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ABSTRACT 
 
In recent years, the rapid development of data-driven applications has posed significant 

challenges for data computation in different domains. Handling and processing continuous 

data streams have become essential for building data-driven organizations, which places a 

high burden on traditional computing. As a centralized method, cloud computing often 

struggles with application latency, mainly because of geographic distance and network 
bandwidth challenges . The increasing scale and complexity of data, characterized by high 

volume, velocity, and variety, demand computational infrastructures that are powerful, 

adaptive, and efficient in terms of pro- cessing. Fog and Edge computing are two 

decentralized network solutions that move the computation closer to the data source, 

lowering network traffic while improving the response time. Edge computing performs 

computations within IoT devices, resulting in real-time data processing and subsequently 

transferring less time-critical data to the cloud. In contrast, Fog Computing utilizes fog 

nodes with high computational power for data processing and storage. These nodes are 

within the same local network, and a decentralized solution is a better choice when 

working with a large number of IoT devices, the need for local computational power, and 

storage. Both fog and edge computing rely on cloud infrastructure for long-term data 

storage and larger computations. This study provides a comprehensive comparative 
analysis of the Fog, Edge, and Cloud computing paradigms, with a particular focus on 

their applicability to real-time data stream processing. to determine their strengths and 

ideal use cases in a table and to showcase their advantages and disadvantages in stream 

processing 
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1. INTRODUCTION 
 

The emergence of data-intensive applications such as autonomous systems, real- time analytics, 

and Internet of Things (IoT)-based services has made data-stream processing an essential 
requirement in modern computing. Although batch pro- cessing involves analysing stored data 

over time, it naturally lacks the real-time decision-making and timely insights required for 

latency-sensitive applications. In contrast, stream processing involves the ingestion, processing, 
and analysis of data in motion, introducing new challenges related to the increasing scale, 

velocity, and distribution of data streams. 
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Meeting these demands using traditional cloud solutions often leads to higher operational 
expenditures (OPEX), particularly when dealing with real-time data pro- cessing. The main 

reasons these organizations need to address their challenges are data transfer, storage, and 

computing resource usage[1]. Moreover, many applications within the Internet of Things (IoT), 

5G networks, and interactive games are now focusing more on their quality to ensure customer 
satisfaction, which means that they will depend more on low-latency features. 

 

Moreover, the number of real-time IoT applications has been significantly increased. These 
applications require resources that support fast processing and low access latency to minimize the 

total response time. Some examples of these applications are autonomous robots and disaster 

management applications (e.g., natural Hazard Management). 
 

2. BACKGROUND 
 

The following formatting rules must be followed strictly.  This (.doc) document may be used as a 

template for papers prepared using Microsoft Word.  Papers not conforming to these requirements 
may not be published in the conference proceedings. 

 

Cloud computing refers to a scalable, on-demand solution for remote computation over the 
Internet that uses datacentres. This model provides centralized resource management and 

orchestration, offering scalable computing capabilities that can expand significantly based on 

demand, and is best suited for storing large data and computation tasks without requiring time-

critical workloads [2]. However, its limitations are due to its reliance on wide-area networks, 
which often result in high latency and bandwidth consumption. Additionally, concerns regarding 

data privacy and regulatory compliance have emerged, particularly when data storage and 

processing cross international boundaries [3]. 
 

Cloud computing refers to a scalable, on-demand solution for remote computation over the 

Internet that uses a datacentre. This model provides centralized resource management and 
orchestration, offering scalable computing capabilities that can expand significantly based on 

demand, and is best suited for storing large data and computation tasks without requiring time-

critical workloads [2]. However, its limitations are due to its reliance on wide-area networks, 

which often result in high latency and bandwidth consumption. Additionally, concerns regarding 
data privacy and regulatory compliance have emerged, particularly when data storage and 

processing cross international boundaries [3]. 

 
In contrast, edge computing moves the computation location near the source, such as sensors, 

mobile devices, and gateways (i.e., edge nodes). This model reduces the problem of long-distance 

data transmission and allows real-time processing with low latencies. Unlike centralized cloud 

computing, edge computing leverages local computation across distributed nodes, even with 
intermittent or no connectivity to the Internet or cloud[4]. This enhances resilience in remote or 

unreliable network environments and improves the reliability and trustworthiness of the stream-

processing tasks. However, Edge nodes are often resource-constrained, and orchestrating 
workloads across a heterogeneous network can introduce maintenance challenges[5,6]. 

 

Fog computing lies between clouds and edges as an intermediate layer that extends cloud 
capabilities closer to the data to distribute computational resources across ”fog nodes” near the 

edge of the network. The key features that distinguish Fog include context awareness, lower 

latency, mobility support, real-time computation, and heterogeneity[7]. The computational and 

storage capabilities of fog nodes are often greater than those of edge devices, which results in 
reduced latency, preprocessing, and filtering in IoT applications that require a fast response[8–

10]. 
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In this survey, we built on existing studies to provide a comprehensive overview of the challenges 

associated with data-stream processing in cloud, fog, and edge computing environments. We 

examined the architectural differences, processing capabilities, and inherent limitations of each 

layer to elucidate their impact on the orchestration of the stream processing systems. We 
categorize the challenges primarily across the resource management, latency, security, and 

scalability landscapes. 

 

3. CHALLENGES OF DATA STREAM PROCESSING 
 

Data stream processing proposes a paradigm shift from traditional batch processing, driven by the 

increasing need for real-time insights and responsive decision-making in fast-paced 

environments. Stream processing plays a vital role when organizations need to obtain useful 
knowledge from ongoing events efficiently to take appropriate action. However, this process 

faces significant challenges, which arises from the nature of big data streams that must be 

addressed. The most critical challenges include: 
 

3.1. Load Balancing 
 
A stream processing system must exhibit self-adaptive behaviour when receiving data faster, 

slower, or in larger amounts than usual, thereby minimizing the risk of data loss during peak 

loads[11]. One of the core challenges in building such systems cost-effectively lies in the 
system’s inability to dedicate sufficient resources to handle peak demands at all times, as such 

provisioning would lead to the waste of resources during normal load periods. Using a distributed 

computing paradigm, such as Fog or Edge computing, allows the offloading of part of the data to 
a datacentre whenever the local system becomes overloaded [11]. 

 

3.2. Storage and Ingestion 
 

The separation of data ingestion, processing, and storage layers across heterogeneous systems has 

been widely recognized as a key performance bottleneck in distributed data stream processing, 
especially within fog and edge computing environments, where high-velocity data are 

continuously produced by IoT devices [12]. Disjointed architectures often result in redundant I/O 

operations, higher latency, and more complex resource management owing to movement between 

different systems. This poses a significant challenge for edge computing, where data arrive 
constantly and unpredictably from many IoT devices[13]. By combining these separate 

components into one integrated system, the overall architecture becomes simpler, and data can 

flow through the system more easily. 
 

3.3. Privacy 
 
Stream processing systems face significant privacy challenges owing to their Realtime data 

handling capabilities, particularly when processing sensitive information across multilayered 

architectures. Sensitive data can be intercepted at various layers (sensor, fog, and cloud), leading 
to potential breaches or unauthorized access[14]. It is more feasible to deploy robust and 

comprehensive security protocols in the cloud, where powerful hardware can support advanced 

authentication, encryption, and monitoring techniques. In contrast, edge and fog computing 

systems are often under strict resource constraints, making them more vulnerable to breaches. 
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4. COMPARING FOG, EDGE, AND CLOUD COMPUTING ENVIRONMENTS 
 

In this chapter, we compare Fog, Edge, and Cloud computing environments, discussing 

the details of their characteristics, which define how each computing strategy stands out 

and is best suited for specific scenarios. The results are presented in Table 1. 

 
Table 1.  Mapping of Proposed Solutions to Computing Paradigms. 

 

Characteristic Fog Computing Edge Computing Cloud Computing 

Computation 

Location 
Fog nodes within the local 

area network 

Inside the IoT Devices Cloud datacentres 

Latency Low Instant (within IoT) High 

Real-Time 

Support 
Supported Supported Limited 

Response Rate Milliseconds, sub seconds Milliseconds up to Minutes 

Storage Capacity High Very Low Unlimited(datacentre 

level) 

Computational 

Power 

High Limited 
Unlimited(datacentre 

level) 

Geographical 

Location 
Local Network Device Level Datacentre 

Scalability Moderate Limited High 

Fault Tolerance High High Moderate 

Solution Distribution Decentralized over Local 

Network 

Decentralized at IoT 

Device Level Centralized at Datacentres 

Energy Efficiency High High Low 

Cybersecurity Decentralized solution with 

heterogeneous nature, 

potentially leading to 

increased attack surface, 

low authentication, and 

limited visibility in the 

network 

Most decentralized with 

only one device’s data, 

limited cybersecurity 

features 

Datacentre security level, 

centralized solution with all 

data at one location, more 

flexibility for developing 

security protocols 

Characteristic Fog Computing Edge Computing Cloud Computing 

Use Case Local Local Global 

Distance to 

End-nodes 
Close Very Close Far 

Location Awareness 
Supported Supported Not Supported 

Heterogeneity 

Support 
Supported Supported Supported 

Maintenance 

Complexity 
High Moderate Low 
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General Application Where the number of IoT 
devices is high and 

local/offline computation 

power and storage are 

required; e.g., Smart 

factories, real-time 

healthcare, autonomous 

vehicles, Smart grids 

Where the number of 

IoT devices is 

small/limited and real-

time response is 

demanded; e.g., special 

use in Smart factories, 

healthcare, traffic control 

Ability to compute and store a 

high amount of data and 

provide different service 

platforms (IaaS, 

PaaS, SaaS) 

 

4.1. Computation Location and Latency Challenges 
 

In data stream processing for Edge, Fog, and Cloud environments, the computation location 
defines where the data are processed. Edge and Fog computing prioritize processing near the data 

source to minimize latency, whereas cloud computing transmits data to remote datacentres. 

 

Edge computing handles real-time processing inside IoT devices, which are the primary source of 
data, enabling real-time processing but with limited computing power and energy resources[9]. 

Fog computing introduces a different hardware solution, fog nodes(such as fog servers and 

gateways), with greater computational power to support tasks such as aggregation and 
preliminary analytics in local networks [15]. This model is particularly effective in dense IoT 

deployments, enabling local storage and reducing the dependency on distant servers [16,9]. 

 

Nevertheless, both Edge and Fog often offload data to cloud infrastructure for advanced analysis 
and long-term storage. Although cloud computing offers virtually unlimited computational 

resources and storage capacity, it incurs increased latency and potential security risks owing to 

data transmission over wide area networks [17]. 
 

4.2. Data Volume and Scalability 
 
Managing the massive and continuous influx of data generated by IoT devices, sensors, and user 

applications is a primary challenge in data-stream processing across different computing 

environments. Limited computational resources, memory capacity, and energy constraints have 
made it difficult to efficiently handle largescale, high-velocity data streams [13]. Although Fog 

nodes provide more resources than edge devices, they are still significantly constrained compared 

to centralized cloud infrastructures[18]. 
 

Using distributed storage systems and elastic resource provisioning, cloud computing can provide 

nearly unlimited scalability, thereby allowing the effective processing and analysis of large data 

streams [19]. However, businesses cannot rely solely on the cloud because of latency and 
bandwidth challenges when transmitting vast volumes of raw data from distributed sources. 

 

4.3. Resource Constraints and Reliability 
 

Resource limitations are a fundamental challenge in data stream processing in edgeand fog-

computing environments. These devices often offer limited CPU capacity, storage, and energy 
reserves, restricting their ability to continuously process highvolume data streams. 

 

Unlike centralized cloud environments, where redundancy and fault tolerance mechanisms are 
mature, Edge and Fog layers require lightweight, decentralized approaches to ensure system 

reliability without overburdening limited resources [22]. 

 



92                                   Computer Science & Information Technology (CS & IT) 

Autoscaling mechanisms have been widely adopted to address dynamic workload fluctuations in 
cloud computing systems. However, traditional autoscaling methods, such as the horizontal pod 

autoscaler (HPA), rely on reactive scaling based on hardware utilization metrics(e.g., CPU or 

memory usage), which may not be sufficient for heterogeneous and resource-constrained edge 

computing environments. To address these limitations, a recent study by Ju et al.[23] proposed a 
solution that uses a prediction method for the workload using information on system resource 

usage (e.g., CPU, RAM, and I/O) and demands in advance. In this way, we can maintain the 

system performance without introducing heavy overhead, making it particularly suited for the 
reliability and efficiency challenges faced in Edge and Fog computing systems. 

 

5. POTENTIAL SOLUTIONS AND PROPOSED SYSTEM 
 

In this section, we synthesize existing adaptive mechanisms from recent literature, focusing on 
their applicability to stream processing in edge, fog, and cloud environments. While we do not 

propose new algorithms, we compare these approaches to identify gaps and practical 

considerations for deployment. 
 

5.1. Reactive and Proactive Autoscalers 
 
By employing data on the workload of computing systems, such as CPU utilization, request rates, 

and memory usage, autoscalers can dynamically adjust the number of running instances to meet 

performance requirements[24]. Reactive autoscalers respond to changes in metrics after they 
occur; for instance, they scale out when the CPU usage exceeds a threshold with the HPA. This 

approach is simple to implement but may lead to delayed reactions and temporary performance 

degradation during sudden demand spikes [25]. 
 

However, relying solely on reactive methods may be insufficient for systems that require 

consistent performance under highly dynamic workloads. To address this limitation, proactive 

autoscalers attempt to anticipate future resource demands based on historical data, workload 
trends, or external inputs, such as time-of-day patterns or user behaviour forecasts. 

 

One such approach is the Proactive Pod Autoscaler (PPA), which integrates a machine-learning-
based forecasting mechanism into the Kubernetes autoscaling loop[23]. The PPA maintains 

historical metric logs and a continuously updated prediction model to estimate the optimal 

number of pod replicas in advance, thereby ensuring data processing quality. 

 

5.2. Task Scheduling 
 
Task scheduling plays a pivotal role in ensuring efficient and timely processing of data streams in 

distributed computing environments spanning edge, fog, and cloud layers. The heterogeneous 

nature of devices in the edge layer results in variations in resource capacities and dynamic 

workload patterns. Determining when, where, and how tasks should be executed is a nontrivial 
challenge that requires further research. In task scheduling, we aim to optimize performance 

metrics such as latency, energy, and cost. For instance, in a complex and constantly changing 

environment similar to smart manufacturing, heuristic algorithms are used to map tasks to fog 
nodes with minimal time and energy costs [26]. These algorithms aim to minimize the makespan 

and energy cost by considering parameters such as task size, execution time, node availability, 

and current system load[27]. Other methods, such as that proposed in[28], employ reinforcement 
learning to manage the complexity of realtime task offloading in dynamic edge computing 

environments. By tracking changes in the network and task requirements, the system decides to 
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send its resources. This helps keep delays low and makes better use of the available resources so 
that more tasks can be handled successfully and rapidly. 

 

5.3. Lightweight Privacy Protocols 
 

Employing security protocols on IoT devices can help prevent many disastrous attacks, including 

Denial of Service (DoS) attacks, session hijacking, Eavesdropping, or Data tampering attacks[29]. 
One of the challenges faced by decentralized computing methods is data privacy, which is due to 

resource-constrained devices at the edge layer; therefore, implementing the same protocol on 

cloud computing is not feasible for edge and fog. In such environments, lightweight and adaptive 

security mechanisms are required to balance the trade-off between computational overhead and 
protection requirements. For instance, Datagram Transport Layer Security (DTLS) is often 

preferred over traditional TLS in edge computing because it is an extension of the User Datagram 

Protocol (UDP)[30]. One such protocol is the Constrained Application Protocol (CoAP), which is 
designed for resource constrained devices and networks. CoAP is a client/server model that 

enables the client to request services from the server as needed, and the server responds to the 

client’s request without acknowledgments for every message, which helps preserve energy in 
resource-constrained devices. . However, DTLS can also pose challenges, such as increased 

latency and handshake complexity. Therefore, the design of secure edge systems often involves 

customized or tiered approaches to authentication, encryption, and access control, which are 

tailored to device capabilities and context specific risk levels. 
 

Table 2: Mapping of Proposed Solutions to Computing Paradigms 

 

Computing 

Layer 
Suitable Solutions Notes 

Cloud 
– Reactive Autoscalers (e.g., HPA) 

– Proactive Autoscalers (e.g., PPA 

with ML-based forecasting) 

Abundant resources allow for sophisticated 

scaling strategies, including predictive models 

and workload forecasting. 

Edge – Reinforcement Learning-based 

Task Scheduling 
– Lightweight Privacy Protocols 

(e.g., DTLS, CoAP) 

Limited computational resources require 

efficient adaptive scheduling and minimal-

overhead privacy mechanisms. 

Computing 

Layer 
Suitable Solutions Notes 

Fog 
– Heuristic Task Scheduling (e.g., 

makespan and energy-aware) 

– Tiered Lightweight Privacy 

Mechanisms 

Moderate resources and proximity to both the 

cloud and edge make them suitable for hybrid 

approaches. 

 

6. FUTURE DIRECTIONS 
 

The increasing demand for real-time, distributed stream processing across Cloud, Fog, and Edge 
computing layers opens numerous research directions, some of which are as follows: 

 

– Privacy-Preserving Stream Analytics: Lightweight privacy protocols like DTLS and 
CoAP can serve as potential solutions in addressing challenges with implementing heavy 

security protocols on IoT devices , but there’s a need for customizable privacy-preserving 
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analytics pipelines that adapt encryption levels based on context, device capabilities, and data 
sensitivity without compromising performance. 

– Federated Learning for Stream Adaptation: Applying federated learning to real-time 

stream data could enable edge nodes to learn local patterns and contribute to global models 

without transmitting raw data, balancing privacy and performance. 

– Benchmarking Standards for Heterogeneous Environments: There is a lack of 

standard benchmarking tools that can accurately measure stream processing performance 

across heterogeneous cloud-fog-edge stacks. Future studies should use simulation 
environments to evaluate latency, fault tolerance, and cost-effectiveness. 

 

7. CONCLUSION 
 

Cloud computing has been a significant achievement in the IT industry because it provides high 
storage capacity and computational power on demand. However, the need for real-time 

computation and decision-making on remote devices has resulted in new problems, especially as 

smart societies encounter issues such as rapid response requirements, bandwidth limitations, 
latency, and real-time processing constraints. Consequently, fields with requirements similar to 

those of stream processing require solutions to meet their demands. In response, network 

paradigms are changing from centralized to decentralized approaches to decrease network traffic 

and improve robustness. Decentralized methods, such as fog and edge computing, can result in 
faster response rates and lower network traffic levels. This study examined the underlying reasons 

and challenges associated with stream processing across three computational layers of a 

decentralized architecture: cloud, fog, and edge computing. It provides a comparative analysis of 
these models and proposes potential solutions to the identified challenges, drawing on existing 

research that has addressed similar issues and demonstrated improvements in shared problem 

areas. 
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