
David C. Wyld et al. (Eds): NLMLT, SEAU, ITCS, CST – 2025

pp. 89-99, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151609

LEVERAGING AI TO REDUCE

TECHNICAL DEBT

Vijay Pahuja and Vishal Padh

USA

ABSTRACT

Technical Debt is one of the biggest issues hindering the digital transformation of

organizations. Cost of addressing debt has been rising. AI powered tools can overcome

problems of traditional tools as they continuously learn and adapt new patterns. They can

proactively detect issues, suggest refactoring, and provide insight to areas of improvement

in the codebase, pushing for more sustainable software development practices. While AI

offers tremendous potential for managing and reducing technical debt, AI based tools come

with their own challenges as AI is heavily dependent on the quality and quantity of data on

which they are trained. As organizations rely more and more on AI, they may end up with

monotonous codebases producing mediocre products as use of AI will lead to skill

degradation and affect critical thinking.

KEYWORDS

Technical Debt, AI, Software Engineering, Development Tools

1. INTRODUCTION

Building a successful software product require significant effort, planning and expertise. Many

things can go wrong in the way like users did not like the interface, competitive product

launched, another innovation disrupted the market. This has led to extensive use iterative

development where speed of delivering a feature is often favored over perfection allowing for
quick market entry and opportunity for receiving early user feedback. This approach often leads

to compromise on the quality of software which inevitably leads to the accumulation of technical

debt.

Technical debt is often acceptable in agile/iterative software development with the intent that it

will be managed in future sprints. The other reasons adding to the problem are unclear
requirements, poor architecture/design, poor code quality, poor testing and vulnerable to security

threats. If left unmanaged, technical debt becomes a significant liability, slowing down the speed

of development, increases the system complexity, makes maintaining and extending the software

more challenging. Southwest Airlines [1], Equifax [3], Capital One [12], FAA [1] and
CrowdStrike [13] are some of the examples of who have faced challenges of unchecked technical

debt resulting monetary losses, lawsuits and loss of consumer confidence.

To achieve long term success of a software product, it crucial to manage the technical debt. In

this regard, Artificial intelligence is emerging as a valuable ally that can proactively help by

automating tasks like code reviews, testing, and predictively analyzing any other flaws, enabling

teams take corrective action early. Use of AI can help delivering product features faster, leading
to a healthier, more robust software product that stands the test of time.

https://airccse.org/
https://airccse.org/csit/V15N16.html
https://doi.org/10.5121/csit.2025.161409

90 Computer Science & Information Technology (CS & IT)

2. TECHNICAL DEBT ACCUMULATION

Technical debt accumulation is contributed by factors known or unknown. When we prioritize

feature delivery over code quality, design system for smaller user base to save initial cost we take

the technical debt intentionally. When product requirements are unclear, users don’t provide
feedback, development teams are not well trained on the technologies being used and lack of

product domain knowledge we can incur it unknowingly. To manage technical debt effectively it

is imperative that we understand its origins, which can be grouped into several key categories:

● Product Feature Debt: This debt primarily results when we rush development, scope

change during development, ignoring user feedback and focus on short term benefits

over long term vision. This results in poor design of user interfaces, incomplete or
redundant features, and defective implementations. Product debt feature will ultimately

give away the initial competitive edge we gain due to speedy feature delivery as it will

cause user dissatisfaction.
● Architecture/Design Debt: Architecture/design debt arises when flawed design

decisions taken in haste by the development team. When we don’t allow for design to

evolve with changing requirement, increased user base, newer technologies, and newer
security threats we face difficulty in making changes to software. It eventually leads to

having an unscalable and fragile software product that is prone to system break down

and unsecure.

● Code Debt: We incurCode debt when the teams follow poor coding practices either to
meet tight deadlines or due to lack of training and insufficient testing. It can also

happen due when development teams are not clear about architectural design and

product vision. I have come across many situations where due to tight deadlines code
was release with low degree of testing or a feature was implemented with non-optimal

code.

● Testing Debt: One of the most common ways in which we accumulate technical debt is
testing. We often ignore testing to meet deadlines resulting in codebases with

insufficient coverage, poor test design, and lack of automation. This makes developers

tend to avoid refactoring, code cleanup activities and add more technical debt while

making any changes.

For sustained healthy products it is essential that we address these root causes by proactive

technical debt management. Understanding the different debt type allows us for targeted
interventions. It also helps in choosing the tools to improve the software quality and

maintainability in the long term.

3. FINANCIAL BURDEN OF TECHNICAL DEBT

Technical debt significantly impairs both current productivity and future innovation. Ward

Cunningham, who coined the term, described it as accumulating "interest" that can ultimately

cripple entire software engineering organizations [7]. It impacts software projects in multiple
ways:

● Diminished Developer Productivity: According to Stripe's 2018 "Developer

Coefficient" report, developers worldwide dedicate an average of 13.5 hours each week
to resolving technical debt [8]. Developers spend this time on rework, debugging,

navigating bad code, and sometimes rewriting whole product. This directly impacts

feature development and innovation.

Computer Science & Information Technology (CS & IT) 91

● Significant Project-Level Financial Strain:SonarSource's 2023 research based on
examinations of 200 projects estimates an annual cost of $306,000 for a project with

one million lines of code [10]. This cost is usually incurred to address vulnerabilities,

architectural flaws, improve codebase with automated tests and software upgrades.

● Escalating Long-Term Expenditures: The financial impact of technical debt is not static
but rather compounds over time. SonarSource research projects that the cumulative

expenses for a million-line project can reach $1.5 million over five years [10].

● Opportunity Costs and Innovation Deficit: Stripe estimates that companies globally lose
approximately $85 billion annually due to developer time spent on maintenance tasks

like debugging and refactoring [8]. This time that could be invested in developing new

functionalities, exploring emerging markets, or fostering innovation.
● Strategic and Architectural Constraints: J.P. Morgan's 2022 analysis highlights that

technical debt is not just due to code-level, it can be due to suboptimal system

architecture as well [11]. Not only this debt hinders the adaptability to evolving

business demands and technological advancements, it can reduce the lifespan of a
software and make it vulnerable to software breaches.

● Broad Economic Impact of Poor Software Quality: The Consortium for Information &

Software Quality (CISQ) 2022 report estimates the total cost of poor software quality in
the US alone at $2.41 trillion in 2022 [12]. Stripe's research also estimated the loss at

approximately $300 billion annually in global GDP, demonstrating the far-reaching

economic impact of unmanaged technical [8]. Y2K bug forced governments and
businesses cost an estimated amount of $300 billion to $600 billion [9], diverting

capital and resources that could have been otherwise utilized for innovation and growth-

oriented projects.

Diagram 1. Relation Between Technical Debt and Costs Over Time

Collectively, these data points paint a clear picture that it is not a minor problem. If left alone, not

only it will become significant liability, it is going to be even bigger financial. Proactive and
systematic technical debt management is therefore must be made a fundamental requirement to

ensure success of software project, its long-term financial stability.

4. THE ADVANTAGES OF TECHNICAL DEBT REMEDIATION

No matter what we do, the technical debt builds up during software development, the question is

if we want to keep accumulating or make conscious effort of addressing it and make the software

product financially viable for very long term. The benefit of addressing technical debt is not only
financial though, it helps the entire software development lifecycle in many ways significantly

improving business outcomes. The key benefits can include:

92 Computer Science & Information Technology (CS & IT)

● Accelerated Development Velocity: Stripe’s report [8], it can save an average of 13.5

hours per week to address technical debt. While it is generally justified by business to

kick the can of technical debt down the road, resolving code-level technical debt

through code simplification and enhanced maintainability brings efficiency in the
software development. Which ultimately help with delivering the product features faster

and lesser defects.

● Elevated Code Quality and Product Reliability: When we keep the focus on quality of
codebase by refactoring and any other code optimization techniques, we deliver product

with reduced incidents of defects. This is achieved because we end up having testable

code. The result is a dependable product. In the projects I have been associated with,
my observation is that a quality codebase has lower density of defects resulting in lower

expenditure associated with defect resolution. This allows us to invest more in other

areas of software product.

● Unleashed Innovation Potential: A well-designed software with clean and testable code
base helps us with making larger changes without fear of unknown issues otherwise.

This provides us with an environment for innovation and facilitates seamless integration

of novel features, encourages experimentation with cutting-edge technologies. A large
portion of $2.41 trillion [12] can be spent on new products as result of overall saving.

Even at project level an estimated saving of $306,000 [10] can achieved.

● Reduced Long-Term Maintenance Expenditures: When we proactively manage
technical debt, the resulting code base easy to manage and costs less to maintain. This

codebase will have reduced defect density, simplified code architecture, and decent

documentation allowing us to easily patch and upgrade software.

● Enhanced Team Morale and Productivity: We feel very proud when we have a software
product with codebase which is well designed with good documentation and focused

product strategy. It is also easy to work with reducing developers’ frustration. This

fosters a sense of professional accomplishment and improves team morale, job
satisfaction, and overall productivity.

● Improved Scalability and Performance Characteristics: During initial phases of

development some of the areas we deliberately ignore are database optimization,

caching, asynchronous processing, and modular architecture. This helps in reducing
initial cost and allows quick feedback to check viability of the product. When we

address these architectural debt areas as products mature it helps us to improve

scalability and performance needed for accommodating increased user loads, expanding
data volumes, and facilitating future growth.

● Reinforced Security Posture: When we consistently address security vulnerabilities, we

get well designed software product with fortified software security that can mitigate the
potential for cyberattacks and data breaches.

● Elevated Customer Satisfaction Metrics: The effect of reduced defects, enhanced

performance, timely delivery of new features, and a more streamlined user experience

culminates in heightened customer satisfaction.

Computer Science & Information Technology (CS & IT) 93

Table 1. Impact of Technical Debt Remediation

Advantage Estimated Benefit Source/Study Impact

Time Saved via

Technical Debt

Reduction

13.5 hours per

week per developer

Stripe, 2018 [16] Increases feature

development velocity

Defect Density
Reduction

40-60% decrease in
defect rates

SonarSource,
2023 [15]

Reduces maintenance
costs and improves

reliability

Innovation Potential

Unlocked

$85 billion gained

globally per year

Stripe, 2018 [16] Frees up development

resources for innovation

Annual Maintenance

Cost Savings (1M

LOC)

$306,000 per

project annually

SonarSource,

2023 [15]

Reduced costs via

proactive refactoring

Developer Productivity

Gains

20-30% increase in

coding efficiency

Vega, M. (2022),

2022 [18]

Improves overall software

delivery speed

The table above summarizes the impact of the addressing technical debt. Despite clear

advantages for engineering teams, addressing the technical debt is challenging to explain and

justify the investment to business stakeholders.

5. TAMING TECHNICAL DEBT

Even though organizations and development teams know that it is vital to address technical debt

for long-term software sustainability and innovation, the topic of technical debt triggers fear. The
factors that make us think that reducing the technical debt is difficult are:

● Resource Investment: If we have accumulated considerable technical debt its
remediation needs substantial time and budget. This will take away focus from feature

releases in short term and create tension with immediate deadlines.

● Instability: Refactoring or architectural changes carry risk of regressions and system

instability. If we have accumulated testing debt as well then lack of strong automated
testing requires us to think about the unintended consequences. If we have faced

negative experiences in past with refactoring then we have a tendency of avoiding to

start refactoring.
● Ownership and Prioritization: Often times there is no one to take the responsibility for

technical debt and it is believed that engineers in the development team are the sole

owners. Unclear prioritization results in inaction, as teams struggle to define
ownership.

● Skill and Knowledge: In order to remediate the technical debt, the development team

must know the business domain, architecture, technologies involved, the codebase, and

current test suites. If team lacks knowledge and skills then they won’t be able to take
effective action. This can be a major issue with a legacy product or when a team has

high turnover.

● Organizational Culture: Many organizations are trying to promote startup culture in
teams when working on a new idea. This helps them to evaluate if new ideas are

feasible or not. However, they fail to evolve. While working on new ideas teams

usually are asked to make lowest possible investment in all aspects of software

development and hence, they accumulate technical debt immediately. If organization
don’t build a culture where a successful idea is evolved in mature product and manage

94 Computer Science & Information Technology (CS & IT)

the technical debt, these ideated software products with technical debt are sooner or
later going to have issues.

If organizations acknowledge these challenges and adopt strategies that promote a proactive and

sustainable approach to software health. We also need to build a culture of understanding that the

technical debt management is not a one-time project, but a continuous, strategic process integrated

into the development lifecycle.

6. TOOLS FOR TECHNICAL DEBT REDUCTION

Today there are many software tools available to indicate technical debt while it is being

accumulated. These tools can be categorized by their primary function:

● Diagnostic Code Assessment (Code Analysis & Static Analysis): Tools that we use in

this category includes Linters (for stylistic and programmatic checks), SAST tools (for

security and architectural vulnerability detection), and Code Complexity Analyzers (for
quantifying and visualizing code complexity). We use these tools identify potential

issues right when it is checked in to source control. This will alert the development

team for violations of standards, security risks, and complexity hotspots, fixing it
immediately [10][17].

● Code Remediation and Optimization (Refactoring & IDE Features): Many modern tools

have features that can automate refactoring or assist with suggestion of better code

implementation. These tools can help identifying sub-optimal code allowing team to
address issue early in development cycle [6][16].

● Quality Assurance and Stability (Testing & Quality Assurance): Automated Testing

Frameworks, Code Coverage Tools, and Performance Monitoring & Profiling tools
ensure code stability and quality during debt reduction. Utilizing these tools brings

confidence to refactoring activity as they help in verifying functionality, measuring test

coverage, and identifying performance bottlenecks. There is also an opportunity of

integrating these tools in code build pipelines helping in avoiding accumulation of
technical debt [10][17].

● Knowledge Preservation and Debt Prevention (Knowledge Sharing

& Documentation): Tools like Wiki & Documentation Platforms and Knowledge
Sharing Platforms are crucial to manage knowledge base. This helps with on boarding

new members to gain understanding of the product and codebase. Documenting

decision taken during different stages of software development helps during technical
debt remediation [8][17].

Table 2. Pros and Cons of Traditional Tools

Tool Pros Cons

SonarQube Provides detailed code quality analysis
and identifies technical debt.

Requires setup and configuration; may
have a learning curve.

JIRA Helps track and prioritize technical debt

tasks effectively.

Can become complex to manage for

large projects.

Refactoring

Tools

Simplifies code improvement and

reduces complexity.

May require significant time

investment for large-scale refactoring.

Static Code

Analysis Tools

Detects code issues early, preventing

accumulation of debt.

May generate false positives, requiring

manual review.

Automated

Testing Tools

Ensures code reliability and reduces

defect-related debt.

Initial setup can be timeconsuming;

requires maintenance.

Computer Science & Information Technology (CS & IT) 95

In essence, these tools provide us with a comprehensive toolkit for diagnosing, remediating, ensuring

the quality of codebase. While invaluable, these traditional tools for technical debt reduction are not

without the limitations:

• Automated Analysis Limitations: These tools primarily catch the syntax and style issue

and lack the capabilities to surface deeper code flaws. They are prone to false positives

and negatives, which requires human validations. Additionally, these tools don’t have
understanding of business domain, which can lead them to misinterpret intentional

design choices [20].

• Automated Refactoring Challenges: These tools are not very effective in refactoring of

complex codebases which have evolved to their state over a long period of time. When
refactoring done via the automated tools, there is high risk that they will introduce bugs

requiring careful testing. The tools are not capable of addressing broader design or

architectural debt [6].
• Reliance on Test Quality: The effectiveness of tools is limited by the quality and

coverage of the test. Garbage in garbage out, if the tests are not of high quality the

refactoring is not guaranteed. These tools also struggle with technical debt issues
around performance and usability [17].

• Human & Process Limitations: Almost all tools that are available today require humans

or processes. The teams need to adopt the tools, once they are adopted, they must be

embedded in the process of software development so that they are consistently used.
Tools can’t remediate any issues when the recommendations are ignored or overridden

[14].

• Documentation & Knowledge Sharing Limits: Documentation tools are useless if
content is outdated or incomplete. We must actively update and share information on

knowledge platforms else it will be useless [8].

While traditional tools have been useful certain facets of technical debt mitigation, their inherent
limitations are obvious. The constraints in these tools underscore the need for more evolved and

intelligent approaches. Fortunately, the advancements of AI present a compelling paradigm shift,

offering a promising trajectory to address these limitations and reshape our strategies for
achieving and maintaining robust codebase integrity.

7. AI TO RESCUE

We see that in near future AI-powered solutions are going to emerge and offer us with enhanced
capabilities in technical debt management. They hold promise in several key areas:

● Continuous Learning and Improvement vs. Static Analysis Limitations: AI tools would
be able to learn from vast datasets of code. They can be analysing these datasets all the

time learning new rules, updating existing or delete obsolete. This is going to be huge

advantage as traditional static analysis rely on fixed, potentially outdated rules, we also
have opportunity to feed them datasets for learning that can provide better context [15].

● Context-Aware Analysis vs. Context Blindness: AI tools are capable of analysing entire

code repositories within the organization. This will help us in building rules that make

sense for organization based on business domain, architectural and design decisions
taken across the organization, testing tools and strategies adopted. This will provide a

holistic system understanding, unlike traditional tools analysing code in isolation [18].

● Adaptive Rule Learning vs. Fixed Rule Sets: As we know software development field is
very dynamic field; the practices continuously change. There are new technologies

emerging frequently. AI tools can learn and adapt to these new coding standards, best

practices, and emerging technologies and automatically update their rules. These AI

96 Computer Science & Information Technology (CS & IT)

based tools can then provide suggestion that will help adopting current industry trends
in no time [15][17].

● Proactive Issue Detection vs. Reactive Analysis: Current tools analyze the code when

we submit the code for review, which usually triggers actions to perform code analysis.

AI can help us shifting from this reactive analysis to proactive issue detection by
analyzing code changes in real-time. They can identify patterns already learned and

provide us with immediate feedback like we are pair programming. This proactive

approach will help us preventing debt accumulation [16].
● Enhanced Automated Refactoring vs. Limited Automation Scope: Not only AIdriven

tools can perform complex refactoring compared to IDE tools, they can help us with

finding larger issues, which can help with improved performance and scalability of the
software product. A lot of this work can be done by automation, which involves not

only code refactoring, but any design changes, test automation or any other area of

codebase [10] [15].

● Improved Code Reviews vs. Human Variability: Code reviews today are human
dependent. Once the code is checked in for code review it has to wait for peer review

before being accepted. If AI is able to learn from multiple code repositories, it can help

with code reviews, ensuring adherence to coding standards more reliably than human
reviewers alone. Code reviews also vary from person to person, whereas AI tools can

provide uniform rules, making code base easy to understand [17].

● Performance Monitoring and Optimization vs. Testing Performance Debt:AIpowered
performance monitoring tools can analyze runtime data to identify performance

bottlenecks and suggest optimizations which are often missed by static analysis and

traditional testing [10].

● Facilitating Collaboration and Knowledge Sharing vs. Human Factor Limitations: AI
tools can enhance our collaboration by providing platforms for sharing best practices,

documenting common issues, and suggesting AI-driven solutions. AI tools are capable

of doing a very good job of creating documentation of existing codebase or any new
code being added, which can reduce training time we have to put when onboarding new

developers on the team [8].

Table 3. Quick Comparison Traditional vs AI-Powered Tools

Area of Comparison
Traditional Tools (e.g.,

Static Analysis)
AI-Powered Tools

Learning and
Improvement

Rely on fixed, potentially
outdated rules

Continuously learns and updates rules from
vast code data.

Context Awareness
Analyze code in isolation

(Context Blindness)

Analyzes organization-wide code for holistic,

context-aware rules.

Rule Adaptation Fixed rule sets
Automatically adapts to new standards and

technologies for timely suggestions.

Issue Detection Timing
Reactive analysis (upon
code submission)

Proactively detects issues in real-time with
immediate feedback.

Automated Refactoring

Scope

Limited automation scope

(e.g., IDE tools)

Performs complex, wider-scope automation

for performance and scalability.

Code Review
Consistency

Human dependent,
variability between

reviewers

Provides more reliable and uniform code
review adherence to standards.

Performance Monitoring

& Optimization

Limited (Testing

Performance Debt)

Analyzes runtime data to identify and suggest

performance optimizations.

Computer Science & Information Technology (CS & IT) 97

Area of Comparison
Traditional Tools (e.g.,

Static Analysis) AI-Powered Tools

Collaboration &

Knowledge Sharing Human factor limitations
Enhances collaboration with platforms for

sharing, documentation, and solutions.

With significant advances in Generative AI, the usage of AI powered tools has significantly

increased. GitHub Copilot research on impact of code quality [22] found that 85% of developers
felt that quality of code was better when using GitHub Copilot and code reviews being completed

15% faster. With more time available the engineering teams can focus more on architecture,

design and better requirement understanding, which will further help with tech debt reduction.

AI powered tools provide advanced capabilities that can actively help preventing the technical

debt. However, we need to carefully evaluate these tools before implementing them in practice.

8. IMPORTANT CONSIDERATIONS FOR AI-POWERED TOOLS

While promising, AI-powered tools for technical debt reduction are still in their infancy and their

usage without any supervision can cause problems:

● Data Dependency and Bias [10][18]: AI models are dependent on the dataset on which

they learn. This may make these tools biased. If the datasets are not wholistic then we

may end up with ineffective tools.
● Explainability and Trust [14]: "Black box" AI recommendations without clear

explanations can make it difficult for us to trust and adopt the suggestions. If the

recommendations are not explained well by the tools, then we as a tendency are going
to reject them.

● Automation Over-reliance [17]: AI tools bring the risks of neglecting crucial human

oversight and critical judgment. We think AI should augment our expertise and not
replace it. Relying blindly on these tools may cause issues that are found very late in the

process making troubleshooting and correction of difficult.

● Organizational Implications: Integration of AI powered tools into organization requires

shift in culture. We must ensure that the developers are trained to adapt these tools and
provide assurance to engineering teams that they are not a replacement as significant

oversight is required for its adaption. Engineering leadership should foster

transparency, they should not assume that AI can replace human engineers as these
tools are not aware of nuances of business, legacy systems in use, skills and knowledge

possessed by engineers. There should be processes defined so that any improper usage

of AI is detected early, protecting organization from any legal problems.

● Ethical Implications [10]: There is ongoing debate on AI integration to understand, to
what extent the usage is ethical. Who owns AI generated code, which may be based on

other codebases that the tools used to learn? Will developers lose autonomy? Do

AIdriven tools have biases? To address these questions, we think that the organizations
must define policies related to ethical use of AI. This will help engineering teams make

decisions on if the suggestion by AI tools can be utilized without any broader

implications on organization.

Despite these concerns, AI-powered tools represent a significant advancement in technical debt

management. They offer a path to overcome traditional tool limitations. However, we must take

a balanced approach of integrating AI with human expertise, critical thinking, and a strong code
quality culture to realize its full potential.

98 Computer Science & Information Technology (CS & IT)

9. FUTURE IMPROVEMENTS

As codebases of any system grows, the legacy tools will start becoming more and more entrenched.

To keep up, we need more research and enhancements in below areas.

• AI-Powered code refactoring tools: More work needs to be done in developing tools that are

AI-powered and are good at code refactoring. Tools can be taught to automatically detect
issues with large codebases and suggest and/or apply refactoring changes. Points to focus on

in the new tools – o Easy modularization – tools can help to break functions/methods into

smaller parts for better handling

o Detect bad practices/anti-patterns – detection of bad practices and suggesting a fix will

make it more likely that the developer accepts and tries to incorporate the suggested good

practice in code.
o Auto detection of unused code/feature segments to keep codebase clean

• Smart dependency management: More work needs to be done in the area of dependency
management. It’s a dynamic and highly integrated programming world today. Everyone uses

different APIs or endpoints. These APIs are constantly evolving themselves as new risks and

vulnerabilities are uncovered. Points to focus on – oVersion conflicts – any dependent code

can easily run into version conflicts if not upgraded timely and appropriately. AI can help
uncover these issues and suggest fixes.

o Replace vulnerable components – as soon as a new version is released for a component, AI
can help to replace all vulnerable code with the new versions available.

• Architecture enhancement: Newer models can be developed and applied to analyse and
determine the best architecture for any requested system or subsystem. This will not only help

maintainability, but might also help performance and scalability.

• AI driven testing: AI can help generate better and deeper test case code. Not only for unit

testing, but also for integration and regression testing. This will give higher test coverage,
reduce the number of bugs leaking into production, and hence reduce the overall cost.

Sure enough, there would be way more topics like predictive maintenance for codebases,
natural language interfaces for legacy systems, integration with CI/CD for real-time

recommendations etc., but we think that the ones mentioned above need most immediate

attention.

10. CONCLUSION

Traditional tools like linters, SAST, and testing frameworks we have been using are valuable.

However, they have limitations in semantic understanding, context awareness, and automation
complexity. Emerging AI-powered tools can overcome these limitations. continuously learning,

context-sensitive analysis, and adaptive rule derivation, making AI based tools invaluable assets

in tackling technical debt.

However, AI tools come with their own challenges. These challenges include data dependency,

explainability, trust, and the potential for over-reliance and bias. It is imperative that a balanced

approach is taken that combines AI's strengths with human expertise, critical thinking, and a
strong code quality culture so that tech debt can be managed effectively while building

sustainable software systems.

Computer Science & Information Technology (CS & IT) 99

Managing technical debt with use of AI tools, can lead to a better codebase. The use of AI tools

can make product development cost effective without sacrificing speed to market, performance,

and security. The initial cost of managing technical debt leads to higher productivity, customer

satisfaction and team morale

REFERENCES

[1] Kornblith, Aaron. "Lessons from the Runway: How Southwest's System Crash Illuminates

Healthcare's Technical Debt Problem." UCSF Synapse.

[2] Devico.io. "Equifax Data Breach of 2017: Unpatched Software Vulnerabilities and Security Debt."

Devico.io.

[3] Rackspace Technology Staff. "Capital One Data Breach: Two Security Controls You Should

Review." Rackspace.

[4] Artocain.com. "The FAA Outage as a Resiliency Test: Technical Debt in Outdated Technology."

Artocain.com.

[5] Sekhon, Kirat. "CIOs Must Tackle the Global Tech Debt Crisis." CIO Dive.

[6] M. Fowler, "Technical Debt," 2003. [Online]. https://martinfowler.com/bliki/TechnicalDebt.html
[7] Cunningham, W. (1992). The WyCash Portfolio Management System. OOPSLA'92 Workshop on

Directions in Object-Oriented Programming.

[8] Stripe. (2018). The Developer Coefficient. Stripe Report. stripe.com

[9] National Museum of American History, "Y2K," [Online].

https://americanhistory.si.edu/collections/object-groups/y2k

[10] SonarSource. (2023). Technical Debt: The Silent Drag on Software Development. SonarSource

Research.

[11] Myrna Vega. (2022). Insights on Technical Debt. J.P. Morgan Research.

[12] Herb Krasner. (2022). The Cost of Poor Software Quality in the US: A 2022 Report. CISQ Report.

[13] McKinsey & Company. The economic impact of technical debt. McKinsey & Company Report.

[14] Curtis, B. (2012). Conflicting priorities. ACM Queue, 10(10), 10.
[15] Fowler, M. (2020). Technical Debt Quarterly. martinfowler.com

[16] Kruchten, P. (2016). The rational unified process made easy: a practitioner's guide to the RUP.

Addison-Wesley Professional.

[17] Li, Z. (2015). Software Development and Professional Practice. Springer.

[18] Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt. Journal of

Systems and Software, 106, 1-18.

[19] Slinger, J., Erlikh, I., &Bankevich, L. (2019). Technical Debt in Practice: How Do Developers

Experience It? 2019 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM).

[20] Tom, G., Aurum, A., & Petersen, K. (2013). Technical debt in practice: a grounded theory study of

industry perceptions. Journal of Systems and Software, 86(1), 183-198.

[21] Zazworka, N., Shaw, M., & Bachmann, F. (2014). Technical debt: understanding the metaphor.
Information and Software Technology, 56(12), 1327-1342.

[22] Research: Quantifying GitHub Copilot’s impact on code quality. Available:

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-

codequality/

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

	1. Introduction
	2. Technical Debt Accumulation
	3. Financial Burden of Technical Debt
	4. The Advantages of Technical Debt Remediation
	5. Taming Technical Debt
	6. Tools For Technical Debt Reduction
	7. AI To Rescue
	8. Important Considerations for AI-Powered Tools
	9. Future Improvements
	10. Conclusion
	References

