

David C. Wyld et al. (Eds): CRYPIS, CBIoT, CAIML, NLCA, NC, WiMo, ICAIT, ICDIPV, ITCSE – 2025

pp. 23-40, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151702

ANALYSIS OF EFFICIENCY AND
SECURITY OF EXISTING BFT
PAXOS-BASED ALGORITHMS

Illia Melnyk 1,2, Oleksandr Kurbatov 2, Oleg Fomenko 2, Volodymyr

Dubinin 2 and Yaroslav Panasenko 2

1 National Technical University of Ukraine, “Igor Sikorsky Kyiv

Polytechnic Institute”
2 Distributed Lab, Kyiv, Ukraine

ABSTRACT

Byzantine fault tolerant consensus plays a critical role in maintaining the reliability of

distributed systems. This paper surveys and evaluates five Paxos-based algorithms –

Byzantine classic Paxos consensus, Castro-Liskov algorithm, Byzantine generalized Paxos

consensus, Byzantine vertical Paxos, and Optimistic Byzantine Agreement – comparing

their efficiency in terms of process requirements, communication rounds, and message

complexity, as well as their resilience against Byzantine behaviors. Through detailed

examination of protocol structures and performance trade-offs, we identify the strengths

and limitations of each approach under typical and adversarial conditions. Our analysis

reveals that the two-phase Byzantine classic Paxos consensus protocol achieves an optimal

balance of simplicity, low process overhead, and robust security guarantees, making it a

compelling choice for practical Byzantine fault tolerant deployments. We conclude with

recommendations for selecting an appropriate consensus algorithm based on system

constraints.

KEYWORDS

Byzantine fault tolerance, Paxos-based consensus, Communication complexity, Process

requirements, Distributed system security

1. INTRODUCTION

The consensus problem can be described in terms of the actions taken by three classes of agents:

proposers, who propose values, acceptors, who are responsible for choosing a single proposed

value, and learners, who must receive the chosen value. This model looks simple, but in practice,

there are a lot of challenges if we need to provide safety and liveness properties here. The goal of

this paper is to determine the optimal algorithm from the Paxos family for selecting a coordinator

in the Threshold Signature Scheme (TSS), providing the Byzantine fault tolerance (BFT)

property. Some of these schemes require signers to elect a specific signer as a coordinator to

facilitate both the distributed key generation and signing round steps of the protocol. Since

signers are distributed and mutually distrustful, TSS coordinator selection is fundamentally a

Byzantine setting. Note that not only can individual signers be faulty, but also the coordinator

may be faulty.

https://airccse.org/
https://airccse.org/csit/V15N17.html
https://doi.org/10.5121/csit.2025.151702

24 Computer Science & Information Technology (CS & IT)

In general, Paxos is considered a complex and abstract algorithmic concept. It is often mentioned

in contrast to the simpler consensus algorithm Raft. However, Raft is a leader-centric scheme that

cannot tolerate node or partition failures. Therefore, we chose to study the Paxos family of

algorithms, which are considered a reliable classical model of consensus protocols.

Our Contribution and Results. First, we collected the five most promising Paxos BFT algorithms,

which are detailed in Table 1 of Section 1.1. Section 2 details the foundations of the original

Paxos. In Sections 3-6, we provide a detailed description of each BFT algorithm. We will start

with the BPCon and Castro-Liskov algorithms, which are the closest to the original scheme and

offer a balance of simplicity and efficiency. Next is Byzantine Generalized Paxos, which allows

weakening security conditions under certain circumstances. It is considered a complex

modification of Paxos, but maintains efficiency. Vertical Paxos is a more specific algorithm that

allows changing consensus modes depending on the situation, but requires more rounds of

exchanges. Kursawe‘s Optimistic Byzantine Agreement also uses different modes depending on

the conditions that may affect the system. This protocol is very similar to Byzantine Fast Paxos,

which we did not include in our work. Although Fast Paxos is considered quite simple, it requires

a large number of honest participants compared to others. We summarize our findings in Section

7. Table 6 shows the most extensive comparison of all algorithms by the number of messages.

Table 1. A summary of the algorithms that we compared. By f we denote the number of

Byzantine processes.

Algorithm Number of process Number of rounds Features

BPCon

2 Paxos-shaped scheme.

CLA

2 Modified BPCon with engineering

optimizations

BGP

2 Allows to accept increasing sequence of

command; anyone can be a leader; has

two ballot options: classic and

fast(without leader).

BVP or 4 or 3 Has two modes: steady state and

reconfiguration protocols; uses wedging

scheme

OBA

2 in optimistic

case, 4 - otherwise

Has two phase: optimistic (fast agreement,

works only in a friendly environment) and

pessimistic (if environment is a malicious,

should require public-key signatures)

1.1. Related Work

Our study focuses on comparing the BFT Paxos algorithms. Previous works, however, compared

Paxos only with other consensus algorithms or focused on a specific protocol.

One of the earliest mentions of BFT properties in the context of Paxos appears in the work of

Castro and Liskov[1]. The authors note that their BFT algorithm can be viewed as a modification

of Paxos in many aspects. Around the same time, Lamport formally described the Byzantine

Paxos and later published the BPCon algorithm [2].

Other works have appeared later [3, 4, 5, 6], typically proposing a scheme where there is a fast

consensus option under optimistic conditions and a standard one that includes cases where nodes

(processes) may be faulty or byzantine.

Computer Science & Information Technology (CS & IT) 25

2. PRELIMINARIES

Here are some terms for general understanding:

Safety – a property that must satisfy two stages: agreement, that no two correct processes decide

on different values and validity, that a correct process decides on a valid value.

Liveness – a property that provide termination, that every correct process eventually decides on a

value.

Fault tolerance – is an ability of a model to continue operating without interruption while some

processes fail. In the context of Paxos, fault tolerance guarantees that the algorithm can tolerate

the failure of a minority of nodes (acceptors) and still reach consensus.

2.1. Classic Paxos

Paxos proposes the procedure of conducting numbered ballots, each orchestrated by a leader

(multiple ballots with different leaders concurrently are possible). Let N be the number of

acceptors, f of whom may fail and N>f. Let a quorum be any N-f acceptors. For safety, any two

quorums must have a non-empty intersection, which is true if N>2f.

The general scheme of the Paxos phases is as follows:

The ballot-b leader sends a 1a message to all acceptors.

Each acceptor responds to the leader‘s ballot-b 1a message with a 1b message. This message

contains either the number of the highest-numbered ballot in which acceptor has voted and the

value it voted, or a statement that it has cast no votes.

The leader chooses a value v that is safe at b using the 1b messages sent by a quorum of

acceptors and sends a 2a message containing this value to the acceptors.

Upon receiving the leader‘s ballot-b 2a message, an acceptor votes for v in ballot b by sending a

2b message.

The algorithm maintains the following properties:

P1. An acceptor can vote for a value v in ballot b only if v is safe at b.

P2. Different acceptors cannot vote for different values on the same ballot.

P3a. If no acceptor in the quorum has voted in a ballot numbered less than b, then all values are

safe at b.

P3b. Let c be the highest-numbered ballot less than b in which some acceptor voted. The value

voted for in ballot c is safe at b.

Properties P3a and P3b are necessary to ensure that the leader determines a safe value from the

ballot-b 1b messages.

26 Computer Science & Information Technology (CS & IT)

2.1.1. Pcon Scheme

In addition, we describe a more general scheme of the classic Paxos, called PCon. It is almost

identical to the above scheme, except that it splits phase 2a into two sub-phases, shifting the

leader’s selection of the sent values to phase 1c, where it reports which multiple values are safe,

and modifies phase 2a accordingly:

 ‘

Using the 1b messages from a quorum of acceptors, the leader chooses a set of values that are

safe at b and sends a 1c message for each of those values.

The leader sends a 2a message containing the value for which a 1c message was previously sent.

Note that it also requires the use of the following properties for choosing a safe value:

P3a. If no acceptor in the quorum has voted in a ballot numbered less than b, then all values are

safe at b.

P3c. If a ballot-c message with value v has been sent, for some c<b, and (i) no acceptor in the

quorum has voted in any ballot greater than c and less than b, (ii) and any acceptor in the quorum

that has voted in ballot c voted for v in that ballot, then v is safe at b.

3. BPCON (BYZANTINE CLASSIC PAXOS CONSENSUS)

BPCon [2] is a consensus algorithm that has acceptors, of which are byzantine.

Let’s define the set of as the union of the byzantine, and honest acceptors, and

 as a subset of that always contains a quorum of acceptors. If the

quorum consists of any acceptors, then a consists of any .

For liveness, it is assumed that the set of all honest acceptors (which are assumed to never fail)

forms a . This assumption guarantees that even in the worst-case scenario, the

system still has at least q real acceptors that can complete the voting phase and ensure the

progress of the protocol.

3.1. BPCon‘s Phases

At first, consider the difference between BPCon and non-byzantine Paxos:

1. There is no explicit Phase action. Instead, acceptors cooperate to emulate sending a

message. The ballot-b leader requests that a Phase 2a action be performed for a value

that was already proposed in one of the messages. When an acceptor receives the first

such request, it performs a Phase action and sends a ballot- message with that

value.

2. The algorithm tolerates malicious leaders, meaning that the ballot- leader may send

arbitrary and messages. The BPCon Phase 1c action allows the ballot- leader to

send any ballot- message at any time. It is essential that acceptors only accept a

message if it is legal. A nonfaulty leader must send a message that prompts (honest)

acceptors to act, to guarantee liveness.

Computer Science & Information Technology (CS & IT) 27

3. In non-byzantine Paxos, a ballot- message can be sent only after collecting a set of

messages from a quorum and possibly a message (follows from the properties). In

BPCon, additional information is put in the messages to enable the deduction that

message was sent. An acceptor includes in its messages the set of all messages that

it has sent – except that for each value , it includes (and remembers) only the

message with the highest numbered ballot that it sent for . Each of those messages is

sent in response to a legal message.

Also, BPCon should provide the following conditions:

1. BP3a. Each message in asserts that its sender has not voted.

2. BP3c. For some and some value :

 each message in asserts that (i) its sender has not voted in any ballot greater than

and (ii) if it voted in then that vote was for

 there are messages (not necessarily in) from byzacceptors saying that they

sent a message with value in ballot .

A little thought shows we can weaken condition (b) of BP3c to assert:

. there are messages from byzacceptors saying that they sent a message

with value in a ballot .

After the above statements and details, let us describe the general scheme of the action phases:

 The ballot- leader sends a message to the acceptors

 An acceptor responds to the leader‘s ballot- message with a message. This message

contains either the number of the highest-numbered ballot in which it has voted and the value it

voted for in that ballot, or a statement that it has cast no votes.

 Using the messages from a byzquorum of acceptors, the leader chooses a set of values

that are safe at and sends a message for each of those values.

 An acceptor received the necessary action and send a ballot- message if it has not

already done so.

 Upon receipt of the messages, an acceptor votes for in ballot by sending a

message (whereas value should be from a quorum of acceptors and no two acceptors can

execute Phase actions for different values)

3.2. Bpcon‘S Liveness

The liveness requirements of BPCon are the same as non-byzantine Paxos: a nonfaulty leader

executes a ballot , no leader begins a higher-numbered ballot, and the leader and nonfaulty

acceptors can communicate with one another. However, it is difficult to ensure that a Byzantine

leader does not execute a higher-numbered ballot. This requires an engineering solution based on

real-time assumptions, such as the one proposed by Castro and Liskov. To guarantee liveness of

BPCon under these requirements, the following two conditions must be satisfied:

28 Computer Science & Information Technology (CS & IT)

BL1. The leader can find messages satisfying BP3a or BP3c

BL2. All honest acceptors will know that those messages have been sent

These two conditions imply that that the leader will send a legal message, a byzquorum BQ of

honest (nonfaulty) acceptors will receive that message and send messages, all the

acceptors in BQ will receive those messages and send messages. Learners, upon

receiving those messages will learn that the value has been chosen.

3.3. Castro-Liskov Algorithm

The Castro-Liskov algorithm (or CLA) is a refined BPCon that contains engineering

optimizations for dealing with the sequence of instances – in particular, for garbage collecting old

instances and for transferring state to repaired processes.

In the CLA, byzacceptors are called replicas. The ballot- leader is the replica called the primary,

other byzacceptors being called backups. The replicas also serve as learners.

General scheme of the action phases:

 There is no explicit message; its sending is emulated cooperatively by replicas when

they decide to begin a view change.

 This is the view-change message

 When a view change occurs, the new-view message replaces messages for all consensus

instances. For an instance in which the primary instructs the replicas to choose a specific value, it

is a message with that value; for other instances – a set of messages for all values

(satisfying BP3a). Acceptors validate the corresponding messages concurrently for all

instances.

 This is a backup’s prepare message. The primary’s pre-prepare message serves both as its

 message and as the implicit request (not modeled in BPCon) to perform a Phase 2a action.

 This is the commit message.

4. BGP (BYZANTINE GENERALIZED PAXOS)

Byzantine Generalized Paxos consensus (or BGP) [6] – modification of one of the most recent

algorithms of the Paxos family. Generalized Paxos allows weakening the security conditions

when different processes may have different views of the agreed sequence.

BGP includes two subprotocols: View-change and Agreement. View-change ensures that at any

given moment, a leader can be elected from one of the proposers by continuously replacing

leaders until one that can ensure progress is found. Then, the chosen leader runs the Agreement,

which extends the current sequence with a new command or a set of them. It is important to note

that there are two ways to choose this extension: using either classic ballots, as in the original

Paxos, or fast ballots which leverage a weaker specification of generalized consensus.

Very briefly, here is the model and simplifications that [6] used to build the protocol. It is an

asynchronous system in which a set of processes communicate by sending and receiving

Computer Science & Information Technology (CS & IT) 29

messages. Processes may fail if they crash and stop executing the algorithm, or if they do not

follow an algorithm, which means they are Byzantine. It is considered that a non-Byzantine

process is correct. The processes may have the following roles: learner, proposer or acceptor.

Proposers submit input values to be agreed upon by learners, while acceptors assist learners in

reaching consensus on a single value. BGP requires the condition , where is the

minimum number of acceptor processes, and is the maximum number of tolerated Byzantine

faults.

In a simplified specification, each learner maintains a monotonically increasing sequence of

commands . To operate on them, a C-struct is usually used, which provides an

abstraction of increasing sequences and allows defining various consensus problems.

Two learned sequences of commands are defined as equivalent (~) if one of them can be

transformed into the other by rearranging the elements in such a way that the order of non-

commutative pairs is preserved. A sequence is called an equiprefix of another sequence

 if the subsequence containing all elements of is equivalent () to . Instead of

using C-structures, BGP suggests using the matching of equivalent sequences of commands:

1. Nontriviality. If all proposers are correct, can only contain proposed commands.

2. Stability. If then, at all later times, , for any sequence and

correct learner.

3. Consistency. At any time and for any two correct learners and , and

 can subsequently be extended to equivalent sequences.

4. Liveness. For any proposal from a correct proposer, and correct learner , eventually

 contains .

Figure 1. Pseudocode of the proposer p in the Byzantine Generalized Paxos algorithm.

4.1. View-Change

The aim of View-change is to elect a leader among the proposers who performs the agreement

protocol. The system moves through sequentially numbered views, where the leader of each view

is chosen in a rotational fashion using the equation: . To ensure

continuous operation, acceptor processes monitor the progress of appending commands. If

progress stalls, acceptor multicasts a signed suspicion message about the current leader to all

30 Computer Science & Information Technology (CS & IT)

acceptors. An acceptor that collects suspicions from other processes can multicast a view-

change message consisting of the new view number and the suspicions. Once other acceptors

receive and validate a view-change message, they can create and multicast their own.

Finally, an acceptor process must wait for view-change messages before it can start

participating in the new view. This involves updating its view number and the corresponding

leader process. The acceptor then assembles the view-change messages proving that others

are committing to the new view and sends them to the new leader. Once the new leader validates

the signatures contained in a single message, it can begin its leadership role in the new

view.

 Figure 2. Pseudocode of leader ℓ in the Byzantine Generalized Paxos algorithm.

4.2. Agreement Protocol

In BGP, each ballot represents an extension of the learned command sequence in a single

consensus instance. Proposers may create proposals, consisting of either a single command or a

sequence of commands.

Ballots can be either classic or fast. Classic ballots work as follows:

1. The leader continuously collects proposals by assembling all commands that are received

from the proposers since the previous ballot in a sequence.

2. When the next ballot is triggered, the leader begins the first phase by sending phase

messages to all acceptors. These messages contain the ballot number.

3. Similarly to classic Paxos, acceptors send all sequences of commands they voted for in a

Phase message to the leader. The leader needs to collect proofs from the Phase

Computer Science & Information Technology (CS & IT) 31

1b messages that guarantee that, for any learned sequence , at least one of the messages is

from a correct acceptor that participated in the verification phase of . In essence, for BGP,

 identical votes for a value ensure that at least one correct acceptor has voted.

Therefore, the leader needs to collect votes to determine the majority for some

value. Note that Byzantine acceptors cannot change the value they are voting for because

the proposer signs it. However, they may omit this value from the message .

4. Once the leader collects a quorum of Phase messages, it proceeds to Phase ,

during which it prepares a proposal for the acceptors. This proposal sequence must be

constructed in the following steps:

a) The leader initiates the proposal sequence with the longest proven among the Phase

 messages. This selection can be made deterministically, since any two such sequences

are either equivalent or one extends the other. This holds because, under the conditions

described above, there is always at least one correct acceptor who votes for both of any

two proven sequences. Importantly, a vote from a correct acceptor is always an extension

of previous votes from the same ballot. If there are multiple sequences of equal maximum

length, the leader may choose any one of them.

b) The second part of the sequence consists of a concatenation of unproven sequences or

commands, arranged in an arbitrary order. Since a learner requires Phase

messages to learn a sequence, and since the intersection of the quorum and leader’s

quorum contains at least one correct acceptor, the leader can be confident that if a sequence

is unproven in all received Phase messages, then it has not yet been learned and may be

safely appended to the leader’s sequence in any order.

c) The third part includes commands newly proposed to the leader with the intent of being

learned at the current ballot. Since these values are being proposed for the first time, they

may be appended in any order without restriction.

Fast ballots simplify the procedure and allow any proposer to contact all acceptors to extend the

current sequence within only two message delays (if there are no conflicts of parallel proposals).

The procedure works as follows:

1. Proposer to acceptors. Fast ballot is initiated by the leader, allowing proposers to send

proposals directly to the acceptors. Acceptors then receive either a single command or a

sequence to append to the history.

2. Acceptors to acceptors. Each acceptor appends the received proposals to other accepted

proposals in the current ballot. Then it broadcasts the result, which contains a signed tuple

of the current ballot and the sequence being voted for. Requiring votes for a

sequence of commands ensures that out of two sequences in which the non-commutative

commands have different order, only one sequence will receive enough votes. This is true

even if all Byzantine acceptors vote for both sequences, since the remaining

correct acceptors will vote for one sequence.

3. Acceptors to learners. Acceptors send to learners Phase messages, which contain the

current ballot number, the command sequence and the proofs gathered in the

verification round. To guarantee that the leader will know what values have been proven

and learned, learners must collect Phase messages (a guarantee that at least one

correct acceptor will relay the last verified sequence to the leader).

32 Computer Science & Information Technology (CS & IT)

4. Arbitrating an order after a conflict. In case of proposed non-commutative commands,

acceptors may have sequences in different orders that will not be equivalent and will not be

learned. Then, the leader runs a classic ballot and collects these unlearned sequences in

phase . The leader will then arbitrate a single serialization of all previously proposed

commands and send it to the acceptors. This ensures that the learners will learn the

commands in a unique order, thereby preserving consistency.

Figure 3. Pseudocode for acceptor a during the view-change phase of the Byzantine Generalized Paxos

algorithm.

Figure 4. Pseudocode for acceptor a during the agreement phase of the Byzantine Generalized Paxos

algorithm.

Computer Science & Information Technology (CS & IT) 33

Figure 5. Pseudocode for learner ℓ in the Byzantine Generalized Paxos algorithm

5. BYZANTINE VERTICAL PAXOS

Byzantine Vertical Paxos (or BVP) [5] – is a protocol that focuses on two aspects, elasticity

(dynamic reconfiguration) and throughput, and is a Byzantine variant of Vertical Paxos. Vertical

Paxos has two modes: a simple steady-state protocol and a Paxos-based reconfiguration protocol.

The steady-state is often defined as a primary-backup, Chain Replication (CR) or Two-Phase

Commit (2PC), allowing the protocol to be optimized for high throughput, while the simple

Paxos is only invoked during reconfiguration. This optimization is possible with the assumption

that there is an out-of-band synchronous control channel for reconfiguration purposes. In this

case, steady-state mode requires replicas, reconfiguration mode – replicas.

5.1. Wedging a Replicated State-Machine

State-Machine Replication (SMR) involves reaching agreement on a sequence of state-machine

commands, where consensus on each command is reached independently. In the steady state, a

fixed set of replicas and a fixed algorithm drive decisions.

Reconfiguration alters the steady-state mode when the system initiates changing the entire set of

replicas or replacing a leader in a leader-based scheme.

The core mechanism employed for reconfiguration is a wedging scheme. A wedging coordinator

collects validation from a wedge – a subset of replicas – and retrieves the latest state the wedge

stores, including all stored proposals across sequence positions.

The coordinator then initiates a consensus decision for reconfiguration, which is handled by a

separate Byzantine consensus component known as the reconfiguration engine. Importantly, the

reconfiguration consensus decision itself has two components: next configuration and closing

state. The second component, the closing state, plays a crucial role because reconfiguration may

begin while some consensus decisions are still in progress. For example, in a -of-

 scheme, a wedging coordinator collects information from , leaving the

remaining unknown. If the coordinator observes that (of the) voted for a certain

state-machine command, the only safe option is to include that command in the closing state. It is

assumed that it is unknown whether the remaining replicas have or will ever vote.

34 Computer Science & Information Technology (CS & IT)

After the wedging procedure is complete and a consensus on the reconfiguration is reached, the

SMR implementation switches to a conceptually new system (although the configuration change

itself may be minimal, e.g., a leader change).

5.2. Asynchronous Model

In this model, PBFT has 4 rounds and replicas for the steady state, and Zyzzyva uses 3

rounds in the optimistic case and requires replicas for a steady state. In both cases,

reconfiguration requires replicas.

5.3. Synchronous-Reconfiguration Model

BVP provides two options in the synchronous model: a 4-round (4 message delays) solution with

 replicas, and a 3-round solution with replicas.

4-Round: The first option is a steady-state mode with one (trivial) quorum of replicas. Can

run a standard 4-round protocol:

Table 1. A standart 4-round protocol.

Round 1 Client sends to Primary

Round 2 Primary signs and sends to all

Round 3 All send signed-echoes of the Primary‘s message to each other

Round 4 Each of sends a composite message containing all signed-echoes to Client

Client proceeds when all composites arrive

Closing state Every composite containing signed echoes

Reconfiguration is executed if at any stage the delay gets too large and, in this case, the model

must be synchronous. Reconfiguration is handled as follows: To prevent Byzantine replicas from

truncating the history of validated Primary commands, the wedging coordinator must contact all

non-faulty replicas. It is assumed that the response of the non-faulty replica might arrive within a

certain period of time, given the delay time. After this time, the coordinator reviews the

responses. Then, for each command for which a composite message with signed echoes

has been received, the coordinator adopts it in the closing state.

3-Round: The second option is a steady-state mode with one (trivial) quorum of replica,

a Zyzzyva-like 3-round protocol:

Table 2. A standart Zyzzyva-like 3-round protocol.

Round 1 Client sends to Primary

Round 2 Primary signs and sends to all

Round 3 All send signed-echoes of the Primary‘s message to Client

Client proceeds when all composites arrive

Closing state Every command which has signed echoes

Computer Science & Information Technology (CS & IT) 35

5.4. Asynchronous Model with a TPM

In this setting, servers are equipped with a Trusted Platform Module. Formally, it is assumed a

weak sequential broadcast WScast ensures that:

1. Messages originating from the same sender are delivered in the same order by all correct

processes. This ordering is constructed as a per-sender, similar to FIFO broadcast.

2. If the sender is correct, then all processes will eventually receive all messages it sends.

The model implements SMR in a steady state through a 3-round protocol requiring just

replicas, while maintaining linear message complexity.

Table3. A SMR solution with a 3-round protocol

Round 1 Client sends to Primary

Round 2 Primary WCast to all

Round 3 All WCast echoes of the Primary‘s message to Client

Client proceeds when echoes arrive

Closing state Every command which has signed echoes

The requirement of only replicas and the linearity of communication in terms of the number

of replicas makes the TMP approach more efficient. In addition, it is possible to use the “proof of

elapsed time” to simplify and increase the efficiency of the leader election part inside the

reconfiguration service.

6. KURSAWE‘S OPTIMISTIC BYZANTINE AGREEMENT

Optimistic Byzantine Agreement (or OBA) [3] is a protocol, which is very close to Byzantine

Fast Paxos. The main idea of OBA is to use different parts of it depending on the conditions that

may affect the system. I.e., it uses optimistic protocol (part) when the system is not under attack

and the environment is not behaving in a hostile manner. But, if the environment turns out to be

less friendly, the performance is slightly lower compared to non-optimistic protocols, but security

remains unaffected. In practice, it works as follows: the protocol tries to reach the agreement by

an optimistic phase, believing that the system works in a friendly environment and tests the

results; if any inconsistencies are detected, the system invokes the asynchronous, reliable fallback

protocol. Note that it is possible that some parties decide in the optimistic part of the protocol and

another in the fallback; in this case, the protocol guarantees that agreement holds anyway.

6.1. Model and Problem Setting

There are parties up to , of which may be corrupted by an adversary and

might behave arbitrarily maliciously. The model uses “time”, however, it is very well

implementable in a fully asynchronous system, unlike failure detectors. Out timeout corresponds

to a failure detector that only needs to satisfy completeness, but not accuracy; in a system it

"implements" the timeout mechanism. To this end, each protocol instance has a special state

variable timer, which can take on the values stopped or running. Initially, the timer is stopped. A

thread can change this value by either executing start timer or stop timer commands, or inspect

the value of the timer. The start timer command works by having the thread send a unique

message to itself. The adversary simulates a timeout by delivering this message. Upon delivery,

the timer is considered stopped, and if the thread is blocked waiting on a timeout, it is then

resumed.

36 Computer Science & Information Technology (CS & IT)

Byzantine Agreement. A party is activated for a particular instance of the Byzantine

agreement protocol by receiving a message (ID, PROPOSE, initial value), where initial value is

. Besides normal messages, it may send a message (ID, DECIDE, final value). In the last

case, decides final value for . may make a decision for a given at most once. However,

the adversary may continue to deliver messages with after a decision for it.

There are three basic properties that an agreement protocol must satisfy:

1. Agreement. Any two honest parties that decide on a value for a particular must

decide on the same value. More precisely, it is computationally infeasible for an

adversary to cause honest parties to disagree.

2. Validity. If all honest parties have been activated with the same initial value on a given

ID, then all of those parties must decide on that value.

3. Termination. Since it is not possible to use the traditional definition of termination, the

model constructs computation time in terms of messages sent, and split termination into

two conditions: deadlock freeness and efficiency:

a. Deadlock freeness. It is computationally infeasible for an adversary to induce a

state where, for a given , all honest-party messages have been delivered, and

every party has been activated, while some honest parties remain undecided.

b. Efficiency. For each , the communication complexity is probabilistically

uniformly bounded.

For the pessimistic phase, the model uses the efficient randomized protocol.

Returning to the description of the protocol phases, it is logical that the optimistic phase does not

need to terminate with a decision. In the optimistic case, an agreement is reached in optimal time.

Furthermore, no expensive computation (for example, due to public key cryptography) is needed.

In the pessimistic case, when the optimistic pre-protocol invokes the fallback protocol, if few

failures occur, the system invokes the fallback protocol in which all honest parties have the same

start value. This causes the protocol to terminate quite fast.

6.2. The Protocol

Each party , , gets an input value and a corresponding transaction identifier .

The protocol outputs some decision value or invokes the fallback protocol BA. While a party

decides in the optimistic protocol and still invokes the fallback protocol, the decision of BA is

ignored. To ensure validity, if any honest party decides in the optimistic part of the protocol,

then the decision in BA can only be .

-BA works in four phases:

1. Simple Agreement: In a simple non-Byzantine agreement protocol, each participant

broadcasts its preference and waits to receive preferences from all other parties.

2. Commit and Check for Decision: Every party commits to the value it perceives as the

output of the simple agreement protocol. If it receives identical commitments from all

parties, then it can decide.

Computer Science & Information Technology (CS & IT) 37

3. Decide and Hibernate: A party that decides cannot completely terminate the protocol,

as it is possible that some other party could not reach a decision. Instead, decided parties

hibernate; they remember their decision for this transaction, but do nothing unless a

complaint is received.

4. Complain and Recover: A party that receives either inconsistent or insufficient

responses broadcasts a complaint. Upon receiving such a complaint, an honest party

initiates the pessimistic phase of the protocol.

Figure 10. Pseudocode of the Optimistic-Byzantine Agreement protocol.

7. RESULTS

The key takeaway is that the numbers of processes, rounds, and messages all depend on each

other. The choice, therefore, consists of balancing these and considering additional useful

features, such as fast ballots or engineering optimizations. So now, let us give a short summary of

each protocol:

1. The BPCon is a simple modification for Paxos to make it byzantine. It has a classic two-

phase structure, which only differs from the classic Paxos in two steps (1c and 2av (ex.

2a)).

2. The CLA is a refined BPCon that contains optimizations allowing to reduce the number

of messages and simplify communication.

3. The BGP is a model that provides two communication steps. At the cost of more

complex implementation it provides lower costs for communication. It has one

interesting property – it allows to choose not just one value, but a whole sequence of

commands. Also, the protocol maintains two modes of ballots: fast and classic. Classic

ballots look like an original Paxos ballots when the leader communicates with other

processes in a system. In fast ballots, proposers can send their proposal directly to the

acceptors without a leader and, if there is no conflict at this stage, they can commit their

result. Note that the leader must construct messages for a proposal within the rules.

38 Computer Science & Information Technology (CS & IT)

4. The BVP is a model that has two modes: a simple steady-state protocol and a

reconfiguration protocol. The system requires a reconfiguration for changing replicas or

the leader, which uses the wedge scheme mechanism. Note that reconfiguration requires

a separate Byzantine consensus engine.

5. The OBA is a model that uses two modes. In the optimistic phase, the system is assumed

to not be under attack. Then, the system tries to decide on some value and tests the

results. If something goes wrong, the system invokes the pessimistic mode, which can

solve the consensus problem in any case. This mode requires slightly more

communication than the base protocol and usage of public-key cryptography.

Table 6: Number of messages in a successful scheme, where N – number of acceptors, P – number of

proposers, L – number of learners, p – number of proposals.

Algorithm BPCon,

CLA,

BGP,

BVP,

 or

OBA,

Leader → Acceptors
Leader → Proposers
Acceptors →

Acceptors

Acceptors → Leader
Acceptors → Learners
Proposers → Proposers
Learners → Proposers
Learners → Learners
Proposers → Leader
Acceptor → Proposers (only in 4 -rounds)
Total number

 4-rounds:

3-rounds:

8. CONCLUSIONS

Comparing the algorithms with each other, as well as considering the future prospects of

implementation, we prefer the BPCon algorithm. The rationale for this choice is as follows:

canonical implementation with two phases and optimal number of processes, a simplified

communication between system processes, proximity to well-known BFT algorithms.

We consider the use of a two-phase algorithm in conjunction with processes to be the

most optimal scheme that can provide robustness properties. Having more rounds is not

inherently bad, but at the very least incurs an additional message delay. Namely, BVP’s 3 and 4-

round modes have delay time up to twice as long. Also, it requires a Trusted Platform module for

the asynchronous model. In contrast, FaB’s (and PFaB’s) processes make it harder to

assemble a byzquorum.

Another important item pertains to the number of messages needed. By using step in BPCon,

acceptors do not need to communicate about their pre-choices. But BGP requires that acceptors

send messages. It also needs additional communication with proposers and learners. It might

Computer Science & Information Technology (CS & IT) 39

be a good property when the system needs to propose a lot of values concurrently (BGP supports

voting for a set of commands), but suboptimal in the classic case.

Moreover, BPCon main steps are quite similar to PoS BFT algorithms, such as Tendermint [7],

Catchain [8], HotStuff [9], GRANDPA [10], RBFT[11] , etc. The general idea of these

algorithms is three successive steps of the system: prevote, precommit and commit. In BPCon,

acceptors send confirmations for the value from the leader (prevote). The leader sends acceptors

the pre-vote that it received (precommit). And after that, if acceptors do not need to launch the

 phase, they vote for values (commit). In Tendermint and GRANDPA nodes receive

messages from each other at the prevote step, then do the same at the precommit step and, if we

consider the optimistic situation, they send and receive a commit as a result of consensus. RBFT,

Catchain and HotStuff look similar, but they involve more explicit communication with the

leader.

However, we believe that BPCon is more of a temporary solution. Further research should be

developed into new consensus approaches that comply with modern security requirements,

including BFT, and can achieve effective performance evaluations.

REFERENCES

[1] Miguel Castro and Barbara Liskov. “Practical byzantine fault tolerance and proactive recovery”. In:

ACM Trans. Comput. Syst. 20.4 (Nov. 2002), pp. 398–461. issn: 0734-2071.

doi:10.1145/571637.571640. url: https://doi.org/10.1145/571637.571640.

[2] Leslie Lamport, (2011) “Byzantizing Paxos by refinement”, Lecture Notes in Computer Science,

vol. 6950; LNCS; 2011. DOI: 10.1007/978-3-642-24100-0_22.

[3] Klaus Kursawe, (2002) “Optimistic Byzantine agreement”, in Proceedings of the IEEE International

Symposium on Reliable Distributed Systems; 2002. DOI: 10.1109/RELDIS.2002.1180196.

[4] Jean Philippe Martin & Lorenzo Alvisi, (2006) “Fast Byzantine consensus”, IEEE Transactions on

Dependable and Secure Computing, vol. 3; 2006. DOI: 10.1109/TDSC.2006.35.

[5] Leslie Lamport, Dahlia Malkhi & Lidong Zhou, (2009) “Vertical Paxos and primary-backup

replication”, 2009. DOI: 10.1145/1582716.1582783.

[6] Miguel Pires, Srivatsan Ravi & Rodrigo Rodrigues, (2018) “Generalized Paxos Made Byzantine

(and Less Complex)”, Algorithms, vol. 11; no. 9; 2018. DOI: 10.3390/a11090141.

[7] Jae Kwon, (2014) TenderMint: Consensus without Mining.

[8] Nikolai Durov, (2020) Catchain Consensus: An Outline; Feb. 19, 2020.

[9] Maofan Yin et al., (2019) “HotStuff”, Association for Computing Machinery; pp. 347–356; Jul.

2019. DOI: 10.1145/3293611.3331591.

[10] Alistair Steward & Eleftherios Kokoris-Kogia, (2020) GRANDPA: A Byzantine Finality Gadget;

Jun. 19, 2020.

[11] Pierre Louis Aublin, Sonia Ben Mokhtar & Vivien Quema, (2013) “RBFT: Redundant Byzantine

fault tolerance”, Proceedings – International Conference on Distributed Computing Systems; 2013.

DOI: 10.1109/ICDCS.2013.53.

40 Computer Science & Information Technology (CS & IT)

AUTHORS

Illia Melnyk has a Master’s degree in Applied Mathematics from the National Technical University of

Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, NTUU KPI. His research areas include Protocols of

Secure Communication, Number theory and Cryptanalysis . Currently working as a teacher’s assistant at

NTUU KPI and as a researcher at Distributed Lab.

Oleksandr Kurbatov is a PhD Candidate in Karazin Kharkiv National University, Ukraine. His research

focuses on Public-Key Infrastructure, Blockchain Technologies, and Anonymous Decentralized Voting

Systems. He has presented work at the 2019 IEEE International Conference on Advanced Trends in

Information Theory (ATIT), CMiGIN 2019, and the 2023 IEEE 1st Ukrainian Distributed Ledger

Technology Forum (UADLTF). His publications include a paper in ISCI 2019: Information Security in

Critical Infrastructures. Currently working as the Lead Cryptography Researcher at Distributed Lab.

Oleg Fomenko has successfully completed his B.Sc. degree in Computer Science at Taras Shevchenko

National University of Kyiv, Ukraine. His research areas include Private Payments, Zero-Knowledge

Virtual Machines, Zero-Knowledge Protocols. Currently working as a researcher at Distributed Lab.

Volodymyr Dubinin holds an M. Sc. in Computer Science and is Co-Founder of Distributed Lab. His

research interests span Decentralized Systems, Artificial Intelligence, Blockchain Scalability, and

Cryptographic Protocol Design.

Yaroslav Panasenko is the Chief Technology Officer at Distributed Lab. He holds a B.Sc. in Software

Engineering from Kharkiv Polytechnic Institute. His research interests span decentralized anonymous

banking systems, blockchain infrastructure, biometric systems and AI safety and security.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

