Multi-label commit message classification
through p-tuning

Xia Li, Tanvi Mistry

The Department of Software Engineering and Game Design and
Development,
Kennesaw State University,
Marietta, USA

Abstract. Version control systems (VCS) play a crucial role by enabling developers to record
changes, revert to previous versions, and coordinate work across distributed teams. In version
control systems (e.g., GitHub), commit message serves as concise descriptions of code changes made
during development. In our study, we evaluate the performance of multi-label commit message
classification using p-tuning (learnable prompt templates) through three pre-trained models such
as BERT, RoBERTa and DistilBERT. The experimental results demonstrate that RoBERTa model
outperforms other two models in terms of the widely used evaluation metrics (e.g., achieving 81.99%
F1 score).

Keywords: Multi-label commit message classification, p-tuning, pre-trained models

1 Introduction

In modern software development, version control systems (VCS) play a crucial
role by enabling developers to record changes, revert to previous versions, and
coordinate work across distributed teams. By leveraging VCS, organizations can
ensure code integrity, streamline development workflows, and maintain a compre-
hensive history of code changes. Among the various VCS tools, Git has been widely
adopted due to its distributed nature, flexibility, and efficiency in handling large-
scale projects. GitHub!, built around Git, is one of the largest platforms for version
control and source code management, with a vast user base of over 50 million de-
velopers worldwide. GitHub serves as a central hub for open-source and enterprise-
level software development, facilitating collaboration among developers through
features like pull requests, issue tracking, and project management tools. One ben-
efit of GitHub is that it can provide robust APIs that grant access to extensive
code repositories, offering valuable insights into software development trends, best
practices, and industry-wide collaboration patterns.

In version control systems (e.g., GitHub), commit message serves as concise
descriptions of code changes made during development. These messages help devel-
opers understand the purpose of modifications, track feature updates, and diagnose

! https://github.com/

David C. Wyld et d. (Eds): NLMLT, SEAU, ITCS, CST — 2025 . .
pp. 81-88, 2025. CS& IT - CSCP 2025 DOI: 10.5121/csit.2025.151608

https://airccse.org/
https://airccse.org/csit/V15N16.html
https://doi.org/10.5121/csit.2025.161408

82 Computer Science & Information Technology (CS & IT)

issues efficiently. Well-structured commit messages facilitate seamless collaboration,
reduce debugging time, and contribute to better software maintenance. However,
developers often write commit messages in informal or inconsistent formats, mak-
ing it challenging to systematically analyze them. Accurate classification of commit
messages can provide valuable insights into software evolution, development pat-
terns, and code quality.

Many researchers utilize Natural Language Processing (NLP) and Neural Net-
works (NN) for commit message classification. For example, Mariano et al. [5] pro-
pose to use XGBoost to improve commit classification. Meng et al. [1] propose to
classify commit messages by capturing various syntactic and semantic relationships
between co-applied changes via convolutional neural networks (CNN). Recently,
pre-trained models (e.g., BERT [4], GPT [6]), which are trained on a large dataset
in advance, have been widely used for many downstream tasks in various Al fields
such as natural language processing (NLP) and computer vision (CV). Pre-trained
models are also applied into the field of software engineering. For example, Sarwar
et al. [2] present a multi-label commit message classification technique based on
bidirectional neural networks DistilIBERT [16] with transfer learning. Researchers
also combine the prompt engineering and pre-trained models by appending various
prompts after the input sequence and the target task is masked so that pre-trained
models can predict the masked label [8], showing more promising performance than
techniques with stand-alone pre-trained models. In this paper, we conduct an exten-
sive study to evaluate the performance of multi-label commit message classification
by applying p-tuning [10] which is a prompt-based approach on various pre-trained
models such as BERT [4], RoBERTa [9] and DistilBERT [16]. The intuition to use
p-tuning is that it can provide stable performance for classification tasks through
learnable and flexible templates [10]. In our study, we propose to convert the task
of multi-label commit message classification into several binary classification tasks,
based on the number of labels in the dataset. The results in our study demonstrate
that RoBERTa model outperforms other two models in terms of the widely used
evaluation metrics (e.g., achieving 81.99% F1 score).

The structure of the paper is as follows. In Section 2, we introduce various stud-
ies related to commit message classification. In Section 3, we introduce the studied
approach in our paper. In Section 4 and Section 5, we discuss our experimental de-
sign and results analysis, respectively. We discuss the threats to validity in Section
6 and conclude the paper in Section 7.

2 Related Work

In this section, we discuss related studies of commit message classification through
traditional machine learning/deep learning and pre-trained models.

Computer Science & Information Technology (CS & IT) 83
2.1 Commit classification via traditional learning techniques

Commit classification has been extensively explored using traditional machine learn-
ing as well as deep learning methods. For example, Santos. et al. [12] explored the
application of natural language processing (NLP) techniques to classify software
commits based solely on commit messages by applying traditional machine learn-
ing models such as Naive Bayes, Random Forests, and SVMs. Mariano et al. [5]
proposed to use XGBoost to improve commit classification. Meng et al. [1] proposed
to classify commit messages by capturing various syntactic and semantic relation-
ships between co-applied changes via convolutional neural networks (CNN). Wu et
al. [11] employed a BiLSTM model to identify security-related patches by model-
ing the structural dependencies in commits, significantly improving classification
performance.

2.2 Commit message classification via Pre-trained models

Inspired by the theory of transfer learning, researchers seek to apply powerful pre-
trained models into the filed of commit message classification. For example, Sarwar
et al. [2] presented a multi-label commit message classification technique based on
bidirectional neural networks DistilBERT [16] with transfer learning. Ghadhab et
al. [13] proposed to use BERT model for the classification of commits into three
categories of maintenance tasks by better understanding the context of each word in
the commit message. Hericko et al. [14] extracted semantic features from commits
based on modifications in the source code and used two BERT-based code mod-
els (CodeBERT and GraphCodeBERT) to improve commit message classification.
Zeng et al. [15] compared code changes at the hunk level, took fine-grained fea-
tures based on categories of changed files, and aggregated with the representation
of commit messages to improve the classification based on ChatGPT.

In this paper, we conduct an extensive study on the impact of multi-label com-
mit message classification by fine-tuning three pre-trained models (BERT, RoBERTa
and DistilBERT) and applying p-tuning, which is a popular prompt-based learning
technique by designing learnable templates that can be adapted into the models
for training.

3 Study Approach

Figure 1 shows the general process of our study. In following subsections, we demon-
strate the key approaches in our study including p-tuning (Section 3.1), data pre-
processing specifically for multi-label commit message classification (Section 3.2).

3.1 P-tuning

P-tuning [10] is a prompt-based learning technique that utilizes learnable contin-
uous prompts to guide pre-trained language models in various classification tasks.

/

84 Computer Science & Information Technology (CS & IT)
—

™~
G—-E BB

Commit message Prompt input Commit classification

111§
() ([(I

Model training

Data group creation

Fig. 1. Study process

It is inspired by an earlier technique called Pattern-Exploiting Training (PET)
[8]. Unlike traditional fine-tuning methods that use pre-trained models to con-
nect additional neural networks (e.g., RNNs or CNNs) for downstream tasks, the
two techniques add the classification target label directly into the original text as
a new prompt-style input. This approach strengthens the alignment between the
input and the prediction target, enabling pre-trained models to directly predict
masked tokens and improving the classification performance. The two techniques
have shown strong performance in general NLP domains and also the field of soft-
ware engineering [7]. However, PET only utilizes fixed prompts that are discrete
and sensitive resulting in unstable or inconsistent performance, highlighted in stud-
ies such as prompt engineering, where the performances of models like BERT and
GPT are significantly different with various prompt formulations. In comparison,
p-tuning uses flexible templates by inserting a varying number of learnable tokens,
either before or after the original text, serving as continuous prompts that can be
trained by pre-trained models. However, these tokens are semantically ambiguous,
making them harder for the model to learn effectively in isolation. In our study,
we concatenate learnable tokens with manually designed prompt phrases to pro-
vide both semantic guidance and adaptability. The template as the input of the
pre-trained models is as follows: [CLS][P][P][P]Commit Message Statement/SEP].
[CLS][P][P][P]This message is related to [MJ[SEP]. In the template, [P] represents
the learnable token while [M] is the masked token to represent the commit category
(e.g., corrective, adaptive or perfective). [CLS] is a special token in the front of the
original input text and [SEP] is a separator token to indicate the segment of each
sentence.

3.2 Data pre-processing

In our study, we utilize the dataset developed by Sarwar et al. [2], which consists
of 2037 labeled commit messages across different projects and languages extracted
from GitHub including three different categories (i.e., corrective, adaptive and per-
fective). Prior to model input, we pre-process the data using standard natural lan-

Computer Science & Information Technology (CS & IT) 85
guage processing techniques such as stemming, lemmatization, stopword removal,

and lowercasing via the widely adopted NLTK toolkit?. Based on the processed
data, we construct a variety of prompts to feed into pre-trained models for commit
message classification training.

In p-tuning, the pre-trained model models can predict only one label for a single
training task while our study is related to multi-label commit message classification.
To enable more effective modeling, we transform the original multi-label classifi-
cation problem into a set of binary classification tasks based on the total number
of categories in the dataset (e.g., three categories in our study). This approach
allows standard classification techniques to be applied to each label individually,
rather than attempting to predict multiple labels simultaneously to overcome the
limitation of pre-trained models. The transformation process involves three main
steps: (1) Group creation. We identify all unique labels in the dataset and create
N separate groups, where N represents the total number of labels. Each group cor-
responding to a single label and contains the full dataset but treats this specific
label as the target class. (2) Label assignment. In each group, each data point is
re-labeled as either positive or negative, depending on whether it belongs to the
label associated with that group based on the original dataset. For instance, if a
data point originally has labels A and C, it would be labeled as positive in group A
and group C, but negative in all other groups. (3) Classifier training. We then train
N binary classifiers based on the groups. Each classifier learns to predict whether
the input belongs to its associated label.

4 Experimental Design

In this study, we use three foundation pre-trained models BERT [4], RoBERTa [9]
and DistilBERT [16] that can be downloaded from the popular AT community Hug-
ging Face3. RoBERTa builds on BERT and modifies key hyperparameters, removing
the next-sentence pretraining objective and training with much larger mini-batches
and learning rates. DistilBERT is a light variant of BERT model with fewer pa-
rameters. For each data group, we split the dataset into a training set (80%) and a
test set (20%). We perform 10-fold cross-validation for all three pre-trained models.
Since we convert to binary classification task for each data group based on the Sec-
tion 3.2, we use the binary cross-entropy loss function. To evaluate performance,
we employ widely-used metrics: precision, recall, and F1 score, which are defined
as follows:

TP TP
Precision = m Recaﬂ = m

Precision x Recall

Fl1=2
% Precision + Recall

2 https://www.nltk.org/
3 Hugging Face. https://huggingface.co/

86 Computer Science & Information Technology (CS & IT)

Where TP denotes the number of true positives, FP represents false positives, and
FN indicates false negatives.

Since we train the three data groups independently, we use major different pa-
rameters as follows (from group 1 to group 3): we set the maximum input sequence
length to 128, 128, 256, batch size to 8 for all groups, learning rate to 3 x 107°
for all groups, and training epochs for 16, 16, 32. All models are optimized using
the AdamW optimizer [17]. All training and inference are conducted on a server
equipped with an Intel Core 19-13900K CPU, 32GB RAM, and an NVIDIA RTX
4090 GPU.

Table 1. Effectiveness of multi-label commit message classification

BERT | RoBERTa|DistilBERT]

Groupl |80.23%| 81.04% 80.35%
Precision Group2 81.47%| 82.92% 81.72%
Group3|80.95%| 81.88% 80.81%
Average|80.88%| 81.95% 80.96%

Groupl [81.16%| 82.01% 81.04%

Recall Group2|80.62%| 81.75% 80.19%
Group3 |81.88%| 82.37% 81.59%
Average|81.22%| 82.04% 80.94%

Groupl |80.69%| 81.52% 80.69%

F1 score Group2 |81.04%| 82.33% 80.95%
Group3|81.41%| 82.12% 81.20%
Average|81.05%| 81.99% 80.95%

5 Results Analysis

In this section, we investigate the performance of multi-label commit message classi-
fication through the three studied pre-trained models based on the flexible template
introduced in Section 3.1. Table 1 shows the results of precision, recall, and F1 score
in each data group representing three labels in the dataset. We also include the av-
erage values for the evaluation metrics. From the performance comparison across
the models BERT, RoBERTa, and DistilBERT on three groups, we can find that
RoBERTa consistently outperforms the other two models for all evaluation metrics.
For example, on average, RoOBERTa achieves the highest values: 81.95% Precision,
82.04% Recall, and 81.99% F1 score, indicating its robustness and superior gener-
alization across different data groups/labels. The possible reason is that RoBERTa
is trained on a much larger dataset (160GB vs. 16GB in BERT) and uses dynamic

Computer Science & Information Technology (CS & IT) 87
masking (masking different tokens during each training epoch) with longer training
periods and larger batch sizes so that it can understand context more effectively.
Another finding is that BERT performs comparable to DistilBERT in terms of the
evaluation metrics studied. This finding indicates that DistilBERT is more prac-
tical in prompt learning tasks than BERT, since it requires fewer computational
resources for training and inference compared to BERT.

During the evaluations above, we set different labels as independent groups
while it is important to evaluate the effectiveness of multi-label commit message
classification based on the three labels together. Thus, we use the following formula
to represent the classification accuracy:

Data points with correct predictions
All data points

Accuracy =

where “correct prediction” indicates that all labels are predicted correctly simul-
taneously based on the three independent classifiers. Figure 2 shows the accuracy
results for the three pre-trained models. From the results, we can conclude that
RoBERTa (e.g., 80.23% accuracy) still outperforms other two models.

Table 2. Performance of classfication accuracy

BERT|RoBERTa|DistilBERT
Accuracy|79.03%| 80.23% 79.35%

6 Threats to Validity

The main external threat to the validity is the dataset we used. In our study,
we utilize the widely used dataset collected by Sarwar et al. [2] and convert it to
different data groups for binary classifications. But the labeling process of the data
may not be accurate.

7 Conclusion

In this paper, we conduct an extensive study to evaluate the performance of multi-
label commit message classification by applying p-tuning [10] on three pre-trained
models such as BERT [4], RoBERTa [9] and DistilBERT [16]. In our study, we
propose to convert the task of multi-label commit message classification into several
binary classification tasks, based on the number of labels in the dataset. The results
demonstrate that RoOBERTa model outperforms other two models in terms of the
widely used evaluation metrics (e.g., achieving 81.99% F1 score).

88 Computer Science & Information Technology (CS & IT)

References

1. Meng, Na and Jiang, Zijian and Zhong, Hao. Classifying code commits with convolutional
neural networks. 2021 International Joint Conference on Neural Networks (IJCNN). 2021

2. Sarwar, Muhammad Usman and Zafar, Sarim and Mkaouer, Mohamed Wiem and Walia, Gur-
simran Singh and Malik, Muhammad Zubair. Multi-label classification of commit messages
using transfer learning. 2020 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), 2020

3. Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
2019

4. Devlin, Jacob. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805

5. Mariano, Richard VR and dos Santos, Geanderson E and de Almeida, Markos V and Brandao,

Wiladmir C. Feature changes in source code for commit classification into maintenance ac-

tivities. 2019 18th IEEE International Conference On Machine Learning And Applications

(ICMLA).2019

Brown, Tom B. Language models are few-shot learners. arXiv preprint arXiv:2005.14165. 2020

7. Luo, Xianchang and Xue, Yinxing and Xing, Zhenchang and Sun, Jiamou. Prcbert: Prompt
learning for requirement classification using bert-based pretrained language models. Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering, 2022

8. Schick, Timo and Schiitze, Hinrich, Exploiting cloze questions for few shot text classification
and natural language inference. arXiv preprint arXiv:2001.07676. 2020

9. Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen,
Dangi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin. Roberta:
A robustly optimized bert pretraining approach, arXiv preprint arXiv:1907.11692, 2019

10. Liu, Xiao and Zheng, Yanan and Du, Zhengxiao and Ding, Ming and Qian, Yujie and Yang,
Zhilin and Tang, Jie. GPT understands, too. AT Open, 2023

11. Wu, Bozhi and Liu, Shangqing and Feng, Ruitao and Xie, Xiaofei and Siow, Jingkai and Lin,
Shang-Wei. Enhancing security patch identification by capturing structures in commits. IEEE
Transactions on Dependable and Secure Computing.2022

12. dos Santos, Geanderson E and Figueiredo, Eduardo. Commit Classification using Natural
Language Processing: Experiments over Labeled Datasets.CIbSE. 2020.

13. Ghadhab, Lobna and Jenhani, Ilyes and Mkaouer, Mohamed Wiem and Messaoud, Montassar
Ben. Augmenting commit classification by using fine-grained source code changes and a pre-
trained deep neural language model.Information and Software Technology.2021

14. Hericko, Tjasa and Sumak, Bostjan and Karakati¢, Saso. Commit-Level Software Change
Intent Classification Using a Pre-Trained Transformer-Based Code Model. Mathematics. 2024

15. Zeng, Qunhong and Zhang, Yuxia and Sun, Zeyu and Guo, Yujie and Liu, Hui. COLARE:
Commit Classification via Fine-grained Context-aware Representation of Code Changes. 2024
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).
2024

16. Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108. 2019

17. Loshchilov, I. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. 2017

o

©2025 By AIRCC Publishing Corporation. Thisarticle is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

