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ABSTRACT 
 
This study proposes a novel method for recognizing and categorizing logos in packaging 

artwork to address the automation demands of the printing and packaging industry. The 

approach combines a trained object detection model for logo detection followed by a fine-

tuned Vision Language Model (VLM) for hierarchical tag generation, achieving high 

precision across seven primary categories: sustainability, health and safety, branding, 

material identification, eco-friendly certification, social media, and compliance, with all 

others grouped under "others." In the first step, YOLOv8 detects logos and assigns them to 

primary categories, achieving a mean average precision (mAP) of 0.58 and an Intersection 

over Union (IoU) threshold of 0.5. In the second step, a fine-tuned VLM generates granular 

tags for the detected logos. Notably, Low Rank Adaptations (LoRA) applied to the 

Florence-2-DocVQA model (with r = 64 and 𝛼= 128) surpassed the zero-shot performance 

of state-of-the-art VLMs, achieving a 24-fold improvement with a ROUGE-L F1 score of 

0.72. This study also demonstrates the cost effectiveness and practicality of using smaller 

models with fewer parameters, which perform comparably to larger VLMs, incurring much 

lower training and operational costs. These advancements streamline design and print 

production workflows, improve compliance tracking, and enhance brand management, 

contributing to greater automation in the packaging and printing industry. 
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1. INTRODUCTION 
 

In the packaging industry, manual logo verification is prone to errors, leading to costly multi-
million dollar recalls and highlighting the need for automated solutions. These manual processes 

cause delays and inconsistencies in brand identity, making them increasingly unsustainable due 

to the volume of packaging artwork that requires verification. Additionally, compliance with 
region-specific regulatory standards, such as the FDA's labelling requirements[1], adds 

complexity to manual verification.  

 

Packaging artworks as shown in Figure 1, which integrate logos and other critical elements such 
as nutritional panels and barcodes, play a vital role in customer trust and informed purchasing. 

Errors in regulatory symbols can result in significant penalties, making accurate verification 

crucial for maintaining consumer confidence and avoiding legal repercussions. Thus, ensuring 
the accurate replication of branding and regulatory symbols remains a significant challenge. 
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The proposed cascaded model addresses these challenges, delivering a 5-fold speedup in artwork 
verification compared to manual validation and reducing annotation costs by nearly 30% through 

an finetuned YOLOv8 model and a semi-supervised tagging approach using VLMs using custom 

private dataset representative of the industry usecase. This automation replaces the initial stage of 

human validation, ensuring faster, more accurate, and consistent brand identity checks. 
 

While product packaging is critical for communicating information and maintaining brand 

consistency, current verification methods struggle to keep pace with the industry demands.  
Regional variations in manufacturing and distribution, coupled with the increasing complexity of 

packaging designs, often lead to inconsistencies and errors in brand representation. Errors in 

regulatory symbols can lead to significant penalties, making accurate and consistent verification 
crucial for maintaining consumer trust and avoiding legal repercussions. Hence, ensuring the 

accurate replication of branding and regulatory symbols remains a significant challenge, 

particularly given the subtle variations that can exist within logo families. Similar regulations 

worldwide govern layout, content clarity, and accuracy, further underscoring the importance of 
compliance in packaging design. 

 

Automated logo detection helps minimize errors and protect brand integrity, but subtle variations, 
as illustrated in Figure 2, like changes in color, shape, or text, can lead to misclassifications. 

Cluttered packaging designs further complicate accurate logo detection, as shown in examples of 

subtle variations in sustainability logos that require context-based analysis for distinction. 
 

 
 

Figure 1. Packaging artworks from various products, featuring logos for branding, regulation, and 

sustainability. 
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1.1. Related Work 
 

Automated logo detection in product packaging has advanced significantly with deep learning. 

Hou et al. [2] demonstrated the use of deep learning models to automate logo identification, 
moving away from manual methods. Su et al. [3] introduced Context Adversarial Learning for 

improved performance across different contexts, while Zhao et al. [4] presented DCFNet, 

achieving impressive results in small logo detection. 
 

The use of synthetic datasets has lessened the need for manual annotations. Mas Montserrat et al. 

[5] applied synthetic methods for logo localization, and LOGO-Net [6] advanced brand 

recognition, though regulatory symbols are still not well-explored. Recent advancements in self-
supervised and self-attention techniques [7] have further boosted detection accuracy in complex 

scenarios. 

 

 
 

(a) Recycling Logos 

 

 
 

(b) Sustainability Logos 

 

Figure 2. Examples of visually similar logos: (a) Recycle logos indicating different materials and whether 

they can be recycled. (b) Sustainability logos representing various product attributes such as eco-friendly, 

cruelty-free, and vegan. 

 

Challenges persist in logo classification due to numerous similar subclasses. Hybrid models 
combining object detection with context-based tagging are gaining traction. Brailovsky et al. [8] 

focused on logo differentiation in varied image types, while Hu et al. [9] enhanced CNN-based 

recognition with contextual information, emphasizing multimodal techniques. 
 

Automated logo detection has shown progress [7, 10], but despite these advancements, regulatory 

symbols crucial to compliance remain underexplored. Specialized models are needed to tackle 
complex designs and ensure accurate and efficient processing of packaging artwork. 

 

1.2. Research Contribution 
 

This paper introduces a cascaded framework that combines object detection and VLMs for 

identifying and classifying logos in packaging artwork. The main contributions of this study are:  
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1. A fast and scalable logo detection system for packaging artworks, addressing various 
logo types, highlighting the brand, health and safety, regulatory and compliance symbols,  

2. A low-cost, semi-supervised tagging approach for effective logo categorization, and  

3. A demonstration of significant time and cost savings in real-world packaging workflows, 

enhancing efficiency and accuracy.  
 

By transitioning from manual artwork quality checks to a semi-automated, model-driven process, 

the proposed method improves operational efficiency and ensures consistent brand identity across 
diverse packaging designs. 

 

2. METHODOLOGY 
 

This study employs a two-stage, cascaded approach for detecting and tagging logos in packaging 
artwork images. The first stage uses object detection to identify logos and assign them primary 

categories, while the second stage applies a tagging phase to generate more granular 

classifications through label assignment. This dual-stage design enhances classification accuracy 
for logos with subtle variations. 

 

2.1. Dataset Preparation 
 

2.1.1. Logo Detection Dataset 

 
The logo detection dataset was created using dummy artwork files, ensuring that no real client 

data was used. A human-in-the-loop (HITL) approach was adopted for manual labelling and 

validation.Unlike conventional logo detection datasets, such as the LogoDet-3k dataset [11]  and 
the Open Logo Detection Challenge dataset[3], which primarily feature brand logos extracted 

from product packaging, advertisements, or real-world scenes, the dataset used in this study is 

uniquely curated for artwork contexts. It captures a broader range of logos beyond typical brand 

marks, including diverse categories such as sustainability, compliance, material identification, 
health and safety, eco-friendly certifications, and social media. This comprehensive approach 

ensures a more realistic representation of the varied logos encountered in artwork files, 

addressing the gap left by traditional datasets. 
 

Initially, a subset of 50 artwork images was randomly selected from the artwork database. The 

logos in these images were manually labelled with bounding box coordinates and assigned 

primary classes and were used for fine-tuning the YOLOv8 model using COCO-pretrained 
weights. The fine-tuned model was then used to infer logos on unannotated images, and these 

detections were manually validated and corrected. The corrected detections were added to the 

training set, and this iterative process continued until the YOLOv8 model achieved a mAP 
threshold of 0.8 across all classes. This resulted in a final dataset of 432 annotated images 

spanning seven primary classes: branding, sustainability, materialidentification, health and safety, 

compliance, eco-friendly certifications, socialmedia, and an “others” category. 
 

The dataset was split into training (70%), validation (20%), and test (10%) sets. The class 

distribution for the entire dataset is shown in Figure 3.The workflow of the logo detection data 

annotation is shown in Figure 4. This method was used to create the logo detection dataset to 
train the first stage of the cascaded approach. 
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2.1.2. Logo Tagging Dataset 
 

The logo tagging dataset was created using logos present in dummy artwork files. Initially, large 

language models (LLMs) were used to suggest potential tags for manually labelled logos, which 

were then validated and corrected by human annotators to ensure accuracy. Each logo was tagged 
with a primary class followed by additional descriptors representing its subcategory. 

 

For initial tagging, the VLM, Llama-3.2-11B-Vision-Instruct, was used to generate suggested 
tags through a structured prompt. The generated tags were stored in a JSON file as key-value 

pairs, where logos are keys and the corresponding tags are values for training the tagging model. 

Figure 5 depicts the process of creating the tagging dataset using the HITL and VLM-assisted 
approach. 

 

 
 

Figure 3. Distribution of primary logo classes in thefinal training dataset. 

 

 
 

Figure 4. Workflow of logo detection data annotation using YOLOv8. 

 

 
 

Figure5. Workflow of tagging dataset creation using the Llama-3.2-11B-Vision-Instruct model. 

 

It is to be noted that only logos detected in the artwork images by the first step of the cascaded 

approach were included in the tagging dataset. Each detected logo was paired with its primary 
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class, and the VLM generated relevant descriptive tags based on the visual features and class of 
the logo. These tags were then manually validated to ensure consistency across the dataset. 

 

The final tagging dataset comprises 1,114 tagged logos, split into training, test, and validation 

sets in a 60:20:20 ratio. A sample of the tagging dataset is shown in Figure 6.  
 

 
 

Figure 6. Sample logos and their tags in hierarchy alongside the primary class. 

 

Figure 7shows the prompt used to generate the initial tags to prepare the logo tagging dataset, 
which was reviewed and corrected by an expert through the HITL approach. Moreover, this 

prompt was also used as a base prompt to compare the zero-shot tag generation performance of 

the VLMs such as Llama-3.2-11B-Vision-Instruct, GPT4o, Haiku, and Sonnet. On the other 
hand, the Florence-2 is a very light model and only accepts specified task prompts 

(“DETAILED_CAPTION” used in this case) along with high-level user prompts with small 

token lengths (“Generate comma-separated tags for the given logo image” in this case). This 

explains the superior zero-shot performance of GPT-4o, Haiku, Sonnet, and Llama-3.2 over 
Florence-2. On the other hand, “Generate comma-separated tags for the given logo image” was 

used for finetuning both Llama-3.2-11B-Vision-Instruct and Florence-2 models. 

 

 
 

Figure 7. Prompt used to generate tags with “Llama-3.2-11B-Vision-Instruct” for the detected logo 

images.Generated tags are then verified by an expert. 
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2.2. Overall Approach 
 

The proposed methodology follows a twin-model cascaded process, as shown in Figure 8 (a). The 

process consists of:  
 

1. Multi-class object detection for identifying logos and assigning primary classes.  

2. A tagging phase that refines the classification by generating additional labels to capture 
finer-grained logo details.  

 

Figures 8(b) illustrates the diverse logo styles present in artwork files. This hierarchical 

classification approach ensures that even minor visual or symbolic distinctions are accurately 
captured. 

 

2.3. Logo Detection 
 

For logo detection, YOLOv8, Faster R-CNN, and DETR were trained and evaluated, with 

YOLOv8 selected for its balance of speed, accuracy, and computational efficiency. The model 
was fine-tuned on a curated dataset of 432 labelled packaging artwork images, designed to 

represent real-world packaging scenarios while excluding any proprietary or sensitive data. 

 
The YOLOv8 model was optimized using its default composite loss function, combining 

bounding-box regression, objectness, and classification loss. All the detection models were 

trained using the weighted Adam optimizer with a learning rate of 10-4, a batch size of 8, and for 
100 epochs. 

 

To enhance generalization and address class imbalance, advanced data augmentation techniques 

such as CutMix[12], MixUp[13], Mosaic[14], random horizontal flips, color-jitters, cropping, 
warping and rotations were applied. 

 

 
 

Figure 8. (a) Model block diagram of the cascaded approach to achieve logo detection and tagging. (b) 

Examples of logos from various packagingartworks, showcasing different designs and styles. 

 
Training on the fully annotated dataset was conducted using an NVIDIA T4 GPU, leveraging 

efficient augmentation and batch size adjustments to reduce training time by approximately 20%. 
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Model performance for the detection phase was assessed using mAP scores at different IoU 
thresholds. 

 

Logos in the artwork as shown in Figure 8 (b),often exhibit subtle differences that must be 

captured for accurate classification. These fine distinctions separate logos into primary and 
secondary classes. Other logotypes similarly vary in text, style, and the information they convey. 

 

2.3. Logo Tagging 
 

For the tagging task, the output from logo detection was processed using VLMs like GPT-

4o[15],Llama-3.2[16], Haiku, Sonnet [17], and Florence-2 [18] in a zero-shot setting. Tags were 
generated based on the defined prompt shown in Figure 5. 

 

Fine-tuning was performed on Llama-3.2-11B-Vision-Instruct and Florence-2-DocVQA using 

LoRA[19] and QLoRA[20]. Fine-tuning explored rank (𝑟) and scaling factor (𝛼) combinations, 

including (𝑟=8, 𝛼 = 16), (𝑟= 16, 𝛼 = 32), (𝑟= 32, 𝛼 = 64), and (𝑟= 64, 𝛼 = 128), for a total of 

10 epochs. The masked language modelling loss was used, computing cross-entropy between 

predicted logits and true token labels. Training was performed on an A100 GPU with a batch size 
optimized for GPU utilization, using the Adam optimizer and a fixed learning rate of 10-4. 

 

3. RESULTS AND DISCUSSIONS 
 
The proposed twin-model cascaded system was evaluated on both logo detection and tagging 

tasks, focusing on inference efficiency, training cost, and performance improvements. 

 

3.1. Logo Detection 
 

Object detection models were trained and evaluated at an IoU threshold of 0.5. Table 1 
summarizes the performance. YOLOv8 achieved the highest mAP (0.578) with the fewest 

parameters, making it the most efficient in terms of both accuracy and inference cost. This model 

demonstrated optimal performance when deployed in a 2 GB CPU container, achieving an 

inference speed of 2.8 seconds per image—a balance of high latency and low computational cost. 
 

Table 1. Experiments for logo detection at a confidence threshold of 0.5 on the test set, with M  

representing million. The best results are reflected in bold. 

 

Base Model mAPIoU=0.50 mAPIoU=0.50:0.95 
Number of 

parameters 

YOLOv8  0.578 0.361  11.2 M 

Faster-RCNN  0.562  0.406 44 M  

DETR  0.552  0.367  41 M  

 

3.2. Logo Tagging Zero-Shot Performance 
 
Tag generation was assessed using BLEU and ROUGE metrics in a zero-shot setting, as these are 

the standard evaluation metrics used to measure the quality of the generated text. As shown in 

Table 2, GPT-4o achieved the best results, outperforming models such as Llama-3.2-11B-Vision-
Instruct and Florence-2-DocVQA, which struggled due to their limited task-specific capabilities. 

Notably, the larger models allow for more detailed prompting, enabling them to generate more 

specific outputs in a zero-shot setting. In contrast, Florence-2, being a lightweight model, only 

accepts specified task prompts (e.g., “DETAILED_CAPTION” in this case) and high-level user 
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prompts with limited token lengths. This constraint explains the superior performance of GPT-
4o,Haiku,Sonnet, and Llama-3.2 over Florence-2 in zero-shot scenarios. 

 

3.3. Logo Tagging LoRAFine-Tuning Performance 
 

Fine-tuning experiments were conducted using the Llama-3.2-11B-Vision-Instruct and Florence-

2-DocVQA models, applying both LoRA and 4-bit QLoRA configurations. Various scaling 

factors (𝛼) and rank(𝑟) were tested on the logo tagging dataset to evaluate the models' 

performance. Due to the significantly larger size of the Llama model compared to Florence-2, the 

former exhibited a lower ratio of trainable to total parameters, resulting in increased 

hallucinations after more epochs of training. The prompt for fine-tuning was also simplified from 
the original  

 
Table2. ZERO-SHOT performance of VLMs for taggeneration on test set; best results are reflected in bold. 

 

Model  BLEU Score 
ROUGE Score 

Type 
P R F Score 

Llama-3.2-11B-Vision-
Instruct 

0.05 

ROUGE-1  0.3  0.28  0.28  

ROUGE-2  0.13  0.12  0.11  

ROUGE-L  0.29  0.27  0.27  

Florence-2-DocVQA 0 

ROUGE-1  0.02  0.06  0.03  

ROUGE-2  0  0.01  0  

ROUGE-L  0.02  0.06  0.03  

GPT-4o 0.06 

ROUGE-1  0.37 0.48 0.41 

ROUGE-2  0.14 0.22 0.17 

ROUGE-L  0.35  0.45  0.38 

Haiku 0.04 

ROUGE-1  0.24 0.31 0.27 

ROUGE-2  0.07 0.1 0.08 

ROUGE-L  0.23 0.3 0.25 

Sonnet 0.04 

ROUGE-1  0.21 0.32 0.25 

ROUGE-2  0.06 0.09 0.07 

ROUGE-L  0.19 0.29 0.23 

 
version (prompt in Figure 7) to a more direct instruction: “Generate comma-separated tags for 
this logo.” 

 
In contrast, the Florence-2 model, with a higher ratio of trainable parameters to total parameters, 
demonstrated more stable fine-tuning performance. This allowed it to achieve satisfactory results 

with fewer parameters than the Llama-3.2 model. Fine-tuning performance, evaluated using 

ROUGE-1 F1 scores, is presented in Figure 9. 
 

Moreover, Table 3 highlights the improvements in tagging performance with fine-tuning as the 

LoRA scaling factor (𝛼) and rank (𝑟) increase. Notably, Florence-2 outperformed Llama-3.2 

during fine-tuning due to its larger proportion of trainable parameters. This enabled more 
efficient fine-tuning, improved context capture, and superior performance with fewer epochs. 

Despite being a smaller model, Florence-2 demonstrated significant adaptability to fine-tuning 

conditions, underscoring the cost-effectiveness of tuning smaller models with targeted training 
data. 

 

The training cost for the fine-tuned LoRA Florence-2 model is approximately $1.50, while the 

fine-tuned Llama-3.2 model costs around $4.50. The training time is considerably reduced due to 
the smaller training dataset used. A fine-tuned Florence-2 model, with fewer parameters, can be 



82                                      Computer Science & Information Technology (CS & IT) 

deployed on a 16 GB NVIDIA GPU, with an inference cost of approximately $0.0005 per 
inference and an inference time of around 2.3 seconds per request. 

 

 
 

Figure 9. Fine-tuning ROGUE-1, F1-Scores of Florence-2-DocVQA and Llama-3.2-11B-Vision Instruct on 

the test set after different adaptations. 

 
Table 3.ROUGE similarity scores on a test set of the generated caption on a model adapted to the dataset 

using LoRA; {P: Precision, R: Recall}. The best results for each metric and each architecture arereflectedin 

bold. 

 

Model LoRAConfiguration 
BLEU 

Score 

ROGUE Score 

Type 
P R F Score 

Llama- 
3.2-11B-

Vision-

Instruct 

𝑟 = 8, 𝛼 = 16 0.19 

ROUGE-1 0.75  0.76 0.74 

ROUGE-2 0.58  0.60 0.58 

ROUGE-L 0.72  0.73 0.71 

𝑟 = 16, 𝛼 = 32 0.19 

ROUGE-1 0.73  0.75 0.73 

ROUGE-2 0.56  0.58 0.56 

ROUGE-L 0.71  0.73 0.71 

𝑟 = 32, 𝛼 = 64 0.19 

ROUGE-1 0.75  0.77 0.74 

ROUGE-2 0.57  0.59 0.57 

ROUGE-L 0.72  0.74 0.72 

𝑟 = 64, 𝛼 = 128 0.21 

ROUGE-1 0.76  0.77 0.75 

ROUGE-2 0.59  0.61 0.59 

ROUGE-L 0.73  0.74 0.73 

Florence-

2-Doc-

VQA 

𝑟 = 8, 𝛼 = 16 0.17 

ROUGE-1 0.67  0.66 0.65 

ROUGE-2 0.49  0.50 0.48 

ROUGE-L 0.65  0.64 0.63 

𝑟 = 16, 𝛼 = 32 0.20 

ROUGE-1 0.72  0.69 0.69 

ROUGE-2 0.55  0.53 0.52 

ROUGE-L 0.70 0.67 0.67 

𝑟 = 32, 𝛼 = 64 0.20 

ROUGE-1 0.71  0.70 0.69 

ROUGE-2 0.54  0.54 0.53 

ROUGE-L 0.69  0.68 0.67 

𝑟 = 64, 𝛼 = 128 0.21 

ROUGE-1 0.75  0.75 0.73 

ROUGE-2 0.56  0.58 0.56 

ROUGE-L 0.73  0.73 0.72 
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Moreover, as seen in Figure 10, all VLMs in the zero-shot setting struggled with tagging 
compliance and other logos, with Llama-3.2 performing better on tagging certification logos 

compared to the other VLMs in this setting. This performance advantage can be attributed to the 

ground-truth logo tagging data generated using Llama-3.2, which was validated and improved by 

human annotators. Additionally, the figure shows that adding the adaptation block to Llama-3.2-
11B-Vision-Instruct and Florence-2-DocVQA improved the VLMs' performance across all 

primary logo classes. 

 

 
 

Figure 10. ROGUE-1 F1-Score across primary logo classes for different tagging models. The Llama-3.2 

and Florence-2 are adapted models that achieved the best ROGUE-1 F1-scores from the fine-tuning 

experiments. 

 

3.4. LLM Tagging Performance with OCR Text from Logos 
 
Logos in packaging artwork contain both text and visual information, which makes VLMs a 

natural choice for logo tagging tasks. However, we also compared logo tagging using LLMs by 

extracting the OCR text from the logos. Using GPT-4o and Llama-3.2-3B-Instruct LLMs, we 
evaluated their zero-shot performance, which resulted in BLEU scores of 0.004 and 0.003, 

respectively. OCR was performed on the logos using PyTesseract. The performance results of 

these models are summarized in Table 4. 

 
Table 4. “Zero-Shot” performance of LLMs for tag generation using OCR on the test set using text 

extracted from PyTesseract. 

 

Model  BLEU Score 
ROUGE Score 

Type 
P R F Score 

Llama-3.2-3B-Vision-Instruct 0.003 

ROUGE-1  0.004  0.004  0.004  

ROUGE-2  0.003  0.004  0.003  

ROUGE-L  0.002  0.003  0.002  

GPT-4o 0.004 

ROUGE-1  0.006  0.005  0.089 

ROUGE-2  0.004  0.005  0.045  

ROUGE-L  0.006  0.008  0.068  
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3.5. Fine-Tuning Cost 
 

The fine-tuning cost of the Llama-3.2 and Florence-2 models in different LoRA configurations 

with and without quantization is given in Table 5. All the fine-tuning was performed on an A100 
GPU, on the same logo tagging dataset created in this study. 

 
Table 5. Training Time, Cost, and Memory Usage of the Fine-tuned Models for Logo Tagging at Different 

LoRA Levels {L1: 𝑟=8, 𝛼=16; L2: 𝑟=16, 𝛼=32; L3: 𝑟=32, 𝛼=64; L4: 𝑟=64, 𝛼=128}. 

 
Model  LoRA Training Time (sec) Cost per Hour ($)  Total Cost ($) Memory Used (MB) 

Florence 2 
4-bit  

L1  1470  3.67  1.499  10764  

L2  1490  3.67  1.519  10868  

L3  1530  3.67  1.560  11040  

L4  1500  3.67  1.529  11290  

Florence 2  

L1  1120  3.67  1.142  13028  

L2  1130  3.67  1.152  13076  

L3  1130  3.67  1.152  13230  

L4  1130  3.67  1.152  13616  

Llama 3.2 

4-bit 

L1  4368  3.67  4.453  13978  

L2  4387  3.67  4.472  14126  

L3  4385  3.67  4.470  14422  

L4  4392  3.67  4.477  14841  

Llama 3.2  

L1  3612  3.67  3.682  47464  

L2  3634  3.67  3.705  47750  

L3  3641  3.67  3.712  47922  

L4  3668  3.67  3.739  48476  

 

3.6. Inference Cost 
 

The inference cost of the fine-tuned models in different LoRA configurations with and without 

quantization is given in Table 6. All the inferencing was conducted on an A100 GPU, on the 
same logo tagging test dataset created in this study. 

 
Table 6. Training Time, Cost, and Memory Usage of the Fine-tuned Models for Logo Tagging at Different 

LoRA Levels{L1: 𝑟=8, 𝛼=16; L2: 𝑟=16, 𝛼=32; L3: 𝑟=32, 𝛼=64; L4: 𝑟=64, 𝛼=128}. 

 

Model LoRA 
Average Inference 

Time per logo (sec) 

Cost per 

Minute ($) 

Average Inference 

Cost per Logo ($) 

Memory 

Used (MB) 

Florence 2 4-

bit  

L1  0.8 0.042 0.0006 4438 

L2  0.75 0.042 0.0005 4412 

L3  0.75 0.042 0.0005 4500 

L4  0.72 0.042 0.0005 4604 

Florence 2  

L1  0.75 0.042 0.0005 4404 

L2  0.69 0.042 0.0005 4408 

L3  0.72 0.042 0.0005 4500 

L4  0.72 0.042 0.0005 4604 

Llama 3.2 4-

bit 

L1  0.7 0.042 0.0005 22756 

L2  0.7 0.042 0.0005 22836 

L3  0.7 0.042 0.0005 23020 

L4  0.07 0.042 0.0005 23302 

Llama 3.2  

L1  0.6 0.042 0.0004 26270 

L2  0.7 0.042 0.0005 26398 

L3  0.7 0.042 0.0005 26630 

L4  0.7 0.042 0.0005 27006 



Computer Science & Information Technology (CS & IT)                                                  85 

 

3.6 End-to-End Logo Detection and Tagging Example 
 

Figure 9 shows an end-to-end example output of the proposed cascaded model, where an artwork 
image is given as input and the logos are detected and tagged. 

 

 
 
Figure 9. Example output from the model: (a) Cascaded model detecting the different logos present in the 

artwork file in rectangular bounding boxes; (b) Logos being tagged to further classify into more granular 

sub-classes 

 

4. CONCLUSION 
 

This study presents a twin-model cascaded framework for logo detection and identification in 

packaging artwork images. The first phase uses fine-tuned object detection models—YOLOv8, 

DETR, and Faster-RCNN—to recognize logos and assign primary classifications. The second 
phase refines tagging with VLMs like Llama-3.2 and Florence-2, improving secondary 

classification accuracy. 

 
From a cost-efficiency standpoint, smaller models like Florence-2 showed comparable 

performance to larger models like Llama-3.2 when fine-tuned, offering reduced training time and 

inference costs without significant accuracy loss. 
 

Validation on custom datasets—Logo Detection and Logo Tagging—demonstrated high 

annotation quality using human-in-the-loop methods. YOLOv8 achieved the highest mAP of 

0.578, outperforming other detection models in terms of inference efficiency. Fine-tuned VLMs, 
particularly Florence-2, showed notable improvements in tagging accuracy, benefiting from a 

higher trainable parameter ratio. 
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This cascaded framework demonstrates the effectiveness of combining lightweight detection and 
tagging models with fine-tuning for cost-effective solutions. Future work will focus on expanding 

datasets, incorporating more logo variations, and utilizing humanfeedback reinforcement learning 

(HFRL) to enhance robustness. 

 

5. LIMITATIONS 
 

Despite its effectiveness, this method is limited by a fixed set of logo categories, restricting 

adaptability to new logos. The dataset size and diversity also hinder generalization across 
industries and packaging designs. Performance may suffer with occlusions, distortions, or low-

quality images. 

 

Fine-tuning on a smaller dataset can lead to overfitting, while training on a larger dataset is 
computationally intensive[11]. Additionally, human-in-the-loop annotation introduces biases. 

Although the system captures subtle logo differences, some variations may be missed, resulting 

in misclassification. 
 

In conclusion, while the approach shows promise, limitations in dataset diversity, model 

dependencies, and fine-tuning challenges remain. Future work may focus on expanding datasets, 
improving robustness, and exploring scalable techniques like HFRL [21]. 
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