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Abstract. In 2022, Persianom, Phan and Yung outlined the creation of Anamor-
phic Cryptography. With this, we can create a public key to encrypt data, and then
have two secret keys. These secret keys are used to decrypt the cipher into different
messages. So, one secret key is given to the Dictator (who must be able to decrypt all
the messages), and the other is given to Alice. Alice can then decrypt the ciphertext
to a secret message that the Dictator cannot see. This paper outlines the implemen-
tation of Anamorphic Cryptography using ECC (Elliptic Curve Cryptography), such
as with the secp256k1 curve. This gives considerable performance improvements over
discrete logarithm-based methods with regard to security for a particular bit length.
Overall, it outlines how the secret message sent to Alice is hidden within the random
nonce value, which is used within the encryption process, and which is cancelled out
when the Dictator decrypts the ciphertext. It also shows that the BSGS (Baby-step
Giant-step) variant significantly outperforms unoptimised elliptic curve methods.

1 Introduction

In cybersecurity, we can use anamorphic cryptography to change the viewpoint of
a cipher [1]. With this, we assume that we have a dictator who will read all of our
encrypted data, and will thus have a secret key of sk. The dictator (Mallory) will
arrest anyone who sends secret messages that they cannot read. For this, Bob can
construct a dual-decryption system, providing sk0 to the Dictator and sk1 to Alice
(or Alice can supply Bob with one she chooses as sk1 herself). As far as Mallory
knows, he has the only key for the ciphertext, and outwardly the encrypted data
appears standard (i.e has no difference in structure to that of a normal encrypted
message). This paper outlines a new method of creating anamorphic cryptography
using Baby-Step Giant-Step Recovery to provide a fast recovery method for Alice,
and which improves on existing approaches.

2 Related work

An implementation of the ElGamal method for anamorphic cryptography is given
in [2]. While discrete logarithm methods have been used to implement anamorphic
cryptography [3], they tend to be slow in their operation. Dodis et al. [4] liken the ap-
proach of anamorphic cryptography to the addition of backdoors into semantically
secure schemes, where entities might be forced to hand over their decryption keys.
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This technique offers the ability to send covert data or to later claim plausible deni-
ability for actions. Carnemolla et al. [5] have outlined that there are certain schemes
which are anamorphic resistant and that, in some cases, anamorphic encryption is
similar to substitution attacks. The methods that support anamorphic encryption
include RSA-OAEP, Pailler, Goldwasser-Micali, ElGamal schemes, Cramer-Shoup,
and Smooth Projective Hash-based systems.

Chu et al. [6] investigated cases where the dictator is involved in key generation,
and where it is still possible to implement anamorphic communication. This involves
the usage of threshold signature schemes, and the adversary is included within the
signing group.

3 Method

This paper outlines the integration of ElGamal methods [7] with ECC for the
implementation of anamorphic encryption. With anamorphic encryption, we can
have a public key of pk and two private keys of sk0 and sk1. Bob can then have
two messages of:

m0 = ”I love the Dictator” (1)

m1 = ”I hate the Dictator” (2)

Bob then encrypts the two messages with the public key( the PK0 of the Dic-
tator):

CT = Enc(pk,m0,msg1) (3)

The Dictator will then decrypt with sk0 and reveal the first message:

Dec(sk0, CT ) → m0 (4)

Alice will decrypt with her key and reveal the second message:

Dec(sk1, CT ) → m1 (5)

And, so, the Dictator thinks that they can decrypt the message, and gets, “I
love the Dictator”. Alice, though, is able to decrypt the ciphertext to a different
message of “I hate the Dictator”.
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3.1 ElGamal encryption

With ElGamal encryption using elliptic curves [8], Alice generates a private key (x)
and a public key of:

Y = x.G (6)

and where G is the base point on the curve. She can share this public key (Y )
with Bob. When Bob wants to encrypt something for Alice, he generates a random
value (r) and the message value (M) and then computes:

C1 = r.G (7)

C2 = r.Y +M (8)

To decrypt, Alice takes her private key (x) and computes:

M = C2 − x.C1 (9)

This works because:

M = C2 − y.C1 = r.x.G+M − x.r.G = M (10)

Figure 1 outlines how Bob can encrypt data for Alice.

3.2 Anamorphic Encryption with elliptic curves

First, we pick a curve, such as secp256k1, which has a base point of G. Bob can
then pick a secret key for the Dictator of skDictator. The public key is then:

pk = skDictator.G (11)

Bob then generates a random scalar value of t and takes the secret message of
cm, and produces:

r = cm+ t (12)

The value of t will be Alice’s secret key. To encrypt the message of m, Bob uses:

rY = r.pk (13)

rG = r.G (14)

rY val = Int(rY ) (15)

c0 := rY val +M (16)

c1 := rG (17)

(18)
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Fig. 1. ElGamal encryption with ECC

The cipher is the (c0, c1). To decrypt by the Dictator:

yC = skDictator.c1 (19)

yCval = Int(yC) (20)

resDictator = c0 − yCval (21)

(22)

Alice can then decrypt with her key (t):

tc = t.G (23)

resAlice = c1 − tc (24)

Alice will then search through the possible values of resAlice to find the value
of cm that matches the elliptic curve point. This works because:

resAlice = c1 − tc = r.G− t.G = r.G− (r − cm).G = cm.G (25)

It is worth mentioning that both the t and tc for Alice must be treated as secret.
This is because anyone who has access to the Public key and to the c1 component
of the ciphertext can do:
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Unlike traditional Public Key Cryptography, in the case of Alice, both the
private key t and the public key (tc) must be treated as secrets. This is in contrast
to normal PKI, where a public key can be shared safely. The reason for this is that
anyone with Alice’s public key, can then also brute force the cm. They can do :

cm ·G = c1 − tc (26)

Given cm ·G, recovering cm reduces to solving a discrete logarithm problem:

cm = logG(cm ·G) (27)

However, although the ECDLP is considered computationally difficult for large
ranges, the system intentionally restricts cm to a low-bit space (e.g., 30 bits) so it
can be recovered in a reasonable time on lower-performance hardware. This small
search space then makes it feasible for anyone with tc and c1 to brute-force the
remaining 30 bits of entropy. Some sample code and a test run are given in the
appendix.

3.3 Baby-Step Giant-Step

The Baby-Step-Giant-Step solves for x in h = gx (mod p) [9], or will solve x for an
elliptic curve point of x.G Within normal logarithms, we define:

h = ax (28)

So if we want to find the value of x, we use:

x = loga(h) (29)

So 104 is 10,000, and the inverse log is log10(10, 000) is 4.
Within discrete logarithms, we introduce a finite field with a prime number. For

this, we have:

h = gx (mod p) (30)

and where p is the prime number. It is thus a difficult task to find the value of
x which has been used, even if we know h, g and p. We utilise discrete logarithms
in the Diffie-Hellman key exchange method and ElGamal encryption.

Let’s start with an example [10]:

20 = 5x (mod 53) (31)

In this case, we have g = 5, h = 20 and p = 53, and want to find x. We first
determine the square root of p− 1, and we will round it up to the nearest integer.
In this case, it will be:
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N = Ceiling(
√
p− 1) = Ceiling(

√
52) = 7 (32)

Next, we will pre-compute from 1 to N with the baby table. These will store gi

(mod p) and then store them in the form of:

gi (mod p), i (33)

To give:

1 : 0, 3 : 7, 5 : 1, 51 : 5, 42 : 4, 43 : 6, 19 : 3, 25 : 2 (34)

For example, if i = 0, we get 50 (mod 53) gives 1 {1:0}. For i = 1 we get 51

(mod 53) gives 5 {5:1}. For i = 2 we get 52 (mod 53) gives 5 {25:2}. We now have
a list of pairs from 0 to the square root of p− 1, and now compute g−N to give c:

c = gN(p−2) (mod p) (35)

We then search through values of:

hcx (mod p) (36)

until we find a match in the table. We then take this value and multiply it by
N and add the value we have found:

for j in range(N):

y = (h * pow(c, j, p)) % p

if y in t:

return j * N + t[y]

3.4 Application to Anamorphic Cryptography

Anamorphic cryptography offers a compelling approach to covert communication
and plausible deniability, but it does come with specific security considerations. In
traditional public key cryptography, the public key can be treated as such, public.
However, in this scheme, Alice’s public and private keys (t and tc must be treated as
secrets. These can effectively be seen as ’dual keys’, where each must be safeguarded
from disclosure to other parties. This is because an attacker who intercepts the
ciphertext (c0, c1) and learns t ·G (tc) can compute:

64                                   Computer Science & Information Technology (CS & IT)



cm = logG(c1 − tc) (37)

This works because cm is small (30 bits for example), and thus Alice is able
to brute-force or Baby-Step Giant-Step cm in a reasonable time on commodity
hardware.

For anyone else who does not know t or tc, computing cm from c1 is equivalent
to solving the elliptic curve discrete logarithm problem(ECDLP). If tc is secret, and
the size of cm is small (even just two bits), without t or tc, the attacker is left with
only c1 = r ·G, which is completely infeasible within modern computing.

In this setup, both t and tc = t · G must be kept private. If tc leaks, anyone
with access to c1 can compute c1 − tc = cm · G. Since cm is intentionally small
(e.g., 30 bits), this makes brute-force recovery viable. In effect, tc acts like a second
private key — and its exposure would compromise the covert message. Thus, in the
conventional sense, the keys( either t or tc) Alice holds are both private keys.

3.5 Implementation

Now we will outline the implementation of our solution. Algorithm 1 outlines the
method of applying anamorphic using ECC encryption, and Algorithm 2 defines
the method for the Dictator to decrypt. Algorithm 3 provides the method for Alice
to decrypt the message that is passed to her. With this, Alice will reveal the covert
message, and which cannot be seen by the Dictator.

Algorithm 1 Anamorphic ECC Encryption
Require: Public key pk = sk0 · G, cover message m0, covert message cm ∈ Z, Alice’s secret key

t ∈ Z
Ensure: Ciphertext (c0, c1)
1: r ← cm+ t
2: rG ← r ·G
3: rY ← r · pk
4: rvalY ← Integer encoding of rY
5: c0 ← rvalY +m0

6: c1 ← rG
7: return (c0, c1)

3.6 Key Derivation and Use as a Shared Secret

An alternative application can involve treating the result of Alice’s decryption as a
shared elliptic curve point:
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Algorithm 2 Decryption by Dictator
Require: Secret key sk0, ciphertext (c0, c1)
Ensure: Decrypted message m0

1: yC ← sk0 · c1
2: yval

C ← Integer encoding of yC
3: m0 ← c0 − yval

C

4: return m0

Algorithm 3 Covert Decryption by Alice
Require: Alice’s secret key t, ciphertext component c1, generator G
Ensure: Covert message cm
1: tc← t ·G
2: res← c1 − tc ▷ Now res = cm ·G
3: Search (e.g., brute-force or BSGS) for cm such that cm ·G = res
4: return cm

resAlice = c1 − t ·G = cm ·G (38)

This point can act as a symmetric secret index or be hashed to derive encryp-
tion keys, enabling integration with secure storage systems or encrypted messaging
layers.

3.7 Secrecy of Alice’s Public Key

It is critical that Alice’s scalar t and corresponding t ·G remain confidential. If an
adversary gains access to the latter, they can compute:

cm ·G = c1 − t ·G ⇒ cm = logG(cm ·G) (39)

Given that cm is intentionally small (e.g., 30-bit), this discrete log is trivially
solvable, compromising the covert message. Therefore, t·Gmust be treated as secret
in this scheme, contrary to standard public key conventions.

4 Evaluation

In order to benchmark the performance and practical efficiency of the anamorphic
system, we have run a series of tests on a Windows PC with an Intel i7 3770, 3.4 GHz
with 16 GB of DDR3 RAM, where we compare both the DLP and ECDLP variants,
while also showing optimisations. We then solve for cm of varying sizes up to 34
bits. For the unoptimised version of both the DLP and ECDLP variants, tests were
done up to 20 bits only due to the time taken. For optimised versions, we tested
up to the full 34 bits in both cases.

Each script used in testing is included in the Appendix (Section 6).
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– Vanilla-DLP: A non-optimised discrete logarithm (DLP) based implementa-
tion using naive scalar multiplication.

– ECC-DLP-Vanilla: A basic elliptic curve variant using a similar brute-force
search for the scalar.

– BSGS-DLP: An optimised DLP implementation leveraging the Baby-Step
Giant-Step (BSGS) algorithm.

– ECCDLP-BSGS: An optimised elliptic curve implementation using BSGS
with curve precomputations.

Table 1: Alice Decryption Time vs. Message Index (cm) for Different Schemes
Scheme cm Decryption Time (ms)

Vanilla-DLP 9 6.9701
Vanilla-DLP 99 7.5207
Vanilla-DLP 999 6.1685
Vanilla-DLP 9,999 63.6082
Vanilla-DLP 99,999 1700.6238
Vanilla-DLP 999,999 27769.2745

ECC-DLP-Vanilla 9 6.5441
ECC-DLP-Vanilla 99 42.0362
ECC-DLP-Vanilla 999 429.0826
ECC-DLP-Vanilla 9,999 4,280.2626
ECC-DLP-Vanilla 99,999 42,637.5404
ECC-DLP-Vanilla 999,999 442,947.4792

BSGS-DLP 9 4.6448
BSGS-DLP 99 6.9718
BSGS-DLP 999 8.4206
BSGS-DLP 9,999 7.9787
BSGS-DLP 99,999 12.5426
BSGS-DLP 999,999 14.5983
BSGS-DLP 9,999,999 12.0785
BSGS-DLP 99,999,999 6.8217
BSGS-DLP 999,999,999 11.2848
BSGS-DLP 9,999,999,999 10.1387

ECCDLP-BSGS 9 1.5771
ECCDLP-BSGS 99 4.5974
ECCDLP-BSGS 999 10.1518
ECCDLP-BSGS 9,999 47.3780
ECCDLP-BSGS 99,999 145.2986
ECCDLP-BSGS 999,999 458.9628
ECCDLP-BSGS 9,999,999 1,487.1940
ECCDLP-BSGS 99,999,999 4,693.6531
ECCDLP-BSGS 999,999,999 14,142.6721
ECCDLP-BSGS 9,999,999,999 43893.8668

The ECCDLP-BSGS variant significantly outperforms its unoptimised elliptic
curve counterpart (ECC-DLP-Vanilla), reducing decryption time by over three or-
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ders of magnitude for large cm values. The DLP variants also benefit markedly from
BSGS optimisation, with decryption times reduced from tens of seconds to millisec-
onds. Interestingly, the optimised BSGS-DLP implementation outperforms the
ECCDLP-BSGS variant in raw decryption time across most cm values, owing to
faster integer arithmetic compared to elliptic curve point operations.

5 Conclusions

While RSA-OAEP, Pailler, Goldwasser-Micali, ElGamal schemes, Cramer-Shoup,
and Smooth Projective Hash-based systems all support anamorphic cryptography,
the usage of elliptic curve methods provides an opportunity to enhance the overall
performance of the methods implemented for the ElGamal technique. The results
show that the ECCDLP-BSGS variant significantly outperforms unoptimised ellip-
tic curve methods for anamorphic cryptography.
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that support this implementation are available at:
https://github.com/billbuchanan/babydictator.

6.1 Source Code and Tools

The full implementation is provided in the companion GitHub repository. Tools
include:

– keygen.go – Generates key pairs for both the Dictator and Alice

– encrypt.go – Encrypts both cover and covert messages

– decrypt dictator.go – Decrypts the cover message using sk0
– decrypt alice.go – Recovers the covert message using Alice’s key

The repository also includes benchmarking scripts and a chatbot interface to
demonstrate how covert communication works in real-time using this proof of con-
cept (POC).

6.2 Application Implementation

To support further experimentation, testing and real-time demo, we have imple-
mented a full-stack application for Anamorphic Encryption. This consists of Go
CLI tools, a Python API wrapper, and a Chatbot front-end. Collectively, these
represent a messenger service, where covert data can be hidden in the ciphertext.

6.3 Command-Line Tools (CLI)

The core cryptographic logic is implemented in Go and exposed through standalone
CLI binaries. These tools form the computational backend and include:

– keygen.go — Generates Dictator and Alice key pairs

– encrypt.go — Performs anamorphic encryption with standard and covert mes-
sage support

– decrypt dictator.go — Decrypts messages with the Dictator’s key

– decrypt alice.go — Recovers covert message cm using Alice’s key and op-
tional BSGS optimisation

Each tool supports flexible inputs (via flags), and all test cases used for bench-
marking (see Section 1), other than the DLP-based tests, were produced using these
scripts.
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6.4 REST API Layer

A Python Flask-based web API wraps the Go CLI binaries, exposing endpoints for
key generation, encryption, and both decryption flows. This API layer supports:

– Stateless operation with ephemeral or uploaded keys

– Endpoint support for JSON-based requests:

• POST /api/keygen

• POST /api/encrypt

• POST /api/decrypt-alice

• POST /api/decrypt-dictator

– Docker-friendly deployment and integration with the frontend

6.5 Repository Access and Scripts

The full source code, CLI tools, Python API server, React frontend, and schema
definitions are hosted at: https://github.com/billbuchanan/babydictator

Scripts include:

– CLI: keygen.go, encrypt.go, decrypt alice.go, decrypt dictator.go

– API: app.py wrapping CLI binaries with RESTful endpoints

– Frontend: Chatbot UI for encryption testing and message interpretation

– Examples: Full usage walkthroughs, pre-built binaries, and LLM integration
hooks

7 Authors

William (Bill) J Buchanan OBE FRSE is a Professor of Ap-
plied Cryptography in the School of Computing, Edinburgh
and the Built Environment at Edinburgh Napier University.
He is a Fellow of the BCS and a Principal Fellow of the HEA.
Bill was appointed an Officer of the Order of the British
Empire (OBE) in the 2017 Birthday Honours for services
to cybersecurity, and, in 2024, he was appointed as a Fel-
low of the Royal Society of Edinburgh (FRSE). In 2023, he
received the ”Most Innovative Teacher of the Year” award
at the Times Higher Education Awards 2023 (the ”Oscars
of Higher Education”), and was awarded “Cyber Evangelist of the Year” at the
Scottish Cyber Awards in 2016 and 2025.

70                                   Computer Science & Information Technology (CS & IT)



Jamie Gilchrist is a self-taught cryptography and cyberse-
curity enthusiast with over 20 years of professional experi-
ence in the IT industry. His research interests include applied
cryptography, decentralised systems, identity solutions and
the intersection of machine learning, privacy and data secu-
rity.

                                                                     . This article is published under the CreativeCommons
Attribution (CC BY) license.
©2025 By AIRCC Publishing Corporation

Computer Science & Information Technology (CS & IT)                                          71

https://airccse.org

	Anamorphic Cryptography using Baby-Step Giant-Step Recovery



