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ABSTRACT 

 
As micromobility devices like e-scooters rise in popularity, so do safety concerns. GuardRide 
addresses the growing number of injuries from rider fatigue, excessive speed, and collisions 

by combining sensor-based monitoring and AI-powered analysis. The system is available in 

two forms: a Raspberry Pi-based wearable module using a BNO085 IMU and VL53L4CD 

distance sensor, and a smartphone app using GPS and OpenAI’s vision models to detect 

fatigue [1]. Real-time alerts are delivered through a user interface on both platforms. 

Challenges included ensuring detection accuracy under varying conditions and minimizing 

false alerts. Experiments showed strong performance, with high accuracy in identifying 

fatigue and crashes. Compared to existing solutions, GuardRide is more adaptable to 

dynamic, outdoor use and doesn’t require vehicle enclosures or specialized equipment. By 

offering proactive safety monitoring in a lightweight, scalable package, GuardRide supports 

safer urban travel and helps reduce injuries for micromobility users. 
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1. INTRODUCTION 
 
The growing popularity of micromobility vehicles, especially e-scooters, has reshaped urban 

transportation, but has also raised significant safety concerns [2]. From 2017 to 2022, over 

360,000 emergency room visits in the United States were attributed to e-scooter injuries— a 

number that continues to rise steeply each year [3]. This sharp increase highlights the urgent need 
for better safety measures specifically designed for micromobility users. 

 

Riders today face dangers including excessive speed, lack of protective equipment like helmets, 
rider fatigue, and the constant risk of collisions with vehicles, pedestrians, or obstacles. Current 

safety approaches are reactive rather than proactive, often addressing issues only after accidents, 

such as with helmets and padding. Without smarter, real-time systems in place, injuries and 
accidents are likely to continue escalating, posing serious risks not only to riders but also to 

pedestrians, city services, and healthcare providers. 

 

The problem affects a wide range of people: casual users, commuters, and fleet operators. With 
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micromobility use projected to keep growing, the absence of effective safety enhancements could 
lead to stricter regulations or even pullbacks in public adoption [4]. Addressing these challenges 

now is crucial to protecting riders and ensuring micromobility remains a viable part of urban 

transportation. 

 
Methodology A: 

 

A DMS system used MTCNN to track facial features and detect fatigue through eye and mouth 
states. While effective in vehicles, it assumes a fixed cabin view and does not adapt well to open 

or mobile environments. GuardRide improves on this by using general-purpose AI that works 

outdoors and on scooters. 
 

Methodology B: 

 

A comprehensive review grouped fatigue detection into subjective, physical, biological, and 
vehicular methods [5]. Many systems rely on complex sensors or controlled environments. 

GuardRide simplifies this by focusing on vision-based physical detection using consumer 

hardware, making it more scalable and mobile-friendly. 
 

Methodology C: 

 
A study developed an AAI safety monitoring system that integrates a pressure-sensitive footrest 

and an accelerometer module, both mounted directly on electric scooters, to detect critical safety 

conditions, such as multiple riders or sidewalk riding [15]. GuardRide builds on this concept by 

applying sensor fusion and AI-based inference. 
 

GuardRide is an AI-powered safety system designed to make micromobility commuting safer and 

smarter. Targeting urban commuters and scooter-sharing companies (such as Lime and Bird), 
GuardRid enhances safety for users in areas with high micromobility use. The system features 

real-time speed monitoring and alerts, fatigue and helmet detection, and collision avoidance 

technologies. A mobile app provides live updates, personalized safety insights, and performance 

tracking, allowing riders to manage risks proactively rather than reactively. GuardRide seamlessly 
integrates with existing e-scooters and other e-vehicles, offering an easy-to-use solution for both 

personal riders and fleet operators without the need for major hardware changes. 

 
For commuters, GuardRide means fewer accidents, better awareness, and peace of mind during 

their daily rides. It promotes safer riding habits through real-time feedback, helping to prevent 

common injuries caused by speeding, fatigue, and lack of helmet use. For companies like Lime or 
Bird, GuardRide offers a powerful way to enhance safety records, mitigate legal liabilities, and 

foster customer loyalty by demonstrating a strong commitment to rider well-being. Fewer 

incidents also mean lower insurance costs and better relationships with city regulators, helping 

companies expand operations more easily. 
 

With micromobility rapidly on the rise and injury rates increasing, GuardRide meets a critical 

need in today’s cities. It positions itself to be a key shaper of the future of safe urban transport by 
not just responding to accidents, but actively preventing them. 

 

We conducted two key experiments to evaluate the performance of GuardRide’s safety systems. 
The first experiment tested fatigue detection using OpenAI’s vision models under various user 

conditions and lighting environments [6]. Users were categorized as alert, mildly tired, or very 

tired. The AI performed best when symptoms were obvious, achieving 95% accuracy for the 
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“very tired” group, but dropped to 75% for borderline cases. The second experiment tested the 
crash detection module using a BNO085 IMU. Simulated scooter crashes were compared to false 

alarms caused by abrupt stops or bumps. The system correctly identified 18 of 20 crash events, 

with 3 false positives during regular riding. These experiments showed that GuardRide is 

generally accurate but can benefit from improvements in nuanced fatigue detection and better 
noise handling for crash classification. Overall, the results validate GuardRide’s utility in 

enhancing rider safety through real-time, proactive feedback. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. Compact, Efficient, and User-Friendly Sensor Integration 
 

A major component of GuardRide is integrating the parts into a compact, user-friendly design. 
We must consider how to fit speed, fatigue, and proximity sensors into a form factor that does not 

interfere with the rider’s experience, on and off their vehicles, while maintaining low production 

costs. If the hardware is too bulky, it would be inefficient to carry and discourage use; if it is too 

minimal, it may not capture accurate data. To address these challenges, we could use miniaturized 
low-power sensors and design a system that can be easily attached to handlebars. Careful 

component sourcing and efficient design would help balance cost and portability. 

 

2.2. Efficient Real-Time Helmet Detection 
 

The helmet detection AI is a key GuardRide component that requires robust computer vision. We 
must consider lighting, variations, different helmet styles, and partial occlusions when riders 

move. If the AI model is too large, it may slow down real-time detection; if too small, the 

accuracy may drop. To address these issues, we could use a lightweight AI model trained on a 
diverse dataset of helmets in various lighting and angles, on and off users. This helps improve the 

accuracy of detection while keeping fast speeds. 

 

2.3. Designing Clear, Non-Distracting Real-Time Alerts 
 

GuardRide needs to deliver real-time alerts to riders about speeding, fatigue, or collision risks 
without distracting them while riding. A challenge is designing alerts that quickly capture the 

attention of the rider, but do not cause panic or additional hazards. For example, loud alarms or 

flashing lights would startle riders, while subtle notifications might go unnoticed. To address this, 
we designed clear visual cues to appear on both the app and device that ensure riders receive and 

respond to safety alerts effectively while maintaining control of the scooter. 

 

3. SOLUTION 
 
GuardRide consists of two main platforms: a hardware-based embedded system and a smartphone 

application. Both systems are designed to improve micromobility safety using real-time 

monitoring, AI, and intuitive alerts. The embedded system uses a Raspberry Pi connected to two 
key sensors: a BNO085 IMU, which tracks acceleration, orientation, and motion, and a 

VL53L4CD Time-of-Flight sensor for detecting proximity and distance to nearby obstacles [7]. 

This sensor data is processed in real time and displayed on a small touchscreen attached to the Pi, 

allowing riders to see their current speed and receive immediate safety alerts. The Pi also 
triggers crash alerts if rapid deceleration or tipping is detected, using threshold-based logic. 

 



180                                   Computer Science & Information Technology (CS & IT) 

The mobile app-based system is built for users without access to the hardware. It uses the 
smartphone’s GPS to estimate real-time speed and camera-based AI to monitor fatigue or 

drowsiness by analyzing facial landmarks. If a rider appears fatigued, the app displays visual 

alerts and may recommend taking a break. In both platforms, safety alerts are designed to be clear 

but non-distracting. 
 

The system was built using Python for the Raspberry Pi implementation and Flutter for the 

mobile application. Google’s ML Kit and OpenCV are used for fatigue detection [8]. In both 
implementations, the goal is to notify users of danger before accidents occur — not after. Each 

platform serves a different use case: the hardware version for scooter fleets or enthusiasts, and the 

mobile version for casual or on-demand riders. 
 

This component uses the BNO085 IMU and VL53L4CD ToF sensor to track rider speed, motion, 

orientation, and proximity to nearby objects. Data is processed by the Raspberry Pi and displayed 

to the rider in real time. This system enables crash detection and obstacle awareness using 
physical sensor feedback. 

 

 
 

Figure 1. Screenshot of the component 

 

 
 

Figure 2. Screenshot of code 1 

 
This code runs on the Raspberry Pi and continuously reads data from both the BNO085 IMU and 

the VL53L1X Time-of-Flight sensor, processing this information to update the UI in real time. 

 
The update_ui() function executes every 25 milliseconds and is responsible for retrieving the latest 

readings. 

 

For motion, it calls get_acc_reading(), which internally filters acceleration data using a high-pass 
filter and integrates it over time to estimate velocity. This is then converted to miles per hour 

(mph) and displayed as the rider's speed. 
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For proximity detection, it uses get_tof_reading(), which reads the distance in millimeters, 
converts it to feet, and maps it to a UI bar graph using distance_to_index(). If an object is 

detected closer than a safe threshold, a warning message is shown. 

 

This combination of sensor fusion and UI feedback enables real-time awareness of speed and 
obstacles, helping riders avoid collisions and maintain safe travel behavior. 

 

The fatigue detection component uses OpenAI’s vision models to analyze live camera frames for 
signs of drowsiness, such as drooping eyelids, yawning, or poor posture. This AI-powered 

analysis runs on the smartphone app, alerting users in real time if they appear fatigued while 

riding, helping prevent accidents caused by tiredness [9]. 
 

 
 

Figure 3. Screenshot of speedometer 1 

 
 

 
 

Figure 4. Screenshot of code 2 
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This code snippet demonstrates how the mobile app uses OpenAI's vision API to detect signs of 
rider fatigue [10]. A camera frame is captured periodically while the app is running. That image 

is  then submitted to the GPT-4-vision-preview model for evaluation with a specific prompt such 

as “Is the user showing signs of drowsiness?” 

 
The model analyzes facial expressions and body posture in the frame. For instance, if it detects 

half-closed eyes, slouched shoulders, or yawning, it responds with a fatigue risk warning. This 

result is parsed, and if fatigue is confirmed, the app displays an alert encouraging the user to rest. 
 

This approach offloads heavy computation to OpenAI’s powerful model while keeping the app 

lightweight. It also avoids needing to train a custom model, providing high-quality inference 
across diverse environments and lighting conditions. Real-time usage is limited to small intervals 

to balance responsiveness with API call limits. 

 

The alert system delivers real-time visual and textual notifications to the rider through either the 
Raspberry Pi touchscreen or the mobile app interface. It warns users of fatigue, speed limits, or 

nearby obstacles. Alerts are designed to be clear and effective without distracting or 

overwhelming the user while riding. 
 

 
 

Figure 5. Screenshot of speedometer 
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Figure 6. Screenshot of code 3 

 

This Flutter code creates a UI section that displays a fatigue warning and provides a toggle for 

enabling or disabling fatigue detection. The interface is built using a Column widget that 

vertically stacks two elements. 
 

The first element is a conditional Text widget that checks the boolean variable isTired. If the value 

is true, it displays the message “You Look Tired. Get Some Rest” in bold, light-colored text. If 
is Tired is false; it displays an empty string, effectively hiding the message. This alert updates 

automatically based on real-time AI fatigue analysis performed in the app. 

 
The second element is a SwitchListTile, which gives the user manual control over whether 

fatigue detection is active. The switch reflects the current state stored in fatigueDetectionEnabled, 

and toggling it calls the _toggleFatigueDetection() function, which updates this value. 

 
Together, this UI logic gives users both passive feedback (fatigue alerts) and active control (toggle 

switch), improving safety without removing user autonomy. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 
A possible blind spot is GuardRide’s AI helmet detection accuracy under varied lighting and 

angles. Accuracy is critical to enforce safe helmet use without falsely limiting speed, ensuring 

user trust. 
 

To test fatigue detection, we simulated riding conditions with a variety of user states: alert, 

slightly tired, and extremely drowsy. We used front-facing smartphone cameras to capture short 

video clips of users exhibiting signs such as yawning, drooping eyelids, and head nodding. These 
clips were then passed to the OpenAI vision model for analysis using a standardized prompt. We 

manually labeled each video with the actual fatigue level and compared that against the model’s 

response. This experiment allowed us to quantify how well the system distinguishes between 
truly fatigued and alert users across lighting and background variations. 
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Figure 7. Figure of experiment 1 

 

The fatigue detection system showed strong performance in distinguishing clearly drowsy users, 

with a 95% accuracy rate for the “Very Tired” category. However, its accuracy dropped to 

75%  when users were only mildly fatigued, likely due to subtle facial expressions and borderline 

behavior. The “Not Tired” group was identified correctly in 90% of cases, though two false 

Positives occurred, suggesting that the model occasionally over-interpreted temporary expressions 

like blinking or glancing down. 

 
These results indicate that the system is most effective when fatigue symptoms are obvious, but it 

may need fine-tuning for subtle cases. Lighting and camera angle had noticeable impacts—dim 

conditions reduced accuracy. Improving detection could involve temporal averaging over 
multiple frames or prompting users to keep the phone within a defined angle. To explore offline 

capabilities, we also tested a lightweight MobileNetV2 model (TensorFlow Lite) on a small 

sample of 10 clips. Preliminary results showed ~80% accuracy in distinguishing “very tired” and 
“not tired”, though it dropped for subtle fatigue cues. While it is not as robust as cloud-based 

vision API’s yet, these results suggest that on-device AI is a promising direction for improving 

GuardRide’s independence from internet connectivity. Despite limitations, the AI-based fatigue 
analysis proved practical and reliable in most real-world use cases. 

 

4.2. Experiment 2 
 

A potential blind spot is crash detection sensitivity. It is critical for GuardRide to detect real 

crashes using IMU data while ignoring normal bumps or sudden stops during normal riding. 
 

We tested crash detection using the BNO085 IMU mounted on an e-scooter. The scooter 

was dropped or sharply tilted in a controlled environment onto padded flooring to simulate real 

crashes at low speeds. We also rode the scooter over bumps and curbs to generate non-
crash events. GuardRide  logged  motion  readings  and  issued  alerts  if  thresholds were 

exceeded. We then compared the system’s logs to actual physical observations. Each trial 

was tagged as either a “crash” or “non-crash,” and system performance was measured by how 
well it correctly issued or suppressed alerts. 
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Figure 8. Figure of experiment 2 

 
The system correctly detected 18 out of 20 simulated crashes, resulting in a 90% true positive 

rate. Most of the missed detections occurred when crashes happened slowly or involved 

primarily rotation without a strong acceleration spike. This suggests the threshold for vertical and 
lateral acceleration might need further tuning. 

 

During non-crash scenarios, such as curb bumps or sudden stops, the system triggered 3 false 

positives out of 20 trials. These alerts happened primarily due to abrupt deceleration, which can 
resemble the early phases of a fall. 

 

Overall, the BNO085-based crash detection performed well, but precision can be improved by 
incorporating time-based filtering or combining angular velocity with acceleration to better 

distinguish true falls. The alert system proved responsive and timely, validating its usefulness as a 

real-time emergency safety feature. 

 

5. RELATED WORK 
 

A study done by Adrian Bingham et al. focused on enhancing mobility scooter safety by 

implementing a system with infrared and ultrasonic sensors [11]. These devices handled far, 
close, and side obstacle detection at different speeds and directions. The system performed well 

in indoor tests, except with transparent surfaces, which it failed to detect. Aside from 

transparency, the system was able to detect all other obstacles and walls that they tested. 

GuardRide improves on this by using a VL53L4CD Time-of-Flight sensor for a more compact, 
accurate distance measurement. Not only detecting the obstacle, but also reporting how far away 

it is. 

 
A research study proposed a DMS (Driver Monitoring System) to reduce car accidents by 

monitoring driver fatigue and distractions in real time [12]. The system first uses a row-based 

algorithm to detect if the driver is wearing a seatbelt. It then employs MTCNN (Multitask 
Convolutional Neural Network) to detect faces and key facial landmarks such as eyes and mouth. 

Fatigue is determined by evaluating eye and mouth openness over time, while distraction is 

assessed by identifying actions like smoking or phone use via object detection. While effective in 

cars, this system is optimized for fixed camera angles and enclosed environments, limiting its use 
on micromobility platforms. GuardRide improves upon this by using OpenAI's general-purpose 

vision model, which is more flexible and better suited to dynamic, outdoor riding conditions 

without requiring constrained views or fixed cabin setups. 
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A review study on driver fatigue detection categorized detection approaches into five groups: 
subjective self-reporting, biological features (e.g., EEG, heart rate), physical features (e.g., eye 

closure, yawning), vehicle-based behavior (e.g., lane deviation), and hybrid systems combining 

multiple inputs [5]. While these methods show promise, most experiments were conducted under 

constrained environments such as driving simulators or controlled test tracks. Furthermore, many 
of these systems require specialized equipment that is impractical for everyday use. GuardRide 

improves on these methods by using camera-based physical feature detection with OpenAI’s 

vision models—making it suitable for lightweight mobile use on micromobility vehicles without 
the need for expensive sensors or controlled conditions. 

 

6. CONCLUSIONS 
 

While GuardRide demonstrates strong potential for enhancing micromobility safety, it has several 
limitations. First, the AI-based fatigue detection system relies on internet connectivity to access 

OpenAI’s vision model, which may not be consistently available in all environments. To address 

this, we conducted preliminary tests with a lightweight MobileNetV2 model. On a small sample 
of 10 clips, the offline system achieved ~80% accuracy. While not as accurate as OpenAI, these 

results suggest that on-device AI is a feasible path towards improving GuardRides' usability 

in low-connectivity environments. 
 

Second, lighting conditions significantly affect camera-based detection—low-light or backlit 

environments reduce accuracy. On the hardware side, the VL53L4CD sensor has a limited range, 

which may not give enough warning in high-speed scenarios. The crash detection system, while 
responsive, occasionally triggers false positives due to sudden stops or bumpy terrain [13]. 

If given more time, improvements would include offline fatigue detection using a 

lightweight on-device model, extended-range distance sensors, and improved sensor fusion 
algorithms to reduce false alarms [14]. Adding user feedback collection could also help 

personalize safety thresholds for different riding styles, improving accuracy and trust in the 

system. 
 

GuardRide represents a forward-thinking approach to micromobility safety by combining sensor-

based hardware with AI-powered mobile tools. Through real-time alerts and proactive monitoring, 

it helps prevent accidents before they happen. With further refinement, GuardRide has the 
potential to become a standard safety solution for both individual riders and fleet operators. 
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