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ABSTRACT 
 
Byzantine fault tolerant consensus plays a critical role in maintaining the reliability of 

distributed systems. This paper surveys and evaluates five Paxos-based algorithms – 

Byzantine classic Paxos consensus, Castro-Liskov algorithm, Byzantine generalized Paxos 

consensus, Byzantine vertical Paxos, and Optimistic Byzantine Agreement – comparing 

their efficiency in terms of process requirements, communication rounds, and message 

complexity, as well as their resilience against Byzantine behaviors. Through detailed 

examination of protocol structures and performance trade-offs, we identify the strengths 

and limitations of each approach under typical and adversarial conditions. Our analysis 

reveals that the two-phase Byzantine classic Paxos consensus protocol achieves an optimal 

balance of simplicity, low process overhead, and robust security guarantees, making it a 

compelling choice for practical Byzantine fault tolerant deployments. We conclude with 

recommendations for selecting an appropriate consensus algorithm based on system 

constraints. 
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1. INTRODUCTION 
 

The consensus problem can be described in terms of the actions taken by three classes of agents: 

proposers, who propose values, acceptors, who are responsible for choosing a single proposed 

value, and learners, who must receive the chosen value. This model looks simple, but in practice, 

there are a lot of challenges if we need to provide safety and liveness properties here. The goal of 

this paper is to determine the optimal algorithm from the Paxos family for selecting a coordinator 

in the Threshold Signature Scheme (TSS), providing the Byzantine fault tolerance (BFT) 

property. Some of these schemes require signers to elect a specific signer as a coordinator to 

facilitate both the distributed key generation and signing round steps of the protocol. Since 

signers are distributed and mutually distrustful, TSS coordinator selection is fundamentally a 

Byzantine setting. Note that not only can individual signers be faulty, but also the coordinator 

may be faulty. 

 

https://airccse.org/
https://airccse.org/csit/V15N17.html
https://doi.org/10.5121/csit.2025.151702


24                                   Computer Science & Information Technology (CS & IT) 

 

In general, Paxos is considered a complex and abstract algorithmic concept. It is often mentioned 

in contrast to the simpler consensus algorithm Raft. However, Raft is a leader-centric scheme that 

cannot tolerate node or partition failures. Therefore, we chose to study the Paxos family of 

algorithms, which are considered a reliable classical model of consensus protocols. 

 
Our Contribution and Results. First, we collected the five most promising Paxos BFT algorithms, 

which are detailed in Table 1 of Section 1.1. Section 2 details the foundations of the original 

Paxos. In Sections 3-6, we provide a detailed description of each BFT algorithm. We will start 

with the BPCon and Castro-Liskov algorithms, which are the closest to the original scheme and 

offer a balance of simplicity and efficiency. Next is Byzantine Generalized Paxos, which allows 

weakening security conditions under certain circumstances. It is considered a complex 

modification of Paxos, but maintains efficiency. Vertical Paxos is a more specific algorithm that 

allows changing consensus modes depending on the situation, but requires more rounds of 

exchanges. Kursawe‘s Optimistic Byzantine Agreement also uses different modes depending on 

the conditions that may affect the system. This protocol is very similar to Byzantine Fast Paxos, 

which we did not include in our work. Although Fast Paxos is considered quite simple, it requires 

a large number of honest participants compared to others. We summarize our findings in Section 

7. Table 6 shows the most extensive comparison of all algorithms by the number of messages.  

 
Table 1. A summary of the algorithms that we compared. By f we denote the number of 

Byzantine processes. 

 
Algorithm Number of process Number of rounds Features 

BPCon 
 

2 Paxos-shaped scheme. 

CLA 
 

2 Modified BPCon with engineering 

optimizations 

BGP 
 

2 Allows to accept increasing sequence of 

command; anyone can be a leader; has 

two ballot options: classic and 

fast(without leader). 

BVP  or  4 or 3 Has two modes: steady state and 

reconfiguration protocols; uses wedging 

scheme 

OBA 
 

2 in optimistic 

case, 4 - otherwise 

Has two phase: optimistic (fast agreement, 

works only in a friendly environment) and 

pessimistic (if environment is a malicious, 

should require public-key signatures) 

 

1.1. Related Work 
 

Our study focuses on comparing the BFT Paxos algorithms. Previous works, however, compared 

Paxos only with other consensus algorithms or focused on a specific protocol. 

 
One of the earliest mentions of BFT properties in the context of Paxos appears in the work of 

Castro and Liskov[1]. The authors note that their BFT algorithm can be viewed as a modification 

of Paxos in many aspects. Around the same time, Lamport formally described the Byzantine 

Paxos and later published the BPCon algorithm [2]. 

 

Other works have appeared later [3, 4, 5, 6], typically proposing a scheme where there is a fast 

consensus option under optimistic conditions and a standard one that includes cases where nodes 

(processes) may be faulty or byzantine. 
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2. PRELIMINARIES 
 

Here are some terms for general understanding: 

 

Safety – a property that must satisfy two stages: agreement, that no two correct processes decide 

on different values and validity, that a correct process decides on a valid value. 

 

Liveness – a property that provide termination, that every correct process eventually decides on a 

value. 

 

Fault tolerance – is an ability of a model to continue operating without interruption while some 

processes fail. In the context of Paxos, fault tolerance guarantees that the algorithm can tolerate 

the failure of a minority of nodes (acceptors) and still reach consensus. 

 

2.1. Classic Paxos 
 

Paxos proposes the procedure of conducting numbered ballots, each orchestrated by a leader 

(multiple ballots with different leaders concurrently are possible). Let N be the number of 

acceptors, f of whom may fail and N>f. Let a quorum be any N-f acceptors. For safety, any two 

quorums must have a non-empty intersection, which is true if N>2f. 

The general scheme of the Paxos phases is as follows: 

 

The ballot-b leader sends a 1a message to all acceptors. 

 

Each acceptor responds to the leader‘s ballot-b 1a message with a 1b message. This message 

contains either the number of the highest-numbered ballot in which acceptor has voted and the 

value it voted, or a statement that it has cast no votes. 

 

The leader chooses a value v that is safe at b using the 1b messages sent by a quorum of 

acceptors and sends a 2a message containing this value to the acceptors. 

 

Upon receiving the leader‘s ballot-b 2a message, an acceptor votes for v in ballot b by sending a 

2b message. 

 

The algorithm maintains the following properties: 

 

P1. An acceptor can vote for a value v in ballot b only if v is safe at b. 

  

P2. Different acceptors cannot vote for different values on the same ballot. 

  

P3a. If no acceptor in the quorum has voted in a ballot numbered less than b, then all values are 

safe at b. 

  

P3b. Let c be the highest-numbered ballot less than b in which some acceptor voted. The value 

voted for in ballot c is safe at b. 

 

Properties P3a and P3b are necessary to ensure that the leader determines a safe value from the 

ballot-b 1b messages. 
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2.1.1. Pcon Scheme 

 

In addition, we describe a more general scheme of the classic Paxos, called PCon. It is almost 

identical to the above scheme, except that it splits phase 2a into two sub-phases, shifting the 

leader’s selection of the sent values to phase 1c, where it reports which multiple values are safe, 

and modifies phase 2a accordingly: 

 ‘ 

Using the 1b messages from a quorum of acceptors, the leader chooses a set of values that are 

safe at b and sends a 1c message for each of those values. 

  

The leader sends a 2a message containing the value for which a 1c message was previously sent. 

Note that it also requires the use of the following properties for choosing a safe value: 

  

P3a. If no acceptor in the quorum has voted in a ballot numbered less than b, then all values are 

safe at b. 

 

P3c. If a ballot-c message with value v has been sent, for some c<b, and (i) no acceptor in the 

quorum has voted in any ballot greater than c and less than b, (ii) and any acceptor in the quorum 

that has voted in ballot c voted for v in that ballot, then v is safe at b. 

 

3. BPCON (BYZANTINE CLASSIC PAXOS CONSENSUS) 
 

BPCon [2] is a consensus algorithm that has  acceptors,  of which are byzantine. 

Let’s define the set of  as the union of the byzantine, and honest acceptors, and 

 as a subset of  that always contains a quorum of acceptors. If the 

quorum consists of any  acceptors, then a  consists of any  . 

For liveness, it is assumed that the set of all honest acceptors (which are assumed to never fail) 

forms a . This assumption guarantees that even in the worst-case scenario, the 

system still has at least q real acceptors that can complete the voting phase and ensure the 

progress of the protocol. 

 

3.1. BPCon‘s Phases 
 

At first, consider the difference between BPCon and non-byzantine Paxos: 

 
1. There is no explicit  Phase action. Instead, acceptors cooperate to emulate sending a  

message. The ballot-b leader requests that a Phase 2a action be performed for a value  

that was already proposed in one of the  messages. When an acceptor receives the first 

such request, it performs a Phase  action and sends a ballot-   message with that 

value. 

 

2. The algorithm tolerates malicious leaders, meaning that the ballot-  leader may send 

arbitrary  and  messages. The BPCon Phase 1c action allows the ballot-  leader to 

send any ballot-   message at any time. It is essential that acceptors only accept a  

message if it is legal. A nonfaulty leader must send a message that prompts (honest) 

acceptors to act, to guarantee liveness. 
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3. In non-byzantine Paxos, a ballot-   message can be sent only after collecting a set of  

messages from a quorum and possibly a  message (follows from the properties). In 

BPCon, additional information is put in the  messages to enable the deduction that  

message was sent. An acceptor includes in its  messages the set of all  messages that 

it has sent – except that for each value , it includes (and remembers) only the  

message with the highest numbered ballot that it sent for . Each of those  messages is 

sent in response to a legal  message. 

 

Also, BPCon should provide the following conditions: 

 
1. BP3a. Each message in  asserts that its sender has not voted. 

2. BP3c. For some  and some value : 

 

 each message in  asserts that (i) its sender has not voted in any ballot greater than  

and (ii) if it voted in  then that vote was for  

 there are   messages (not necessarily in ) from byzacceptors saying that they 

sent a  message with value  in ballot . 

 

A little thought shows we can weaken condition (b) of BP3c to assert: 

 

. there are   messages from byzacceptors saying that they sent a  message 

with value  in a ballot  . 

 

After the above statements and details, let us describe the general scheme of the action phases: 

 

 The ballot-  leader sends a  message to the acceptors 

 

 An acceptor responds to the leader‘s ballot-   message with a  message. This message 

contains either the number of the highest-numbered ballot in which it has voted and the value it 

voted for in that ballot, or a statement that it has cast no votes. 

 

 Using the  messages from a byzquorum of acceptors, the leader chooses a set of values 

that are safe at  and sends a  message for each of those values. 

 

 An acceptor received the necessary  action and send a ballot-   message if it has not 

already done so. 

 

 Upon receipt of the  messages, an acceptor votes for  in ballot  by sending a  

message (whereas value  should be from a quorum of acceptors and no two acceptors can 

execute Phase  actions for different values) 

 

3.2. Bpcon‘S Liveness 
 

The liveness requirements of BPCon are the same as non-byzantine Paxos: a nonfaulty leader 

executes a ballot , no leader begins a higher-numbered ballot, and the leader and nonfaulty 

acceptors can communicate with one another. However, it is difficult to ensure that a Byzantine 

leader does not execute a higher-numbered ballot. This requires an engineering solution based on 

real-time assumptions, such as the one proposed by Castro and Liskov. To guarantee liveness of 

BPCon under these requirements, the following two conditions must be satisfied: 
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BL1. The leader can find  messages satisfying BP3a or BP3c 

BL2. All honest acceptors will know that those messages have been sent 

 

These two conditions imply that that the leader will send a legal  message, a byzquorum BQ of 

honest (nonfaulty) acceptors will receive that  message and send  messages, all the 

acceptors in BQ will receive those  messages and send  messages. Learners, upon 

receiving those  messages will learn that the value has been chosen. 

 
3.3. Castro-Liskov Algorithm 
 

The Castro-Liskov algorithm (or CLA) is a refined BPCon that contains engineering 

optimizations for dealing with the sequence of instances – in particular, for garbage collecting old 

instances and for transferring state to repaired processes. 

In the CLA, byzacceptors are called replicas. The ballot-  leader is the replica called the primary, 

other byzacceptors being called backups. The replicas also serve as learners. 

General scheme of the action phases: 

  

  There is no explicit  message; its sending is emulated cooperatively by replicas when 

they decide to begin a view change. 

 

 This is the view-change message 

 

 When a view change occurs, the new-view message replaces  messages for all consensus 

instances. For an instance in which the primary instructs the replicas to choose a specific value, it 

is a  message with that value; for other instances – a set of  messages for all values 

(satisfying BP3a). Acceptors validate the corresponding  messages concurrently for all 

instances. 

 

 This is a backup’s prepare message. The primary’s pre-prepare message serves both as its 

 message and as the implicit request (not modeled in BPCon) to perform a Phase 2a action. 

 This is the commit message. 

 

4. BGP (BYZANTINE GENERALIZED PAXOS) 
 

Byzantine Generalized Paxos consensus (or BGP) [6] – modification of one of the most recent 

algorithms of the Paxos family. Generalized Paxos allows weakening the security conditions 

when different processes may have different views of the agreed sequence. 

 
BGP includes two subprotocols: View-change and Agreement. View-change ensures that at any 

given moment, a leader can be elected from one of the proposers by continuously replacing 

leaders until one that can ensure progress is found. Then, the chosen leader runs the Agreement, 

which extends the current sequence with a new command or a set of them. It is important to note 

that there are two ways to choose this extension: using either classic ballots, as in the original 

Paxos, or fast ballots which leverage a weaker specification of generalized consensus. 

 

Very briefly, here is the model and simplifications that [6] used to build the protocol. It is an 

asynchronous system in which a set of  processes communicate by sending and receiving 
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messages. Processes may fail if they crash and stop executing the algorithm, or if they do not 

follow an algorithm, which means they are Byzantine. It is considered that a non-Byzantine 

process is correct. The processes may have the following roles: learner, proposer or acceptor. 

Proposers submit input values to be agreed upon by learners, while acceptors assist learners in 

reaching consensus on a single value. BGP requires the condition , where  is the 

minimum number of acceptor processes, and  is the maximum number of tolerated Byzantine 

faults. 

 

In a simplified specification, each learner  maintains a monotonically increasing sequence of 

commands . To operate on them, a C-struct is usually used, which provides an 

abstraction of increasing sequences and allows defining various consensus problems. 

 

Two learned sequences of commands are defined as equivalent (~) if one of them can be 

transformed into the other by rearranging the elements in such a way that the order of non-

commutative pairs is preserved. A sequence  is called an equiprefix of another sequence 

 if the subsequence  containing all elements of  is equivalent ( ) to . Instead of 

using C-structures, BGP suggests using the matching of equivalent sequences of commands: 

 

1. Nontriviality. If all proposers are correct,  can only contain proposed commands. 

2. Stability. If  then, at all later times, , for any sequence  and 

correct learner. 

 

3. Consistency. At any time and for any two correct learners  and  ,  and 

 can subsequently be extended to equivalent sequences. 

 

4. Liveness. For any proposal  from a correct proposer, and correct learner , eventually 

 contains . 

 

 

 
 

Figure 1. Pseudocode of the proposer p in the Byzantine Generalized Paxos algorithm. 

 

4.1. View-Change 
 

The aim of View-change is to elect a leader among the proposers who performs the agreement 

protocol. The system moves through sequentially numbered views, where the leader of each view 

is chosen in a rotational fashion using the equation: . To ensure 

continuous operation, acceptor processes monitor the progress of appending commands. If 

progress stalls, acceptor multicasts a signed suspicion message about the current leader to all 
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acceptors. An acceptor that collects  suspicions from other processes can multicast a view-

change message consisting of the new view number and the suspicions. Once other acceptors 

receive and validate a view-change message, they can create and multicast their own. 

Finally, an acceptor process must wait for  view-change messages before it can start 

participating in the new view. This involves updating its view number and the corresponding 

leader process. The acceptor then assembles the  view-change messages proving that others 

are committing to the new view and sends them to the new leader. Once the new leader validates 

the  signatures contained in a single message, it can begin its leadership role in the new 

view. 

 

 
 Figure 2. Pseudocode of leader ℓ in the Byzantine Generalized Paxos algorithm. 

 
4.2. Agreement Protocol 
 

In BGP, each ballot represents an extension of the learned command sequence in a single 

consensus instance. Proposers may create proposals, consisting of either a single command or a 

sequence of commands. 

 

Ballots can be either classic or fast. Classic ballots work as follows: 

 

1. The leader continuously collects proposals by assembling all commands that are received 

from the proposers since the previous ballot in a sequence. 

 

2. When the next ballot is triggered, the leader begins the first phase by sending phase  

messages to all acceptors. These messages contain the ballot number. 

 

3. Similarly to classic Paxos, acceptors send all sequences of commands they voted for in a 

Phase  message to the leader. The leader needs to collect  proofs from the Phase 
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1b messages that guarantee that, for any learned sequence , at least one of the messages is 

from a correct acceptor that participated in the verification phase of . In essence, for BGP, 

 identical votes for a value ensure that at least one correct acceptor has voted. 

Therefore, the leader needs to collect  votes to determine the majority for some 

value. Note that Byzantine acceptors cannot change the value they are voting for because 

the proposer signs it. However, they may omit this value from the message . 

 

4. Once the leader collects a quorum of  Phase  messages, it proceeds to Phase , 

during which it prepares a proposal for the acceptors. This proposal sequence must be 

constructed in the following steps: 

 

a) The leader initiates the proposal sequence with the longest proven among the  Phase 

 messages. This selection can be made deterministically, since any two such sequences 

are either equivalent or one extends the other. This holds because, under the conditions 

described above, there is always at least one correct acceptor who votes for both of any 

two proven sequences. Importantly, a vote from a correct acceptor is always an extension 

of previous votes from the same ballot. If there are multiple sequences of equal maximum 

length, the leader may choose any one of them. 

 

b) The second part of the sequence consists of a concatenation of unproven sequences or 

commands, arranged in an arbitrary order. Since a learner requires  Phase  

messages to learn a sequence, and since the intersection of the quorum and leader’s 

quorum contains at least one correct acceptor, the leader can be confident that if a sequence 

is unproven in all received Phase  messages, then it has not yet been learned and may be 

safely appended to the leader’s sequence in any order. 

 

c) The third part includes commands newly proposed to the leader with the intent of being 

learned at the current ballot. Since these values are being proposed for the first time, they 

may be appended in any order without restriction. 

 

Fast ballots simplify the procedure and allow any proposer to contact all acceptors to extend the 

current sequence within only two message delays (if there are no conflicts of parallel proposals). 

The procedure works as follows: 

 

1. Proposer to acceptors. Fast ballot is initiated by the leader, allowing proposers to send 

proposals directly to the acceptors. Acceptors then receive either a single command or a 

sequence to append to the history. 

 

2. Acceptors to acceptors. Each acceptor appends the received proposals to other accepted 

proposals in the current ballot. Then it broadcasts the result, which contains a signed tuple 

of the current ballot and the sequence being voted for. Requiring  votes for a 

sequence of commands ensures that out of two sequences in which the non-commutative 

commands have different order, only one sequence will receive enough votes. This is true 

even if all  Byzantine acceptors vote for both sequences, since the remaining  

correct acceptors will vote for one sequence. 

 

3. Acceptors to learners. Acceptors send to learners Phase  messages, which contain the 

current ballot number, the command sequence and the  proofs gathered in the 

verification round. To guarantee that the leader will know what values have been proven 

and learned, learners must collect  Phase  messages (a guarantee that at least one 

correct acceptor will relay the last verified sequence to the leader). 
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4. Arbitrating an order after a conflict. In case of proposed non-commutative commands, 

acceptors may have sequences in different orders that will not be equivalent and will not be 

learned. Then, the leader runs a classic ballot and collects these unlearned sequences in 

phase . The leader will then arbitrate a single serialization of all previously proposed 

commands and send it to the acceptors. This ensures that the learners will learn the 

commands in a unique order, thereby preserving consistency. 

 

 

 
 
Figure 3. Pseudocode for acceptor a during the view-change phase of the Byzantine Generalized Paxos 

algorithm. 

 

 
 

Figure 4. Pseudocode for acceptor a during the agreement phase of the Byzantine Generalized Paxos 

algorithm. 
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Figure 5. Pseudocode for learner ℓ in the Byzantine Generalized Paxos algorithm 

 

5. BYZANTINE VERTICAL PAXOS 
 

Byzantine Vertical Paxos (or BVP) [5] – is a protocol that focuses on two aspects, elasticity 

(dynamic reconfiguration) and throughput, and is a Byzantine variant of Vertical Paxos. Vertical 

Paxos has two modes: a simple steady-state protocol and a Paxos-based reconfiguration protocol. 

The steady-state is often defined as a primary-backup, Chain Replication (CR) or Two-Phase 

Commit (2PC), allowing the protocol to be optimized for high throughput, while the simple 

Paxos is only invoked during reconfiguration. This optimization is possible with the assumption 

that there is an out-of-band synchronous control channel for reconfiguration purposes. In this 

case, steady-state mode requires  replicas, reconfiguration mode –  replicas. 

 
5.1. Wedging a Replicated State-Machine 
 

State-Machine Replication (SMR) involves reaching agreement on a sequence of state-machine 

commands, where consensus on each command is reached independently. In the steady state, a 

fixed set of replicas and a fixed algorithm drive decisions. 

 

Reconfiguration alters the steady-state mode when the system initiates changing the entire set of 

replicas or replacing a leader in a leader-based scheme. 

 

The core mechanism employed for reconfiguration is a wedging scheme. A wedging coordinator 

collects validation from a wedge – a subset of replicas – and retrieves the latest state the wedge 

stores, including all stored proposals across sequence positions. 

 

The coordinator then initiates a consensus decision for reconfiguration, which is handled by a 

separate Byzantine consensus component known as the reconfiguration engine. Importantly, the 

reconfiguration consensus decision itself has two components: next configuration and closing 

state. The second component, the closing state, plays a crucial role because reconfiguration may 

begin while some consensus decisions are still in progress. For example, in a -of-

 scheme, a wedging coordinator collects information from , leaving the 

remaining  unknown. If the coordinator observes that  (of the ) voted for a certain 

state-machine command, the only safe option is to include that command in the closing state. It is 

assumed that it is unknown whether the remaining  replicas have or will ever vote. 



34                                   Computer Science & Information Technology (CS & IT) 

 

 

After the wedging procedure is complete and a consensus on the reconfiguration is reached, the 

SMR implementation switches to a conceptually new system (although the configuration change 

itself may be minimal, e.g., a leader change). 

 

5.2. Asynchronous Model 
 

In this model, PBFT has 4 rounds and  replicas for the steady state, and Zyzzyva uses 3 

rounds in the optimistic case and requires  replicas for a steady state. In both cases, 

reconfiguration requires  replicas. 

 
5.3. Synchronous-Reconfiguration Model 
 

BVP provides two options in the synchronous model: a 4-round (4 message delays) solution with 

 replicas, and a 3-round solution with  replicas. 

 

4-Round: The first option is a steady-state mode with one (trivial) quorum of  replicas. Can 

run a standard 4-round protocol: 

 
Table 1. A standart 4-round protocol. 

 
Round 1 Client sends to Primary 

Round 2 Primary signs and sends to all  

Round 3 All  send signed-echoes of the Primary‘s message to each other 

Round 4 Each of  sends a composite message containing all signed-echoes to Client 

Client proceeds when all  composites arrive 

Closing state Every composite containing  signed echoes 

 

Reconfiguration is executed if at any stage the delay gets too large and, in this case, the model 

must be synchronous. Reconfiguration is handled as follows: To prevent Byzantine replicas from 

truncating the history of validated Primary commands, the wedging coordinator must contact all 

non-faulty replicas. It is assumed that the response of the non-faulty replica might arrive within a 

certain period of time, given the delay time. After this time, the coordinator reviews the 

responses. Then, for each command for which a composite message with  signed echoes 

has been received, the coordinator adopts it in the closing state. 

3-Round: The second option is a steady-state mode with one (trivial) quorum of  replica, 

a Zyzzyva-like 3-round protocol: 

 
Table 2. A standart Zyzzyva-like 3-round protocol. 

 
Round 1 Client sends to Primary 

Round 2 Primary signs and sends to all  

Round 3 All  send signed-echoes of the Primary‘s message to Client 

Client proceeds when all  composites arrive 

Closing state Every command which has  signed echoes 
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5.4. Asynchronous Model with a TPM 
 

In this setting, servers are equipped with a Trusted Platform Module. Formally, it is assumed a 

weak sequential broadcast WScast ensures that: 

 
1. Messages originating from the same sender are delivered in the same order by all correct 

processes. This ordering is constructed as a per-sender, similar to FIFO broadcast. 

2. If the sender is correct, then all processes will eventually receive all messages it sends. 

The model implements SMR in a steady state through a 3-round protocol requiring just  

replicas, while maintaining linear message complexity. 

 
Table3. A SMR solution with a 3-round protocol 

 

Round 1 Client sends to Primary 

Round 2 Primary WCast to all  

Round 3 All  WCast echoes of the Primary‘s message to Client 

Client proceeds when  echoes arrive 

Closing state Every command which has  signed echoes 

The requirement of only  replicas and the linearity of communication in terms of the number 

of replicas makes the TMP approach more efficient. In addition, it is possible to use the “proof of 

elapsed time” to simplify and increase the efficiency of the leader election part inside the 

reconfiguration service. 

 

6. KURSAWE‘S OPTIMISTIC BYZANTINE AGREEMENT 
 

Optimistic Byzantine Agreement (or OBA) [3] is a protocol, which is very close to Byzantine 

Fast Paxos. The main idea of OBA is to use different parts of it depending on the conditions that 

may affect the system. I.e., it uses optimistic protocol (part) when the system is not under attack 

and the environment is not behaving in a hostile manner. But, if the environment turns out to be 

less friendly, the performance is slightly lower compared to non-optimistic protocols, but security 

remains unaffected. In practice, it works as follows: the protocol tries to reach the agreement by 

an optimistic phase, believing that the system works in a friendly environment and tests the 

results; if any inconsistencies are detected, the system invokes the asynchronous, reliable fallback 

protocol. Note that it is possible that some parties decide in the optimistic part of the protocol and 

another in the fallback; in this case, the protocol guarantees that agreement holds anyway. 

 
6.1. Model and Problem Setting 

There are  parties  up to ,  of which may be corrupted by an adversary and 

might behave arbitrarily maliciously. The model uses “time”, however, it is very well 

implementable in a fully asynchronous system, unlike failure detectors. Out timeout corresponds 

to a failure detector that only needs to satisfy completeness, but not accuracy; in a system it 

"implements" the timeout mechanism. To this end, each protocol instance has a special state 

variable timer, which can take on the values stopped or running. Initially, the timer is stopped. A 

thread can change this value by either executing start timer or stop timer commands, or inspect 

the value of the timer. The start timer command works by having the thread send a unique 

message to itself. The adversary simulates a timeout by delivering this message. Upon delivery, 

the timer is considered stopped, and if the thread is blocked waiting on a timeout, it is then 

resumed. 
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Byzantine Agreement. A party is activated for a particular instance  of the Byzantine 

agreement protocol by receiving a message (ID, PROPOSE, initial value), where initial value is 

. Besides normal messages, it may send a message (ID, DECIDE, final value). In the last 

case,  decides final value for .  may make a decision for a given  at most once. However, 

the adversary may continue to deliver messages with  after a decision for it. 

There are three basic properties that an agreement protocol must satisfy: 

 

1. Agreement. Any two honest parties that decide on a value for a particular  must 

decide on the same value. More precisely, it is computationally infeasible for an 

adversary to cause honest parties to disagree. 

2. Validity. If all honest parties have been activated with the same initial value on a given 

ID, then all of those parties must decide on that value. 

3. Termination. Since it is not possible to use the traditional definition of termination, the 

model constructs computation time in terms of messages sent, and split termination into 

two conditions: deadlock freeness and efficiency: 

 

a. Deadlock freeness. It is computationally infeasible for an adversary to induce a 

state where, for a given , all honest-party messages have been delivered, and 

every party has been activated, while some honest parties remain undecided. 

b. Efficiency. For each , the communication complexity is probabilistically 

uniformly bounded. 

 

For the pessimistic phase, the model uses the efficient randomized protocol. 

Returning to the description of the protocol phases, it is logical that the optimistic phase does not 

need to terminate with a decision. In the optimistic case, an agreement is reached in optimal time. 

Furthermore, no expensive computation (for example, due to public key cryptography) is needed. 

In the pessimistic case, when the optimistic pre-protocol invokes the fallback protocol, if few 

failures occur, the system invokes the fallback protocol in which all honest parties have the same 

start value. This causes the protocol to terminate quite fast. 

 

6.2. The Protocol 
 

Each party , , gets an input value  and a corresponding transaction identifier . 

The protocol outputs some decision value  or invokes the fallback protocol BA. While a party 

decides  in the optimistic protocol and still invokes the fallback protocol, the decision of BA is 

ignored. To ensure validity, if any honest party decides  in the optimistic part of the protocol, 

then the decision in BA can only be . 

-BA works in four phases: 

 

1. Simple Agreement: In a simple non-Byzantine agreement protocol, each participant 

broadcasts its preference and waits to receive preferences from all other parties. 

2. Commit and Check for Decision: Every party commits to the value it perceives as the 

output of the simple agreement protocol. If it receives  identical commitments from all 

parties, then it can decide. 
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3. Decide and Hibernate: A party that decides cannot completely terminate the protocol, 

as it is possible that some other party could not reach a decision. Instead, decided parties 

hibernate; they remember their decision for this transaction, but do nothing unless a 

complaint is received. 

4. Complain and Recover: A party that receives either inconsistent or insufficient 

responses broadcasts a complaint. Upon receiving such a complaint, an honest party 

initiates the pessimistic phase of the protocol. 

 

 
 

Figure 10. Pseudocode of the Optimistic-Byzantine Agreement protocol. 

 

7. RESULTS 
 

The key takeaway is that the numbers of processes, rounds, and messages all depend on each 

other. The choice, therefore, consists of balancing these and considering additional useful 

features, such as fast ballots or engineering optimizations. So now, let us give a short summary of 

each protocol: 

 
1. The BPCon is a simple modification for Paxos to make it byzantine. It has a classic two-

phase structure, which only differs from the classic Paxos in two steps (1c and 2av (ex. 

2a)). 

2. The CLA is a refined BPCon that contains optimizations allowing to reduce the number 

of messages and simplify communication. 

3. The BGP is a model that provides two communication steps. At the cost of more 

complex implementation it provides lower costs for communication. It has one 

interesting property – it allows to choose not just one value, but a whole sequence of 

commands. Also, the protocol maintains two modes of ballots: fast and classic. Classic 

ballots look like an original Paxos ballots when the leader communicates with other 

processes in a system. In fast ballots, proposers can send their proposal directly to the 

acceptors without a leader and, if there is no conflict at this stage, they can commit their 

result. Note that the leader must construct messages for a proposal within the rules. 
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4. The BVP is a model that has two modes: a simple steady-state protocol and a 

reconfiguration protocol. The system requires a reconfiguration for changing replicas or 

the leader, which uses the wedge scheme mechanism. Note that reconfiguration requires 

a separate Byzantine consensus engine. 

5. The OBA is a model that uses two modes. In the optimistic phase, the system is assumed 

to not be under attack. Then, the system tries to decide on some value and tests the 

results. If something goes wrong, the system invokes the pessimistic mode, which can 

solve the consensus problem in any case. This mode requires slightly more 

communication than the base protocol and usage of public-key cryptography. 

 
Table 6: Number of messages in a successful scheme, where N – number of acceptors, P – number of 

proposers, L – number of learners, p – number of proposals. 

 
Algorithm BPCon, 

 

CLA, 

 

BGP, 

 

BVP,  

 or  

OBA, 

 

Leader → Acceptors      
Leader → Proposers      
Acceptors → 

Acceptors 
     

Acceptors → Leader      
Acceptors → Learners      
Proposers → Proposers      
Learners → Proposers      
Learners →  Learners      
Proposers → Leader      
Acceptor → Proposers     (only in 4 -rounds)  
Total number 

   4-rounds:  

3-rounds:  
 

 

 

8. CONCLUSIONS 
 

Comparing the algorithms with each other, as well as considering the future prospects of 

implementation, we prefer the BPCon algorithm. The rationale for this choice is as follows: 

canonical implementation with two phases and optimal number of processes, a simplified 

communication between system processes, proximity to well-known BFT algorithms. 

We consider the use of a two-phase algorithm in conjunction with  processes to be the 

most optimal scheme that can provide robustness properties. Having more rounds is not 

inherently bad, but at the very least incurs an additional message delay. Namely, BVP’s 3 and 4-

round modes have delay time up to twice as long. Also, it requires a Trusted Platform module for 

the asynchronous model. In contrast, FaB’s (and PFaB’s)  processes make it harder to 

assemble a byzquorum. 

Another important item pertains to the number of messages needed. By using  step in BPCon, 

acceptors do not need to communicate about their pre-choices. But BGP requires that  acceptors 

send  messages. It also needs additional communication with proposers and learners. It might 
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be a good property when the system needs to propose a lot of values concurrently (BGP supports 

voting for a set of commands), but suboptimal in the classic case. 

 

Moreover, BPCon main steps are quite similar to PoS BFT algorithms, such as Tendermint [7], 

Catchain [8], HotStuff [9], GRANDPA [10], RBFT[11] , etc. The general idea of these 

algorithms is three successive steps of the system: prevote, precommit and commit. In BPCon, 

acceptors send confirmations for the value from the leader (prevote). The leader sends acceptors 

the pre-vote that it received (precommit). And after that, if acceptors do not need to launch the 

 phase, they vote for values (commit). In Tendermint and GRANDPA nodes receive 

messages from each other at the prevote step, then do the same at the precommit step and, if we 

consider the optimistic situation, they send and receive a commit as a result of consensus. RBFT, 

Catchain and HotStuff look similar, but they involve more explicit communication with the 

leader. 

 

However, we believe that BPCon is more of a temporary solution. Further research should be 

developed into new consensus approaches that comply with modern security requirements, 

including BFT, and can achieve effective performance evaluations. 
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