ther-
apy, and phonetic research. To address this, we acquired a carefully curated corpus of
isolated letter recordings. The data was collected, via a specially designed mobile and web
app, from geographically diverse, gender- and age-balanced speakers; performed expert-
level annotation to establish a high-fidelity ground truth. We fine-tuned wav2vec 2.0 on
the dataset and a lightweight MLP baseline on this corpus, achieving substantial gains in
clean-audio accuracy; and integrated PGD-based adversarial training, boosting robustness
against realistic perturbations such as time-stretch, pitch-shift, and environmental noise.

Empirically, we showed that the adversarially trained model maintained high accuracy
under e-ball perturbations that cut the baseline’s performance by more than half, and it
sharply reduced confusions between phonetically similar letters (e.g., ha’ vs ha’, qaf vs kaf).
These results confirm that targeted data collection and robustness-oriented training are



32 Computer Science & Information Technology (CS & IT)

both necessary and sufficient to deliver dependable letter-level recognition in challenging,
real-world conditions.
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