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Abstract. In many areas of cybersecurity, we require access to Personally Identifiable Information
(PII), such as names, postal addresses and email addresses. Unfortunately, this can lead to data
breaches, especially in relation to data compliance regulations such as GDPR. An Internet Protocol
(IP) address is an identifier that is assigned to a networked device to enable it to communicate
over networks that use IP. Thus, in applications which are privacy-aware, we may aim to hide
the IP address while aiming to determine if the address comes from a blacklist. One solution
to this is to use homomorphic encryption to match an encrypted version of an IP address to a
blacklisted network list. This matching allows us to encrypt the IP address and match it to an
encrypted version of a blacklist. In this paper, we use the OpenFHE library [1] to encrypt network
addresses with the BFV homomorphic encryption scheme. In order to assess the performance
overhead of BFV, we implement a matching method using the OpenFHE library and compare
it against partial homomorphic schemes, including Paillier, Damgard-Jurik, Okamoto-Uchiyama,
Naccache-Stern and Benaloh. The main findings are that the BFV method compares favourably
against the partial homomorphic methods in most cases.

Keywords: Partially Homomorphic Encryption, Fully Homomorphic Encryption, IP subnetting,
BFV

1 Introduction

Data regulations such as GDPR demand greater control of Personally Identifiable
Information (PII). In many areas of cybersecurity, we provide linkages between
entities and their associated IP address and where revealing an IP address can
often identify a person or organisation that is involved in an investigation. With
this, we could define a blacklist of networks that we need to identify if specific
source IP address is included. One of the best ways to preserve privacy is with the
use of homomorphic encryption, where we can encrypt both the target IP address
and the blacklist and match them without revealing any additional information.

Homomorphic encryption allows us to take the plaintexts m1 and m2 encrypt
them using a secret key k, and perform operations such that:

Enck(m1 ◦m2) = Enck(m1) ◦ Enck(m2)
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where ◦ could potentially be any operator, such as add, multiply, logical and, or log-
ical or. With symmetric key encryption, we use the same key to decrypt as we do to
encrypt. Overall, in analysing the IP matching problem, we need to either conduct
bitwise homomorphic encryption or use a homomorphic subtraction method.

In the past, partial homomorphic methods (PHE) have been used within privacy-
aware methods for network analysis. This includes Tusa et al., who used the Paillier
method to implement privacy-aware routing [2]. These methods often have fairly
good performance levels, but they do not implement a full range of mathematical
operations and thus often fail to scale on a large-scale basis, especially where the
full range of operations is required. This paper thus provides a new method for
the usage of fully homomorphic encryption to match IP addresses to a blacklist of
network addresses without revealing the IP address or the blacklist.

2 Fully Homomomorphic Encryption

Homomorphic encryption is a method of encryption which supports operations over
encrypted data. In 1978, Rivest, Adleman, and Dertouzos [3] were the first to ex-
plore the possibilities of using the natural homomorphic properties of the RSA
public key encryption scheme. The RSA scheme only supports the evaluation of
arithmetic multiplication over ciphertexts. RSA is an example of Partial Homo-
morphic Encryption (PHE), which is a scheme that supports the evaluation of only
a single type of operation on ciphertexts. Fully Homomorphic Encryption (FHE)
can support every operation. Since Gentry defined the first FHE method [4] in 2009,
there have been four main generations of homomorphic encryption:

– 1st generation: Gentry’s method uses integers and lattices. [5] including the
DGHV method.

– 2nd generation. Brakerski, Gentry and Vaikuntanathan’s (BGV) and Brakerski/
Fan-Vercauteren (BFV) use a Ring Learning With Errors approach [6]. The
methods are similar to each other and have only a small difference between
them.

– 3rd generation: These include DM (also known as FHEW) and CGGI (also
known as TFHE) and support the integration of Boolean circuits for small
integers.

– 4th generation: CKKS (Cheon, Kim, Kim, Song) and which uses floating-point
numbers [7].

2.1 Public key or symmetric key

Homomorphic encryption can be implemented either with a symmetric key or an
asymmetric (public) key. With symmetric key encryption, we use the same key
to encrypt as we do to decrypt, whereas, with an asymmetric method, we use a
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public key to encrypt and a private key to decrypt. In Figure 1, we use asymmetric
encryption with a public key (pk) and a private key (sk). With this, Bob, Alice
and Peggy will encrypt their data using the public key to produce ciphertext, and
then we can operate on the ciphertext using arithmetic operations. The result can
then be revealed by decrypting with the associated private key. We can also use
symmetric key encryption, where the data is encrypted with a secret key, and which
is then used to decrypt the data. In this case, the data processor (Trent) should not
have access to the secret key, as they could decrypt the data from the providers.

Fig. 1. Asymmetric encryption (public key)

2.2 Homomorphic libraries

There are several homomorphic encryption libraries that support FHE, including
ones that support CUDA and GPU acceleration, but many have not been kept
up-to-date with modern methods or have only integrated one method. Overall, the
native language libraries tend to be the most useful, as they allow the compilation
to machine code. The main languages for this are C++, Golang and Rust, although
some Python libraries exist through wrappers to C++ code. This includes HEAAN-
Python and its associated HEAAN library.

One of the first libraries which supported a range of methods are Microsoft
SEAL [8], SEAL-C# and SEAL-Python. While it supports a wide range of methods,
including BGV/BFV and CKKS, it has lacked any real serious development for the
past few years. Wood et al. [9] define a full range of libraries. One of the most
extensive libraries is PALISADE, and which has now developed into OpenFHE.
Within OpenFHE, the main implementations are:
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– Brakerski/Fan-Vercauteren (BFV) scheme [10] for integer arithmetic.

– Brakerski-Gentry-Vaikuntanathan BGV) scheme for integer arithmetic

– Cheon-Kim-Kim-Song (CKKS) scheme for real-number arithmetic (includes ap-
proximate bootstrapping)

– Ducas-Micciancio (DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI) schemes
for Boolean circuit evaluation.

2.3 Bootstrapping

A key topic within fully homomorphic encryption is the usage of bootstrapping.
Within a learning with-errors approach, we add noise to our computations. For a
normal decryption process, we use the public key to encrypt data and then the
associated private key to decrypt it. Within the bootstrap version of homomorphic
encryption, we use an encrypted version of the private key that operates on the
ciphertext. In this way, we remove the noise which can build up in the computa-
tion. Figure 2 outlines that we perform an evaluation on the decryption using an
encrypted version of the private key. This will remove noise in the ciphertext, after
which we can then use the actual private key to perform the decryption.

The main bootstrapping methods are CKKS [7], DM [11]/CGGI, and BGV/BFV.
Overall, CKKS is generally the fastest bootstrapping method, while DM/CGGI
is efficient with the evaluation of arbitrary functions. These functions approxi-
mate math functions as polynomials (such as with Chebyshev approximation).
BGV/BFV provides reasonable performance and is generally faster than DM/CGGI
but slower than CKKS.

Fig. 2. Bootstrap
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2.4 BGV and BFV

With BGV and BFV [10], we use a Ring Learning With Errors (LWE) method [6].
With BGV, we define a modulus (q), which constrains the range of the polynomial
coefficients. Overall, the methods use a moduli, which can be defined within differ-
ent levels. We then initially define a finite group of Zq and then make this a ring
by dividing our operations with (xn + 1) and where n − 1 is the largest power of
the coefficients. The message can then be represented in binary as:

m = an−1an−2...a0 (1)

This can be converted into a polynomial with:

m = an−1x
n−1 + an−2x

n−2 + ...+ a1x+ a0 (mod q) (2)

The coefficients of this polynomial will then be a vector. Note that for efficiency,
we can also encode the message with ternary (such as with -1, 0 and 1). We then
define the plaintext modulus with:

t = pr (3)

and where p is a prime number and r is a positive number. We can then define
a ciphertext modulus of q, and which should be much larger than t. To encrypt
with the private key of s, we implement:

(c0, c1) =
(q
t
.m+ a.s+ e,−a

)
mod q (4)

To decrypt:

m =
⌊ t
q
(c0 + c1).s

⌉
(5)

Noise and computation But each time we add or multiply, the error also in-
creases. Thus, bootstrapping is required to reduce the noise. Overall, addition and
plaintext/ciphertext multiplication is not a time-consuming task, but ciphertext/ci-
phertext multiplication is more computationally intensive. The most computational
task is typically the bootstrapping process, and the ciphertext/ciphertext multipli-
cation process adds the most noise to the process.

Parameters We thus have a parameter of the ciphertext modulus (q) and the
plaintext modulus (t). Both of these are typically to the power of 2. An example
of q is 2240 and for t is 65,537. As the value of 2q is likely to be a large number, we
typically define it as a log q value. Thus, a ciphertext modulus of 2240 will be 240
as defined as a log q value.
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3 Partial homomorphic encryption

With partial homomorphic encryption (PHE), we can implement some form of
arithmetic operation in a homomorphic way. These methods include RSA, El-
Gamal, Paillier [12], Exponential ElGamal, Elliptic Curve ElGamal [13], Paillier
[12], Damgard-Jurik [14], Okamoto–Uchiyama [15], Benaloh [16], Naccache–Stern
[17], and Goldwasser–Micali [18]. Overall, we can use RSA and ElGamal for mul-
tiplicative homomorphic encryption; Paillier, Exponential ElGamal, Elliptic Curve
ElGamal, Damgard-Jurik, Okamoto–Uchiyama, Benaloh and Naccache–Stern for
additive homomorphic encryption; and Goldwasser–Micali for XOR homomorphic
encryption.

3.1 Paillier

The Paillier cryptosystem [12] is a partial homomorphic encryption (PHE) method
that can perform addition, subtraction, and scalar multiplication. Thus we get:

Enck(A+B) = Enck(A) + Enck(B) (6)

Enck(A−B) = Enck(A)− Enck(B) (7)

Enck(A.B) = A.Enck(B) (8)

If we take two values: m1 and m2, we get two encrypted values of Enc(m1) and
Enc(m2). We can then multiply the two cipher values to get Enc(m1+m2). We can
then decrypt to getm1+m2. Along with this, we can also subtract to Enc(m1−m2).
This is achieved by taking the inverse modulus of Enc(m2) and multiplying it with
Enc(m1). Finally, we can perform a scalar multiply to get Enc(m1 ·m2) and which
is generated from Enc(m1)m2.

First we select two large prime numbers (p and q) and compute:

N = pq (9)

PHI = (p− 1)(q − 1) (10)

λ = lcm (p− 1, q − 1) (11)

and where lcm is the least common multiple. We then select a random integer
g for:

g ∈ Z∗
nN2 (12)

We must make sure that n divides the order of g by checking the following:

µ = (L(gλ (mod n)2))−1 (mod N) (13)
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and where L is defined as L(x) = x−1
N . The public key is (N, g), and the private

key is λ, µ).

To encrypt a message (M), we select a random r value and compute the cipher-
text of:

c = gm · rN (mod N2) (14)

and then to decrypt:

m = L(cλ (mod N)2) · µ (mod N) (15)

For adding and scalar multiplying, we can take two ciphers (C1 and C2), and
get:

C1 = gm1 · rN1 (mod N2) (16)

C2 = gm2 · rN2 (mod N2) (17)

If we now multiply them, we get:

C1 · C2 = gm1 · rN1 · gm2 · rN2 (mod N2) (18)

C1 · C2 = gm1+m2 · rN1 · rN2 (mod N2) (19)

3.2 Benaloh

In 1986, Josh (Cohen) Benaloh published on A Robust and Verifiable Cryptograph-
ically Secure Election Scheme [16,19]. Within it, Josh outlined a public key en-
cryption method and where Bob could generate a public and a private key. Alice
could then use the public key to encrypt data for Bob, and then Bob could use the
associated private key to decrypt it. It has the advantage of supporting additive
homomorphic encryption. For the Benaloh method, to generate a key pair, Bob
generates p and q, and which are two large prime numbers, which are two large
distinct prime numbers. Next, he computes:

n = pq (20)

ϕ(n) = (p–1)(q–1) (21)

Bob then selects a block size (r) so that:

– r divides p− 1

– gcd(r, (p− 1)/r) = 1

– gcd(r, q − 1) = 1
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Next Bob selects y so that:

x = yϕ(n)/r (mod n) ̸= 1 (22)

Bob’s private key is (p, q), and his public key is (y, r, n). To encrypt data for
Bob, Alice selects a message (m) and uses Bob’s public key of (y, r, n). First, she
selects a random value of u and which is between 0 and n. Alice then encrypts with:

c = ymur (mod n) (23)

She sends this ciphertext to Bob. He will then decrypt with:

a = cϕ(n)/r (mod n) (24)

Bob lets md = 0. If xmd (mod n) ̸= a the Bob increments md by 1. He keeps
doing this until:

xmd (mod n) = a (25)

The value of md is then the original plaintext. One of the advantages of the
Benaloh method is that we can perform additive homomorphic encryption. If we
have two messages, we multiply the ciphers together for each message:

c1 = ym1ur (mod n) (26)

c2 = ym2ur (mod n) (27)

c = c1.c2 (28)

This will give:

c = ym1+m2ur (mod n) (29)

3.3 Okamoto-Uchiyama

With the Okamoto-Uchiyama method [15,20], we can perform additive and scalar
multiply homomorphic encryption. A public/private key pair is generated as follows:

– Generate large primes p and q and set n = p2q.
– g ∈ (Z/nZ)∗ such that gp−1 ̸= 1 mod p2.
– Let h = gn (mod n).
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The public key is (n, g, h), and then the private key is (p, q). To encrypt a
message m, where m is taken to be an element in 2k−1. We then select r ∈ Z/nZ
at random. The cipher is then:

C = gmhr (mod n) (30)

Next, we define the function of: L(x) = x−1
p .

We then decrypt with:

m =
L
(
Cp−1 mod p2

)
L (gp−1 mod p2)

(mod p) (31)

3.4 Naccache–Stern

With the Naccache–Stern method [17,21], we select a large prime number (p). We
then select a value (n) and for i from 0 to n, we select the the first n prime numbers
(p0...pn−1 of which p0 is 2. We must make sure that:

n∏
i=0

pilt; p (32)

For our secret key (s) we make sure that:

gcd(s, p− 1) = 1 (33)

To compute the public key (vi), we calculate: vi = s
√
pi (mod p) To encrypt, we

take a message ofm and then determine the message bits ofmi. We can then cipher
with the public key:

c =

n∏
i=0

vmi
i (mod p) (34)

and then to decrypt:

m =

n∑
i=0

2i

pi − 1
× (gcd(pi, c

s (mod p))− 1) (35)

3.5 Goldwasser–Micali

With public key encryption, Alice could have two possible messages (a ’0’ or a ’1’)
that she sends to Bob. If Eve knows the possible messages (a ’0’ or a ’1’), she will
then cipher each one with Bob’s public key and then match the results against the
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cipher message that Alice sends. Eve can thus determine what Alice has sent to
Bob. In order to overcome this, the Goldwasser–Micali (GM) method [22] is used
as a public key algorithm that uses a probabilistic public-key encryption scheme.
In this case, we will implement an XOR homomorphic encryption operation. For
an input of 17 (10001) and 16 (10000), we will get a result of 00001 (1).

In a probabilist encryption method, Alice selects the plaintext (m) and a random
string (r). Next, she uses Bob’s public key to encrypt the message pair of (m, r).
If the value is random, then Eve will not be able to use the range of messages and
random values used. If Bob wants to create his public and private keys. He first
selects two random prime numbers for his private key and then calculates N :

N = pq (36)

The values of p and q will be his private key, and N will form part of his public
key. For the second part of his public key, he determines:

a = pseudosquare(p, q) (37)

For this, we determine if we can find, for a given value of a, which has no
solutions:

u2 ≡ a (mod p) (38)

u2 ≡ a (mod q) (39)

This means that there are no quadratic residues. Bob’s public key is (N, a) and
the private key is (p, q). The key encryption method becomes:

– Bob selects p and q.

– Bob selects a with
(
a
p

)
=

(
a
q

)
= −1. This is a Jacobi symbol calculation.

– Bob publishes N and a.

To encrypt for Bob:

– Select a bit to encrypt m ∈ 0, 1.

– Alice uses Bob’s values of N, a) to compute:

– c = r2 (mod N) if m = 0

– c = ar2 (mod N) if m = 1

Alice chooses r at random, and thus, Eve will not be able to spot the message,
as the random values will consist of all possible squares modulo N when m = 0.
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Alice sends c to Bob. To decrypt, Bob then computes
(

c
p

)
and gets:

m = 0 : if

(
c

p

)
= 1 (40)

m = 1 : if

(
c

p

)
= −1 (41)

3.6 Damgard-Jurik

With the Damgard-Jurik method [14] we select two large prime numbers (p and q)
and compute:

n = pq (42)

ϕ = (p− 1)(q − 1) (43)

λ = lcmϕ (44)

and where lcm is the least common multiple. We then select a random integer
g for:

g ∈ Z∗
n2 (45)

We must make sure that n divides the order of g by checking the following:

µ = (L(gλmodn2))−1modn (46)

and where L is defined as L(x) = x−1
n . The public key is (n, g) and the private

key is λ, µ). To encrypt a message (M), we select a random r value and compute
the ciphertext of:

c = gm · rn (mod ns+1) (47)

and then to decrypt:

m = L(cλmodn2) · µ (mod n)s (48)

If we take two ciphers (C1 and C2), we get:

C1 = gm1 · rn1 (mod n2) (49)

C2 = gm2 · rn2 (mod n2) (50)

If we now multiply them, we get:
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C1 · C2 = gm1 · rn1 · gm2 · rn2 (mod n2) (51)

C1 · C2 = gm1+m2 · rn1 · rn2 (mod n2) (52)

Adding two values requires the multiplication of the ciphers. If we now divide
them, we get:

C1

C2
=

gm1 · rn1
gm2 · rn2

(mod n2)
C1

C2
= gm1−m2

rn1
rn2

(mod n2) (53)

Thus, subtraction is equivalent to a division operation. For this, we perform a
modular divide operation.

4 Methodology

An IPv4 address has four main fields that are defined with integer values in the
range 0-255. An example is 12.23.45.67, which is a 32-bit address value and where
each of the fields is identified with an 8-bit value. The address then splits into a
network part and a host part, such as where 12.23.46.0 might identify a network
address, and 0.0.0.67 will identify the host part. Overall, we define the network part
with a subnet mask, and where bits that are set to a 1 identify the network part,
and where we have a 0, we define the host part. We can then vary the number of
1’s from 0 to 32. An example subnet mask where the network part is 24 bits long
is 0xffffff00, and which can be represented by 255.255.255.0. This is often identified
by the number of bits, such as 1’s in the subnet mask, such as ’/24’. An example IP
address could thus be ’192.168.0.10/24’, and where the network part is ’192.168.0.0’
and the host part is ’0.0.0.24’.

4.1 PHE Subtraction method

Algorithm 1 defines the method used for subtractive homomorphic encryption. In
this, we convert the target IP address and the blacklisted network address to 32-bit
integer values. The subnet mask then defines the network part to match. Again,
this will be an integer value, and where the 1’s identify the network part and the 0’s
will identify the host part. Overall, we are only interested in matching the network
part of the target address to the blacklisted network address. We can then create
a BFV keypair with a public key (pk) and a private key (sk). The homomorphic
public key is then used to encrypt the target IP address and also the blacklisted
address. Once encrypted, we can then perform a homomorphic subtraction. If the
network part of the target IP address and the network address match, the result will
be an encrypted value of zero. We can then decrypt the result of the homomorphic
subtraction, and if we get a zero, we know that the IP address is contained in the
blacklist.
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Algorithm 1 FHE for IP detection
1: Set IP with the address to find for an integer
2: Set Network for the blacklisted addresses as an integer
3: Set Subnetmask as the subnet of blacklist
4: Generate pk, sk for homomorphic key pair
5: IPe = Enc(IP, pk)
6: Blacklist = Network ∧ Subnetmask

7: Blackliste = Enc(Blacklist, pk)
8: Encdiff = IPe −Blackliste
9: if Encdiff = 0 then
10: Address is in the blacklist
11: else
12: Address is not in the blacklist
13: end if

4.2 Goldwasser–Micali XOR method

For the Goldwasser–Micali partial homomorphic encryption method, we can use
the XOR operation, and where we can XOR the blacklist network address with the
network address of the target IP address. This method is defined in Algorithm 2.

Algorithm 2 FHE for IP detection
1: Set IP with the address to find for an integer
2: Set Network for the blacklisted addresses as an integer
3: Set Subnetmask as the subnet of blacklist
4: Generate pk, sk for homomorphic key pair
5: IPe = Enc(IP, pk)
6: Blacklist = Network ∧ Subnetmask

7: Blackliste = Enc(Blacklist, pk)
8: Encdiff = IPe ⊕Blackliste
9: if Encdiff = 0 then
10: Address is in the blacklist
11: else
12: Address is not in the blacklist
13: end if

4.3 OpenFHE parameters

The parameters that need to be set within OpenFHE for BFV are:

– Scheme. This defines the scheme to be used. In the case of BFV, this is set to
BFVRNS SCHEME.

– RDim. This defines the size of the lattice ring dimension. A typical value for
this is 16,384.
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– MultDepth. This is the multiplication depth and is the maximum number of se-
quential (cascaded) multiplications that are performed on encrypted data before
decryption fails due to excessive noise accumulation.

– PtMod. This defines the plaintext modulus, and it needs to be a prime number
that is larger than the number of bits in the plaintext.

The parameter set needs to support integer values up to 32 bits. A recommended
setup for 41-bit resolution for the plaintext (PtMod) is set at 35,184,372, 744,193,
along with the other parameters defined at [23]. The FHE and PHE code is given
at [24]. There is a plaintext constraint that comes from the requirement to sup-
port component-wise vector multiplication (instead of polynomial multiplication).
In OpenFHE, this is enabled by Chinese Remainder Theorem, and comes down
to performing an inverse NTT (Number Theoretic Transform) over the plaintext
modulus. The plaintext modulus thus has to support NTT, and where it should be
congruent to 1mod2×N , where N is the ring dimension 3 and within more formally
in Section 7.4 of [25]. The selection of the modulus is provided in the code at 4.

Table 1: Results for homomorphic operations for IP matching
Method Key pair (ms) Encrypt (ms) Operation and decrypt (ms)

BFV (OpenFHE) [1] 93.1 270.2 16.4
Paillier [12] 55.7 168.6 66.3
Damgard-Jurik [14] 83.6 443.5 155.2
Okamoto-Uchiyama [15] 128.9 206.9 18.0
Naccache-Stern [17] 48.2 0.2 0.6
Benaloh 6.0 0.3 0.2
Goldwasser-Micali [18] 0.3 0.5 1.6

5 Evaluation

The coding for fully homomorphic encryption using OpenFHE is defined in the
Coding section. The results for a t3.medium instance on AWS are given in Table
1, which includes a comparison with partial homomorphic methods using the PHE
Library [26]. The time to set up the key pair and the context for the encryption
is measured at an average of 93 ms. The greatest overhead is then the time it
takes to encrypt the values, which has an average time of around 270 ms. The
subtraction and decryption timing then comes in around 16 ms. It can be seen

3 https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/sealmanual_

v2.2.pdf
4 https://github.com/openfheorg/education/blob/main/examples/modulus_picking/

primes.go
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that the encryption process provides the largest overhead in IP address matching.
We can see that the Benaloh and Goldwasser-Micali methods are by far the fastest.
The BFV method has comparable performance to the PHE methods and is actually
faster in the homomorphic encryption operation than Paillier, Damgard-Jurik, and
Okamoto-Uchiyama. The Naccache-Stern method also performs well, especially in
the encryption and decryption process. Overall, the encryption process tends to
have the greatest processing overhead.

The results in Table 2 outline the time to encrypt a number of IP addresses
into a data store, and then the total time to search the whole of the data store and
find the last matched IP address. As we can see, the encryption time is the most
considerable processing overhead.

Table 2: Results for fully homomorphic encryption using OpenFHE and matching
for a range of random addresses

IP addresses Time to encrypt (secs) Max time to search (sec)

50 6.47 1.08
100 11.55 2.48
200 23.25 4.09
400 125.55 8.13
800 238.93 16.57

6 Conclusion

The increasing requirements for privacy-aware cybersecurity provide opportunities
to encrypt data using homomorphic encryption. This paper outlines a method that
requires plaintext to support 32 bits and requires a larger plaintext modulus than is
used by default in applications. The paper has thus outlined a method that uses the
popular OpenFHE library and has fairly reasonable overheads in latency in creating
the homomorphic encryption keys and in encrypting, processing, and decrypting
data.
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