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Abstract. The rapid evolution of large language models presents a significant new opportunity for human-
AI interaction, particularly through the use of automatic speech recognition (ASR). Despite the advances
in ASR, challenges including accent differences, noisy environments and diverse speech patterns hinder
achieving high accuracy in certain tasks like spoken order processing in restaurants. This paper introduces
and assesses a complete pipeline designed to transcribe and structure multi-accent spoken orders into
JSON, maintaining performance even in noisy settings. Our system integrates the Whisper ASR model
for voice transcription with two instruction-tuned language models, FLAN-T5 and Gemma-3, for text-
to-JSON conversion. To train and test these models, we created a large-scale, diverse dataset of spoken
orders featuring multiple accents and various background noises. We investigate a Retrieval-Augmented
Generation (RAG) approach to enhance JSON conversion accuracy by providing the models with relevant
menu context during inference. We evaluate the full pipeline on both clean and noisy audio, comparing the
effectiveness of fine-tuned FLAN-T5 and Gemma-3 with and without RAG. Furthermore, we assess the
models’ generalization capabilities on orders of varying complexity and their robustness against diverse
speech patterns. Our results demonstrate that the proposed pipelines achieve high accuracy, with the RAG-
enhanced approach significantly improving the performance of smaller models, thereby offering a practical
and efficient solution for automated order processing.

Keywords: Voice-to-JSON, Whisper, FLAN-T5, Gemma-3, Retrieval-Augmented Generation (RAG),
Automatic Speech Recognition (ASR), Fine-tuning, Order Processing.

1 Introduction

As voice-driven technologies become more prevalent across industries, the need for so-
phisticated ASR and NLP systems has grown substantially. In particular, systems that
can transcribe spoken orders into structured data, such as JSON format, are critical for
applications like order processing [6] in food delivery services, customer service call cen-
ters, and voice-enabled interfaces in various sectors. However, despite the advances in ASR
systems, several challenges remain, especially when handling diverse real-world scenarios.
These challenges include dealing with varied accents, noisy environments, diverse speech
patterns, and different speaker demographics (gender, age, tone, etc.) [5].

In this research, we address these challenges by developing a voice-to-JSON pipeline
that integrates Whisper for robust voice transcription [7] with fine-tuned generative mod-
els, FLAN-T5 and Gemma-3 (instruct), for structured data conversion [8]. To facilitate
this, we constructed a large-scale, multi-accent dataset of spoken restaurant orders, gen-
erating tens of thousands of audio samples under both clean and simulated noisy condi-
tions based on a predefined menu. A key contribution of our work is the integration of
a Retrieval-Augmented Generation (RAG) system, which leverages a vector database of
menu items to provide crucial context to the models, aiming to enhance the accuracy and
robustness of the final JSON output.

The core objective of this study is a multifaceted evaluation of our proposed pipelines.
We assess the standalone performance of each component and the end-to-end system’s
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accuracy in converting both clean and noisy audio to JSON. A central focus is comparing
the efficacy of FLAN-T5 versus Gemma-3 and quantifying the performance gains achieved
by implementing RAG. We further investigate the models’ ability to generalize to orders
of greater complexity and analyze their resilience to variations in speech rate, tone [9],
and background noise [10], including their adaptability to unseen item combinations from
our predefined menu.

By addressing these challenges and exploring the benefits of robust ASR training and
RAG, this research aims to push the boundaries of automated voice-driven systems, cre-
ating more adaptable, scalable, and robust tools for transcription and data structuring.
The findings presented here have wide-ranging implications for enhancing ASR and NLP
systems across numerous applications, including customer service and e-commerce.

While our work leverages existing state-of-the-art models, our primary contributions
are in their novel application, integration, and the rigorous empirical analysis of their
performance on a challenging real-world task. Specifically, the key contributions of this
work are threefold:

– We construct and release a new, large-scale dataset of multi-accent spoken restaurant
orders, featuring varied lengths and realistic background noise, which can serve as a
valuable resource for future research in robust speech processing.

– We design and benchmark a complete end-to-end pipeline (”From Voice to Code”) that
is specifically tailored for the practical task of structured order processing, providing
a strong baseline for future systems.

– We conduct a rigorous comparative analysis of different model architectures (FLAN-T5
vs. Gemma-3) and adaptation strategies (Retrieval-Augmented Generation vs. LoRA
fine-tuning). This analysis provides the community with critical insights into the prac-
tical trade-offs of these modern techniques in a real-world, resource-aware context.

The remainder of this paper is organized as follows: Section 2 provides a summary
of related work in automatic speech recognition. Section 3 describes our proposed RAG-
enhanced pipeline for robust order processing. Section 4 provides evaluation of the different
models on our dataset and 5 provides a cross-dataset evaluation of the models. Section 6
concludes the paper.

2 Related Work

The field of Automatic Speech Recognition (ASR) has seen significant progress in recent
years, driven by deep learning architectures. A key challenge remains the system’s ro-
bustness to real-world acoustic variability, including background noise and diverse speaker
accents [5]. Early approaches often relied on noise reduction pre-processing and accent-
specific acoustic models. More recent methods focus on data augmentation, such as SpecAug-
ment [10], which manipulates audio spectrograms during training to build more resilient
models. The advent of large-scale, weakly supervised models like Whisper [7] has marked
a paradigm shift. By training on a massive and diverse dataset from the web, Whisper
exhibits remarkable zero-shot performance across various languages, accents, and noisy
conditions, making it a strong baseline for transcription tasks like ours.

The task of converting unstructured natural language into a structured format like
JSON is a cornerstone of many NLP applications. This is traditionally framed as an in-
formation extraction task, encompassing sub-tasks like Named Entity Recognition (NER)
and Relation Extraction. In task-oriented dialogue systems, this is known as slot filling,
a task that aims to identify and extract key data points (known as ’slots’) from a user’s

36                                     Computer Science & Information Technology (CS & IT)



spoken request [6]. While earlier systems relied on sequence labeling models, the emer-
gence of large language models (LLMs) has enabled new approaches. Instruction-tuned
models like T5 [15] and its successor FLAN-T5 [8], as well as more recent models like
Gemma [3], can be prompted to directly generate structured output. This ”text-to-text”
formulation simplifies the pipeline by framing extraction as a generation task, which has
proven effective for generating JSON and other structured formats with high fidelity.

While LLMs possess vast world knowledge, they can struggle with domain-specific,
rapidly changing, or proprietary information. They are also prone to ”hallucination,”
where they generate factually incorrect information. The Retrieval-Augmented Generation
(RAG) framework was introduced to mitigate these issues by grounding the generation
process in relevant, retrieved documents [1]. As surveyed by Gao et al. [2], RAG combines
a retriever (to find relevant information from an external knowledge source) with a gen-
erator (an LLM) to produce more accurate and factual outputs. In our work, we adapt
this paradigm by using a vector database of menu items as the external knowledge source.
This provides the LLM with the precise, valid options for food items and customizations,
effectively constraining the generation space and reducing errors in the final JSON out-
put. This approach is particularly valuable for in-domain applications where accuracy and
adherence to a specific schema are critical.

3 Methodology

Figure 1 summarizes our proposed methodology for automatic order processing. The
pipeline begins with the Whisper ASR model converting raw audio into transcribed text.
This text serves as input to two parallel, experimental pathways for JSON generation.
The first pathway utilizes a Gemma model, which is efficiently updated using Low-Rank
Adaptation (LoRA). The second pathway employs a FLAN-T5 model integrated with a
Retrieval-Augmented Generation (RAG) pipeline to provide external menu context. This
parallel design is essential for comparing two distinct and powerful paradigms for adapting
language models to specialized tasks. The LoRA pathway (Path 1) represents a strategy of
internal knowledge adaptation, where the model’s own parameters are efficiently modified
to learn the specific patterns and vocabulary of the task. In contrast, the RAG pathway
(Path 2) exemplifies external knowledge augmentation, where the model is grounded with
factual, real-time context from an external knowledge base at the moment of inference.

By evaluating these two approaches, our research provides critical insights into the
practical trade-offs between model-centric adaptation and data-centric augmentation. This
analysis is necessary to determine the most effective and resource-efficient strategies for
deploying robust, real-world systems, and it offers guidance on whether it is better to
embed domain knowledge directly into the model’s weights or to retrieve it on-the-fly.
In the below subsections we provide details of the extensive dataset we generated, the
fine-tuning process for different models and retrieval-augmented generation.

3.1 Dataset Augmentation

The dataset used in this research was carefully constructed and augmented to simulate
realistic order-taking scenarios with variations in order length, item combinations, speaker
accents, and environmental noise. The process involved generating textual order data based
on a predefined menu, synthesizing speech from these texts using a realistic Text-to-Speech
(TTS) model, and then augmenting the audio with various types of background noise.
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Fig. 1. System architecture of the proposed voice-to-JSON pipeline. The process starts with a fine-tuned
Whisper model transcribing the raw audio. The text is then processed via two parallel pathways for JSON
generation: 1) a fine-tuning route using a LoRA-adapted Gemma-3 model, and 2) a retrieval-augmentation
route where context from a knowledge base creates an augmented prompt for a FLAN-T5 model.
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Text Data Generation To create the textual order data, we first designed a structured
menu comprising 5 categories, 15 subcategories, and a total of 48 distinct items, with each
item having an average of 3.92 potential customizations. We then developed a function
to programmatically generate random yet valid order combinations based on this menu
structure. The generation process followed a clear, multi-step logic:

– Determine Order Size: The function was first called with a specified number of
items for the order (e.g., 2-4 items for a ’small’ order, 5-7 for ’medium’, etc.).

– Select Main Items: The function randomly sampled the specified number of unique
items from the total pool of 48 main menu items. For example, for a three-item order,
it might select ’Classic Burger’, ’French Fries’, and ’Iced Tea’.

– Assign Customizations: For each selected main item, the function would then access
that specific item’s predefined list of possible customizations. It would randomly sample
a subset of these customizations to apply. This ensured that an item like a ’Classic
Burger’ could receive valid customizations such as ’no onions’ or ’extra cheese’, while
an item like ’Iced Tea’ would not be assigned invalid options.

This structured, two-level sampling process guaranteed that all generated combinations
were both diverse and logically valid according to the predefined menu, maintaining the
deterministic nature of the ordering system.

Audio Data Synthesis To convert the 4,200 generated order texts into a diverse audio
dataset, we employed the Kokoro-82M Text-to-Speech (TTS) model. We developed a pro-
grammatic script to systematically synthesize each text into a high-quality audio file. The
script iterated through each of the 4,200 unique order texts, pairing them with one of ten
distinct, pre-selected speaker profiles to generate the speech. These profiles were chosen to
introduce crucial accent and gender diversity into our dataset and comprised three male
American, three female American, two male British, and two female British voices. For
instance, to generate a single audio sample, the script would perform the following steps:

– Select a textual order, such as: ”Can I get a large pepperoni pizza with extra mush-
rooms and an iced tea?”

– Assign a speaker profile, for example, ’British Male 1’.

– Pass both the text and the selected voice profile to the Kokoro-82M TTS synthesis
engine.

– The engine would then generate the audio, which was saved as a 24kHz .wav file.

This process was repeated until every text was synthesized by every one of the ten speakers,
resulting in our final clean dataset of 42,000 audio samples.

Noise Application To enhance the robustness of the Whisper model to real-world acous-
tic conditions, an additional 42,000 noisy audio samples were created by adding five dif-
ferent types of background noise to the original clean audio [12]. The noise types included:
ambient noise, kitchen noises, live music, people talking, and waiter talking loudly. The
level and intensity of each noise type were carefully tested and varied to simulate realistic
environmental conditions. This resulted in a paired dataset of clean and noisy audio sam-
ples for each of the 42,000 original orders, providing a comprehensive resource for training
and evaluating the speech recognition component of our system under diverse acoustic
challenges.
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3.2 Model Fine-tuning

Whisper Fine-tuning The Whisper-small model, as provided by OpenAI and accessed
through the Hugging Face Transformers library, served as the foundational pre-trained
model for our speech-to-text tasks [7]. To adapt this model to our specific domain of spoken
orders with diverse accents and noise conditions, we performed targeted fine-tuning.

Six distinct Whisper-small models were fine-tuned, each tailored to different subsets
of our generated audio data based on the length of the orders (small: 2-4 items, medium:
5-7 items, large: 8-10 items) and the acoustic environment (clean and noisy). For instance,
the whisper-small-finetuned-small-clean model was trained exclusively on the clean
audio transcriptions of orders containing 2 to 4 items. This granular approach aimed
to optimize the model’s performance for varying order complexities and real-world noise
scenarios.

The primary objective during fine-tuning was to minimize both the Word Error Rate
(WER) and the Character Error Rate (CER) between the model’s predictions and the
ground truth transcriptions. We utilized the Seq2SeqTrainer class from the Hugging
Face Transformers library [14], with a custom compute metrics function to calculate
these evaluation metrics at each logging step.

Key hyperparameters employed during fine-tuning across all six Whisper models in-
cluded a learning rate of 1×10−5, a per-device train batch size of 2, a gradient accumulation
step of 4 (effectively resulting in a batch size of 8), and a total of 3 training epochs. A
linear learning rate warm-up strategy was implemented over the first 400 steps. Training
progress and evaluation metrics were logged using TensorBoard, and model checkpoints
were saved every 720 steps, with a limit of 4 saved checkpoints. Mixed precision training
(fp16) and gradient checkpointing were enabled to optimize memory usage and training
speed on the L4 GPUs with a high RAM configuration used for the fine-tuning process.

The performance of the six fine-tuned Whisper-small models was evaluated using Char-
acter Error Rate (CER) and Word Error Rate (WER). The results of this evaluation are
presented in Section 4 (Table 1).

FLAN-T5 Fine-tuning The FLAN-T5 models (flan-t5-small and flan-t5-base)
were fine-tuned to convert transcribed food orders into strict JSON format representations
[15]. Given the instruction-tuned nature of FLAN-T5, it was well-suited for this structured
generation task.

The input to the model was prefixed with a strong instruction:

Extract order details: {transcription_text}

The target output for each sample was a JSON array, where each object contained:

– a name field (representing the food item),
– a customizations field (a list of special instructions).

Fine-tuning was performed separately on three distinct datasets, which we have made
available on the Hugging Face Hub:

– Small orders: 2–4 items per order (Datasets: Amirmerfan/voice-orders-small-clean-12k
and Amirmerfan/voice-orders-small-noisy-12k).

– Medium orders: 5–7 items per order (Datasets: Amirmerfan/voice-orders-medium-clean-18k
and Amirmerfan/voice-orders-medium-noisy-18k).

– Large orders: 8–10 items per order (Datasets: Amirmerfan/voice-orders-large-clean-12k
and Amirmerfan/voice-orders-large-noisy-12k).

40                                     Computer Science & Information Technology (CS & IT)

https://huggingface.co/datasets/Amirmerfan/voice-orders-small-clean-12k
https://huggingface.co/datasets/Amirmerfan/voice-orders-small-noisy-12k
https://huggingface.co/datasets/Amirmerfan/voice-orders-medium-clean-18k
https://huggingface.co/datasets/Amirmerfan/voice-orders-medium-noisy-18k
https://huggingface.co/datasets/Amirmerfan/voice-orders-large-clean-12k
https://huggingface.co/datasets/Amirmerfan/voice-orders-large-noisy-12k


Each dataset was fine-tuned using multiple configurations to study the impact of training
settings:

– Epochs: 3 and 5,

– Batch sizes: 2 and 4 (with the possibility of expanding to larger sizes in future work),

– Learning rate: 2× 10−5 to encourage faster convergence on large datasets.

Training was conducted using the Hugging Face Seq2SeqTrainer API, with evaluation
occurring at the end of each epoch. Key training optimizations included mixed-precision
training (fp16) and gradient checkpointing to enable larger batch sizes. All resulting models
were uploaded to the Hugging Face Hub for version control and reproducibility.

Generated outputs were evaluated against ground truth using a normalized similar-
ity scoring method based on the difflib.SequenceMatcher, ensuring both structural
correctness and content fidelity.

Gemma-3 Fine-tuning The instruction-tuned versions of the Gemma-3 model (specif-
ically the 1B-it, 4B-it, and 12B-it parameter variants), directly obtained from Google
via the Hugging Face Transformers library, served as the base models for the text-to-
JSON conversion task. These models were further fine-tuned on our curated dataset of
transcribed orders paired with their corresponding JSON representations. The fine-tuning
data was structured as a sequence-to-sequence task, where the input was the transcribed
order text (often prefixed with an instruction to generate JSON), and the target output
was the structured JSON data. These pairings were also implicitly categorized by the size
of the original order (small, medium, large) as the entire dataset was used for fine-tuning
all Gemma-3 [3] models.

The primary objective during the fine-tuning of the Gemma-3 models was to optimize
their ability to accurately generate well-formed JSON outputs that correctly represented
the information contained in the transcribed spoken orders. The training process was
configured using the SFTConfig from the trl library, employing a language modeling loss.

We experimented with both full 16-bit fine-tuning and Low-Rank Adaptation (LoRA)
[16] to assess the trade-offs between performance and computational efficiency. LoRA was
implemented with a rank (r) of 16 and an alpha (lora alpha) of 128, combined with 4-bit
quantization using BitsAndBytesConfig [17]. The motivation behind using LoRA was to
reduce the memory footprint and potentially accelerate the training process compared to
full fine-tuning of the larger models, while also allowing us to compare the impact on the
accuracy of the generated JSON outputs.

Key hyperparameters used across all Gemma-3 fine-tuning configurations (both 16-bit
and LoRA 4-bit) included 3 training epochs, a per-device train batch size of 2, a gradient
accumulation step of 4 (resulting in an effective batch size of 8), a learning rate of 2×10−4,
and a weight decay of 0.001. The AdamW optimizer (8-bit) [18] was used, along with a
cosine learning rate scheduler with a 3% warm-up ratio. Gradient clipping was applied with
a maximum gradient norm of 0.3. Training progress and evaluation loss were monitored
using TensorBoard, with model checkpoints saved every 50 steps, retaining a maximum
of 2 checkpoints. The best model was selected based on the evaluation loss. All Gemma-3
fine-tuning experiments were conducted using L4 GPUs with high RAM configurations.

The performance of the fine-tuned Gemma-3 models was evaluated using the Sequence-
Matcher to assess the similarity between the generated and ground truth JSON structures.
The results of this evaluation are presented in the Section 4 (Tables 4 and 5).
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3.3 Retrieval-Augmented Generation (RAG)

To further enhance the accuracy and factual grounding of the model outputs, a Retrieval-
Augmented Generation (RAG) pipeline was integrated into the system. This approach is
grounded in the original RAG framework proposed by Lewis et al. [1], which combines a
dense retriever with a generative language model. Our methodology also aligns with the
broader landscape of RAG systems surveyed in recent work by Gao et al. [2].

Vector Database Pinecone1 was used as the vector database for its managed scalability,
production-readiness, and efficient query latency [19]. The vector database was populated
by upserting menu data:

– Each food item and its possible customizations were embedded using the FLAN-T5
encoder,

– Metadata including item names, categories, and customization options was stored
alongside the embeddings.

Integration with Language Models The RAG pipeline operated in two stages [1]:

1. Retrieval: Given a transcribed customer order, the top-k most relevant menu items
were retrieved from Pinecone based on cosine similarity.

2. Augmented Generation: Retrieved menu entries were inserted into the prompt fed
into the fine-tuned FLAN-T5 model, providing additional context to anchor the output.

An example of the augmented input format: Menu Context: Vegan Burger, No Cheese,

Extra Pickles, Ketchup, etc.

Instruction: Extract order details: I want a vegan burger with no cheese and

ketchup.

By incorporating relevant menu information into the prompt, the model’s output qual-
ity improved in both syntactic correctness and semantic accuracy. This augmentation sig-
nificantly reduced hallucination and improved structured extraction performance.

Performance of the RAG-enhanced system will be evaluated through structured simi-
larity scores, qualitative analysis, and error case studies.

4 Performance Evaluation

In this section, we present the quantitative results for each component of our proposed
pipeline. We begin by evaluating the transcription accuracy of the fine-tuned Whisper
models. Following this, we assess the performance of the text-to-JSON models, detailing
the results for the fine-tuned FLAN-T5 and Gemma-3 variants, and quantify the impact
of the Retrieval-Augmented Generation enhancement.

4.1 Whisper Fine-tuning Performance

The performance of the six fine-tuned Whisper-small models, evaluated on our test sets,
is summarized in Table 1.

1 Pinecone Systems Inc. See https://www.pinecone.io
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Table 1. Performance of Fine-tuned Whisper-small Models

Fine-tuned Model CER WER

small & clean 0.05% 0.16%
medium & clean 0.16% 0.24%
large & clean 3.47% 4.70%
small & noisy 0.32% 0.53%
medium & noisy 0.40% 0.61%
large & noisy 4.03% 5.48%

4.2 FLAN-T5 Fine-tuning Performance

The FLAN-T5 models were evaluated for their ability to generate structured JSON outputs
from transcribed food orders. Three variants were tested, flan-t5-small, flan-t5-base,
and flan-t5-large, each fine-tuned on datasets of varying order lengths (small: 2–4 items,
medium: 5–7 items, large: 8–10 items). We selected the best-performing fine-tuned model
for each configuration and evaluated their JSON extraction accuracy using similarity scores
derived from difflib.SequenceMatcher.

Table 2 presents the accuracy of each model across the three dataset sizes. As expected,
performance improves as model size increases. The flan-t5-largemodel consistently out-
performs its smaller counterparts, achieving 99.78% accuracy on small orders and 98.34%
on large ones. In contrast, flan-t5-small struggles with longer orders, achieving only
30.12% on the large dataset. These results underscore the importance of model capacity
for accurate structured generation in complex input scenarios.

Table 2. Similarity Scores from JSON Extraction Accuracy of Fine-tuned FLAN-T5 Models (without
RAG).

Model Dataset (Samples) Similarity Score

flan-t5-small Small (12k) 58.35%
flan-t5-base Small (12k) 80.81%
flan-t5-large Small (12k) 99.78%

flan-t5-small Medium (18k) 52.16%
flan-t5-base Medium (18k) 94.21%
flan-t5-large Medium (18k) 99.34%

flan-t5-small Large (12k) 30.12%
flan-t5-base Large (12k) 66.12%
flan-t5-large Large (12k) 98.34%

4.3 Retrieval-Augmented Generation (RAG) Results

To assess the impact of retrieval-augmented generation (RAG) on structured JSON gen-
eration, we re-evaluated the FLAN-T5 models using Pinecone to retrieve relevant menu
context. The retrieved information was appended to the model input to provide grounded
context for generation.

Table 3 shows the similarity scores of FLAN-T5 models when augmented with RAG.
All model variants benefit from context retrieval, but the improvement is most notable in
smaller models. For instance, flan-t5-small improves by over 20 percentage points on
medium and large datasets, going from 30.12% to 54.01% on large orders. Even flan-t5-base
shows a consistent improvement of 10–20% depending on the dataset size. The flan-t5-large
model already performed near-perfectly, but still benefits slightly from context-aware in-
put.
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Table 3. Similarity Scores from JSON Extraction Accuracy with RAG.

Model Dataset Similarity Score (RAG)

flan-t5-small Small (12k) 74.92%
flan-t5-base Small (12k) 91.33%
flan-t5-large Small (12k) 99.92%

flan-t5-small Medium (18k) 69.88%
flan-t5-base Medium (18k) 95.47%
flan-t5-large Medium (18k) 99.34%

flan-t5-small Large (12k) 54.01%
flan-t5-base Large (12k) 87.26%
flan-t5-large Large (12k) 99.92%

These results demonstrate that retrieval-augmented generation can significantly im-
prove output quality for models with lower parameter counts. By grounding generation in
structured menu context, the system reduces hallucinations and improves precision. This
makes RAG a practical enhancement for deploying smaller models in resource-constrained
settings.

4.4 Gemma-3 Fine-tuning Performance

The performance of the 16-bit fine-tuned Gemma-3 models is presented in Table 4, and the
performance of the LoRA 4-bit fine-tuned Gemma-3 models is presented in Table 5. The
accuracy metric used for evaluating the JSON output was based on the SequenceMatcher,
assessing the similarity between the generated and ground truth JSON structures.

Table 4. Performance of 16-bit Fine-tuned Gemma-3 Models

Model Info Accuracy (SequenceMatcher)

1b-small-16bit 98.22%
1b-medium-16bit 96.01%
1b-large-16bit 93.50%
4b-small-16bit 98.32%
4b-medium-16bit 97.02%
4b-large-16bit 93.93%
12b-small-16bit 97.90%
12b-medium-16bit 97.31%
12b-large-16bit 93.61%

Table 5. Performance of LoRA 4-bit Fine-tuned Gemma-3 Models

Model Info Accuracy (SequenceMatcher)

1b-small-4bit 93.23%
1b-medium-4bit 91.98%
1b-large-4bit 61.57%
4b-small-4bit 97.76%
4b-medium-4bit 97.70%
4b-large-4bit 84.90%
12b-small-4bit 98.23%
12b-medium-4bit 98.77%
12b-large-4bit 92.78%

The results from the fine-tuned Gemma-3 models indicate generally high accuracy in
converting transcribed orders to JSON format, as measured by SequenceMatcher. For the
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16-bit models (Table 4), performance tends to slightly decrease as the order size increases,
with the ’small’ order models achieving the highest accuracy (around 98%) and the ’large’
order models showing the lowest (around 93-94%). Notably, the 4B parameter model
achieved the highest accuracy for small orders (98.32%).

The LoRA 4-bit quantized models (Table 5) generally show comparable performance to
their 16-bit counterparts, particularly for small and medium-sized orders. However, a more
significant drop in accuracy is observed for the 1B parameter LoRA model on large orders
(61.57%). Interestingly, the 12B parameter LoRA model achieved the highest accuracy
overall for medium-sized orders (98.77%). These results suggest that while LoRA can
provide memory and speed benefits, the impact on accuracy might be more pronounced
for smaller models or more complex inputs. The 4B and 12B parameter models appear to
maintain a good balance between efficiency and accuracy even with LoRA quantization.

These findings highlight the effectiveness of fine-tuning instruction-tuned large lan-
guage models for structured data generation tasks. The high accuracy achieved suggests
that these models can learn to reliably convert natural language order transcriptions into a
standardized JSON format. The comparison between 16-bit and LoRA quantized models
provides valuable insights into the trade-offs associated with model compression tech-
niques.

The results presented in Table 1 indicate a clear trend: the fine-tuned Whisper-small
models achieved very low Character Error Rates (CER) and Word Error Rates (WER)
on clean audio for both small and medium-length orders. Specifically, the model trained
on small clean orders exhibited the best performance with a CER of 0.05% and a WER
of 0.16%. As the order length increased to large orders, a significant degradation in per-
formance was observed, with CER rising to 3.47% and WER to 4.70% on clean audio.

The introduction of noise into the audio data also negatively impacted the transcription
accuracy across all order lengths. While the models trained on small and medium noisy
orders still maintained relatively low error rates (e.g., 0.32% CER and 0.53% WER for
small noisy orders), the performance on large noisy orders further declined, reaching a
CER of 4.03% and a WER of 5.48%.

These findings suggest that while fine-tuning on clean data, especially for shorter or-
ders, can lead to highly accurate transcriptions, longer and noisier audio presents a greater
challenge for the Whisper-small architecture, even after fine-tuning. This highlights the
importance of addressing both order complexity and acoustic interference in real-world
voice-to-text applications. The noticeable drop in performance for large orders warrants
further investigation, potentially exploring the model’s capacity to handle longer sequences
or the need for more extensive training data for such scenarios.

5 Cross-Dataset Validations

To further assess the generalization capabilities of our models, this section presents a
comprehensive cross-dataset validation. We analyze how models fine-tuned on one specific
order length (e.g., small) perform when evaluated against orders of different lengths and
complexities (e.g., medium and large). This robustness check is conducted for both the
Gemma-3 and FLAN-T5 model families to identify the most adaptable configurations.

5.1 Gemma 3 Models

LoRA 4-bit Fine-tuned Gemma-3 Cross-validations To assess the generalization
capabilities of our LoRA 4-bit fine-tuned Gemma-3 models, we conducted a cross-dataset
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evaluation. Each model was fine-tuned on a dataset segmented by order size, small (2–
4 items per order), medium (5–7 items), and large (8–10 items), and then tested on
validation sets from the other partitions. This setup evaluates how well models trained
on one type of food order structure perform when exposed to different input lengths and
complexities.

The tables below present the accuracy scores (measured using SequenceMatcher) of
the models when evaluated on the small, medium, and large validation sets, regardless
of their original training dataset.

Key observations:

– Models trained on larger datasets generally demonstrate better generalization,
especially on medium and large validation sets [4].

– Some models trained on small datasets, such as 12b-small-4bit and 4b-small-4bit,
still perform strongly on medium and even large datasets. This suggests that models
with smaller input contexts can still capture robust ordering patterns when fine-tuned
effectively.

– In contrast, models trained on large datasets often struggle when evaluated on the
small dataset, potentially due to overfitting to longer sequences or reduced adaptability
to shorter inputs.

This evaluation underscores the importance of aligning training data characteristics
with real-world input distributions, particularly when dealing with variable-length se-
quences in production.

Table 6. Cross-validations of LoRA 4-bit Fine-tuned Gemma-3 Models on Small Dataset

Model Info Accuracy (SequenceMatcher)

1b-medium-4bit 69.47%
1b-large-4bit 53.69%
4b-medium-4bit 72.79%
4b-large-4bit 55.36%
12b-medium-4bit 67.12%
12b-large-4bit 54.19%

Table 7. Cross-validations of LoRA 4-bit Fine-tuned Gemma-3 Models on Medium Dataset

Model Info Accuracy (SequenceMatcher)

1b-small-4bit 82.79%
1b-large-4bit 72.67%
4b-small-4bit 96.51%
4b-large-4bit 91.13%
12b-small-4bit 97.18%
12b-large-4bit 88.59%

16-bit Fine-tuned Gemma-3 Cross-validations We conducted a similar cross-dataset
evaluation for the 16-bit fine-tuned Gemma-3 models to compare their generalization ca-
pabilities with the 4-bit counterparts. As with the previous setup, models were fine-tuned
on datasets categorized by order size, small (2–4 items), medium (5–7 items), and large
(8–10 items), and evaluated on validation sets from the other categories.
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Table 8. Cross-validations of LoRA 4-bit Fine-tuned Gemma-3 Models on Large Dataset

Model Info Accuracy (SequenceMatcher)

1b-small-4bit 49.88%
1b-medium-4bit 63.48%
4b-small-4bit 85.98%
4b-medium-4bit 90.19%
12b-small-4bit 91.06%
12b-medium-4bit 94.11%

The following tables summarize the models’ performance on small, medium, and large
validation sets using the SequenceMatcher metric.

Key observations:

– Overall, 16-bit models achieve high accuracy, particularly on the medium and large
validation sets, indicating that full precision fine-tuning retains strong generalization
capability across variable input lengths.

– Models trained on the medium datasets show strong performance across all evalu-
ation sets. For instance, 12b-medium-16bit reaches above 73% on small orders and
94.55% on large ones, suggesting that medium-length sequences may provide a bal-
anced training distribution.

– Small-trained models such as 1b-small-16bit and 4b-small-16bit demonstrate
strong transfer performance on the medium and large sets, outperforming many of the
large-trained counterparts, highlighting their adaptability.

– Conversely, models trained on large datasets consistently underperform on small val-
idation data (e.g., 12b-large-16bit at 48.23%), reinforcing the challenge of adapting
from long sequences to short ones.

This cross-dataset evaluation confirms that 16-bit models preserve high fidelity in
learning ordering patterns across varying input lengths. However, the mismatch between
training and inference sequence lengths can still limit generalization, especially when fine-
tuned exclusively on long-sequence data [4].

Table 9. Cross-validations of 16-bit Fine-tuned Gemma-3 Models on Small Dataset

Model Info Accuracy (SequenceMatcher)

1b-medium-16bit 74.39%
1b-large-16bit 48.12%
4b-medium-16bit 73.24%
4b-large-16bit 51.36%
12b-medium-16bit 73.03%
12b-large-16bit 48.23%

Table 10. Cross-validations of 16-bit Fine-tuned Gemma-3 Models on Medium Dataset

Model Info Accuracy (SequenceMatcher)

1b-small-16bit 93.10%
1b-large-16bit 82.34%
4b-small-16bit 96.39%
4b-large-16bit 82.96%
12b-small-16bit 96.37%
12b-large-16bit 82.33%
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Table 11. Cross-validations of 16-bit Fine-tuned Gemma-3 Models on Large Dataset

Model Info Accuracy (SequenceMatcher)

1b-small-16bit 74.38%
1b-medium-16bit 88.31%
4b-small-16bit 92.48%
4b-medium-16bit 92.12%
12b-small-16bit 93.14%
12b-medium-16bit 94.55%

5.2 FLAN-T5 Cross-dataset Evaluation

In addition to evaluating Gemma-3, we conducted a similar cross-dataset validation for the
FLAN-T5 models to assess their generalization ability across order lengths. Each model
was fine-tuned on datasets categorized by order size, small (2–4 items), medium (5–7
items), and large (8–10 items), and evaluated on all three validation sets. The results,
shown in Table 12, illustrate how well each FLAN-T5 variant handles unseen order lengths.

Key observations:

– flan-t5-small exhibits poor generalization to longer sequences, with accuracy drop-
ping to 12.24% when trained on small orders and tested on large ones.

– flan-t5-base shows moderate generalization, maintaining 65–80% across mismatched
lengths, and performs well on medium-length orders regardless of training set.

– flan-t5-large achieves consistently strong performance across all datasets, even ex-
ceeding 99% on medium and large inputs regardless of training size. This suggests it
learns generalized structural patterns more effectively due to its capacity.

– Training on the medium dataset yields the most balanced generalization across all
three input sizes for both base and large models.

These results indicate that while smaller models like flan-t5-small struggle with
long-sequence generalization, scaling up to flan-t5-large can yield highly robust perfor-
mance even across mismatched training and testing distributions.

Table 12. Cross-dataset generalisation of FLAN-T5 models. Rows indicate the dataset size used for
training, columns the size used for evaluation.

Model Train \ Eval Small Medium Large

flan-t5-small
Small 58.35 21.63 12.24
Medium 18.22 52.16 26.12
Large 21.43 30.12 21.37

flan-t5-base
Small 80.81 74.64 76.45
Medium 82.41 94.21 72.34
Large 99.57 85.59 65.57

flan-t5-large
Small 99.78 98.30 60.56
Medium 99.78 99.34 98.92
Large 99.79 99.82 91.49

5.3 Comparison: LoRA 4-bit vs 16-bit Fine-tuned Gemma-3 Models

To determine the most practical and effective model configuration, we compare the 4-
bit LoRA and 16-bit fine-tuned Gemma-3 models across both accuracy and efficiency
dimensions.

Accuracy Comparison:
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– On medium and large datasets, 16-bit models generally outperform their 4-bit
counterparts. For example, 12b-medium-16bit achieves 94.55% accuracy on the large
set, compared to 94.11% by 12b-medium-4bit.

– However, 4-bit models such as 12b-small-4bit and 4b-small-4bit perform surpris-
ingly well on medium datasets (97.18% and 96.51%, respectively), even outperforming
some 16-bit large models.

– For the small dataset, both 4-bit and 16-bit models trained on medium data perform
similarly, with accuracies around 73–74%.

Efficiency and Practicality Considerations:

– 16-bit models, especially larger variants like 12b-medium-16bit, require significantly
more computational resources for training and inference. This increases cost and limits
deployability in memory-constrained or latency-sensitive environments.

– 4-bit LoRA models strike a strong balance between performance and efficiency. For
instance, 4b-small-4bit and 12b-small-4bit deliver near-parity performance with
16-bit models at a fraction of the resource cost.

– Models like 1b-medium-16bit and 4b-medium-4bit offer excellent generalization while
keeping resource demands relatively moderate, making them suitable candidates for
real-world deployment.

Conclusion:

– If maximum accuracy is the primary goal and computational resources are available,
both flan-t5-large and 12b-medium-16bit Gemma-3 stand out. flan-t5-large
achieves near-perfect accuracy even on long, complex orders, and generalizes extremely
well across datasets.

– When working within limited hardware constraints, the flan-t5-base and 4b-small-4bit
Gemma-3 models offer highly competitive performance while requiring significantly
fewer resources. These models are particularly suited for production environments
where model size and inference speed matter.

– Retrieval-Augmented Generation (RAG) provides a substantial boost, particularly for
smaller FLAN-T5 models. For example, flan-t5-small with RAG performs compara-
bly to much larger models without RAG. This makes RAG-enhanced FLAN-T5 models
a practical option when optimizing for both performance and efficiency.

– Overall, 4b-small-4bit (Gemma-3) and flan-t5-base with RAG emerge as the most
well-rounded choices, offering strong accuracy, reasonable generalization, and lightweight
deployment requirements.

6 Conclusion

In this work, we developed and evaluated an end-to-end pipeline for converting multi-
accent spoken orders into structured JSON data, a challenging task with significant real-
world applicability. Our central contribution is the demonstration that while massive mod-
els like flan-t5-large provide high accuracy, more efficient and practical solutions, including
RAG-enhanced base models and LoRA-quantized Gemma models, can achieve highly com-
petitive performance.

Our experiments yielded several key insights for the NLP community. First, we identi-
fied that the performance of even a fine-tuned Whisper-small model degrades significantly
on long, complex orders, highlighting a critical bottleneck for error propagation in such
pipelines. Second, our results quantitatively prove that Retrieval-Augmented Generation
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(RAG) provides a substantial performance boost to smaller language models, making
them viable for production environments where they would otherwise fail. Finally, our
cross-validation analysis provides a clear recommendation that training on a diverse dis-
tribution of medium-length orders leads to the most robust and generalizable models for
this task.

Future work will focus on expanding our experimental validation, as suggested by
our reviewers. Key directions include testing this pipeline on real-world, in-the-wild con-
versational data, exploring a wider variety of acoustic conditions, and developing more
sophisticated, semantically-aware evaluation metrics for structured JSON verification.
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