
David C. Wyld et al. (Eds): SIGI, CSTY, AI, NMOCT, BIOS, AIMLNET, MaVaS, BINLP – 2025

pp. 67-72, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151906

RBR: RECOVERING BITCOIN WITH RARIMO

VIA SPV-VERIFIED CROSS-CHAIN ESCROW

AND KEY-LESS ACCOUNT ABSTRACTION

Oleksandr Kurbatov 1, Yaroslav Panasenko 1, Pavlo Kravchenko 1,2,

and Volodymyr Dubinin 1

1 Distributed Lab, Kyiv, Ukraine

2 Department of Electronic Computers, Kharkiv National University of

Radio ElectronicsKharkiv, Ukraine

ABSTRACT

This paper introduces a series of methodologies for Bitcoin recovery, facilitated by the

Rarimo protocol. While existing smart contract platforms are capable of verifyingRarimo’s

execution proofs, extending this methodology to networks that do not possess cost-effective

SNARK verification presents ongoing challenges. We propose the RBR protocol, which

facilitates recovery through a trustless escrow mechanism and demonstrates its

interoperability with current Bitcoin recovery solutions.

KEYWORDS

Bitcoin recovery, Trustless escrow, SPV connector, Zero-knowledge proofs, Account

abstraction.

1. INTRODUCTION

The Rarimo protocol proposes a method for asset recovery that obviates the need to restore keys

or seed phrases. This capability is enabled by zero-knowledge biometric proofs and

accountabstraction techniques, which support key-less account control and recovery.

However, implementing these recovery methods on Bitcoin is impeded by the limited

expressiveness of the Bitcoin scripting language. We therefore propose a mechanism that lets

users specify recovery logic on an external blockchain and employ a trustless security-deposit

scheme that either facilitates BTC recovery or, in adversarial scenarios, permits deposit

withdrawal.

1.1. Notation

We define a bitcoin transaction as

𝑇𝑋{(id, i, proof)(𝑛); (𝑎₿, 𝑐𝑜𝑛𝑑)(𝑚)},

where 𝑛 is the number ofinputs, 𝑚 – outputs, 𝑖𝑑is the reference to the previous transaction, 𝑖–

output’s index, 𝑝𝑟𝑜𝑜𝑓– the list of data which is needed for transaction spending, 𝑎– the number

of coins in the output, and 𝑐𝑜𝑛𝑑– scriptPubKey conditions.

https://airccse.org/
https://airccse.org/csit/V15N19.html
https://doi.org/10.5121/csit.2025.151906

68 Computer Science & Information Technology (CS & IT)

Additionally, we use σ𝘢(𝑚) notation for the signature that is verified by the public key

𝑃𝑎 according to the message 𝑚.

1.2. Requirements

We want to implement a recovery approach with the following properties:

1. The user must retain direct control of their bitcoins and be able to spend them at any

timewithout auxiliary assumptions (e.g., locktimes or external permissions), provided the

primary key(s) remain available.

2. If the user can’t access primary key(s), the recovery process should be launched, desirable

in a way the trust in recovery provider(s) is minimized (ideally trustless).

Following these points, the final transaction (or precisely UTXO) that supports bitcoin recovery

should have the form𝑇𝑋{(…)(𝑛); (𝑎₿, 𝑃 ∨ 𝑎𝑙𝑡)},where 𝑃is the owner’s public key and 𝑎𝑙𝑡is an

alternative spending path depending on the recovery option. Let’s note that 𝑃can be a single key

or any 𝑚-of-𝑛multisignature combinations, while the whole condition can be compressed to a

taproot address.

2. RELATED WORK

Before detailing our proposal, we survey the main lines of prior work that tackle Bitcoin key

recovery and trust-minimised cross-chain interactions. We group these approaches into three

categories—trusted federations, BitVM2-style computation verification, and SPV-based

connectors—highlighting the design lessons each contributes to RBR.

2.1. Trusted Federations

Recovery can employ a federated 𝑚-of-𝑛 approach [1][2], which consists of creating a UTXO

that can be spent either by the coin owner or by a multisignature generated by the trusted quorum.

Additionally, the user can set the locktime before which the federation can’t spend an output. This

approach allows the user to spend the output before locktime and refresh the control of the

bitcoins. The locking transaction can take the form𝑇𝑋{(…)(𝑛); (𝑎₿, 𝑃𝑜 ∨ (𝑃𝑞 ∧ 𝑇))}where 𝑃𝑜is the

user’s public key and 𝑃𝑞 is a public key that belongs to the quorum. All conditions can be

aggregated to the taproot address, resulting in a single EC point [3].

2.2. BitVM2

BitVM2 [4] is the technology for the trust-minimized 𝑚-of-𝑛verification of program execution

on top of Bitcoin. By the programs, we mean rollups, bridges, and other solutions that require

operating with native bitcoins. The general idea of BitVM2 is the following:

1. We replace the needed program with SNARK verifier of its execution correctness;

2. Then we need to divide the program into Bitcoin Script chunks that don’t exceed 4MB

each;

3. The setup phase, where the operator commits to the intermediate program states, creates,

andpresigns the challenge transaction with the trusted quorum of signers (𝑛-of-𝑛 should be

active);

Computer Science & Information Technology (CS & IT) 69

4. If the operator wants to withdraw money, they must publish the program’s output;

5. Anyone can challenge the operator if their output doesn’t match the ones provided by them;

6. In the challenge case, the operator must reveal all intermediate states, and then anyone can

prove that some of the chunks were executed incorrectly (if they were);

Potentially, the BitVM2 approach can also be used for recovery (by proving the Rarimo account’s

state through SNARKs). Still, it is accompanied by a much higher cost, potential problems with

setup (you need to have all signers active), and many economic issues (operator/challenger

games) that must be resolved in advance.

2.3 SPV connector

The SPV connector[5] is a smart contract that synchronizes the entirety of Bitcoin block headers

to the blockchain when it’s deployed. The idea of the connector is to verify all block headers (that

any user can provide) and resolve reorganizations by following the Bitcoin protocol rules. Using

the synchronized SPV contract, the user can prove that a particular transaction was confirmed in

the Bitcoin mainnet and trigger the defined action on the targeting blockchain.

We will refer to 𝜋𝑆𝑃𝑉(𝑇𝑋) ∈ {0; 1} as the SPV proof that the particular transaction TXwas

included in the Bitcoin blockchain.

3. RBR PROTOCOL OVERVIEW

Firstly, let’s define some variables that we use in the protocol flow:

𝑃𝑎 , 𝑃𝑏 Public keys of Alice and Bob, respectively;

𝑎 Alice’s funds (number of Bitcoins);

𝑐 Bob’s security deposit (locked on Ethereum);

𝑓 Fixed service fee that Alice pays Bob upon successful recovery;

𝑇1 Absolute timelock after which Bob may reclaim 𝑐 if Alice never proves she

funded the Bitcoins;

𝑇2 Absolute timelock that defines the “recovery window” once Alice has funded the

lock;

𝑇3 Relative Bitcoin timelock (CSV) that gives Bob time to supply a signature after

Alice requests it;

𝑃𝑥 Alice’s new public key that will control the recovered coins.

Now we propose a protocol that combines an SPV connector with a security deposit furnished by

the recovery provider. This approach allows us to support the following recovery properties

(Alice wants to be able to recover BTC with Bob, who is a recovery provider):

1. Alice is ready to use Bob as a recovery provider only if he is ready to put his security

deposit(equivalent in USD or wrapped BTC, etc.);

2. Bob is ready to put the security deposit in case he can unlock it if Alice spends her UTXO

and leaves the service fee that Bob can take;

3. Alice should be able to take the security deposit in case Bob steals Alice’s BTC.

70 Computer Science & Information Technology (CS & IT)

In this case, we need to provide both sides with the ability to prove that the counterparty unlocked

the BTC, and we can use the SPV connector for it.

3.1. Protocol Flow

Alice creates the transaction 𝑇𝑋that sends her 𝑎₿ to the following conditions:

𝑇𝑋{(−); (𝑎₿, 𝑃𝑎 ∨ 𝑃𝑏)}

Alice doesn’t sign the transaction but just shares it with Bob to check if it’s constructed

correctly.Bob deploys the escrow contract on Ethereum and deposits c to it with the

following conditions:

1. c can be returned after T1if Alice doesn’t provide 𝜋𝑆𝑃𝑉(𝑇𝑋) → 1 and 𝑓 to the deposit

contract;

2. If𝜋𝑆𝑃𝑉(𝑇𝑋) → 1and 𝑓wasprovided before T1, the 𝑐is locked before T2;

3. If there is𝜋𝑆𝑃𝑉(𝑇𝑋1 {𝑇𝑋,  1,  (𝑃𝑎 , 𝜎𝑎));  (𝑎₿, 𝑃𝑥)}) → 1, Bob can return c to his account;

4. There can be a request from Alice to sign the transaction 𝑇𝑋2 {(𝑇𝑋,  1,  (𝑃𝑏 , −));  (𝑎₿, 𝑃𝑥)}

(a) If Bob doesn’t respond with the signature 𝜎𝑏before T3 (relative timelock) to make a

𝑇𝑋2valid, Alice can take 𝑐;

(b) If Bob responded with 𝜎𝑏, the contract annulates T3;
(c) 𝑇𝑋2can be sent by anyone. When it’s sent, Bob can produce 𝜋𝑆𝑃𝑉(𝑇𝑋2) → 1and take

the 𝑐and 𝑓.

With this approach, we can cover all the requirements we mentioned in section 1.2 and the

following potential scenarios:

1. If Alice controls 𝑃𝑎, she can spend her 𝑎₿ at any point in time. When it happens, Bob can

return his security deposit and Alice’s fee by posting the proof that the appropriate

transaction was added to the Bitcoin blockchain.

2. If Alice loses control of 𝑃𝑎, she can ask Bob (on-chain) to sign the recovery transaction. If

Bob satisfies the request, Alice overwrites the bitcoin owner with the new 𝑃𝑥, and Bob

returns the security deposit. If Bob does not provide the signature (DoS),Alice can punish

him by claiming the deposit.

3. If Bob wants to spend 𝑎₿ instead of Alice – she can prove it and take the security deposit.

4. If Alice wants to steal the security deposit and send her Bitcoin by sending the signature

requestand a simultaneous Bitcoin payment, Bob can prove it and unlock the deposit

before.

Also, this approach covers other possible risks:

5. If Alice never funds and expects Bob to keep 𝑐 frozen, the escrow contract automatically

refunds 𝑐 after timelock 𝑇1.

Computer Science & Information Technology (CS & IT) 71

6. If chain reorganization happens, funds remain locked until a fresh proof is possible to

create.

7. If Alice starts repeatedly requesting a signature,Bob ignores it after supplying 𝜎𝑏 .

4. FUTURE VECTORS OF IMPROVEMENTS

We see two major challenges related to the approach described in the paper:

1. A locked security deposit is required. Although Bob may accept the recovery fee

stipulated by Alice, the scheme nevertheless necessitates a locked deposit. Using the

scheme in the form we described doesn’t allow reusing the locked security deposit because

Alice and Bob should be able to take it at any time if their counterparty tries to cheat.

Therefore, we are exploring various options that enable us to reuse the locked assets while

avoiding the introduction of additional security issues into the scheme.

2. Collateral volatility. Volatility in the Bitcoin price may disincentivize Bob from returning

the coins to Alice once their value exceeds the combined security deposit and fee. The ideal

scheme would provide an ability for Alice to punish Bob with a deposit and bitcoins

simultaneously in such a case. So, improvement of this scheme can consist of additional

guarantees that Alice can return her bitcoins if she doesnot attempt to violate the terms of

the agreement.

5. CONCLUSIONS

This work has presented RBR, a trust-minimised Bitcoin-recovery framework that fuses an SPV-

verified proof system with an on-chain security-deposit escrow. By separating the expressive

recovery logic to an external smart-contract platform while retaining native Bitcoin custody for

the end-user, RBR attains three properties rarely achieved simultaneously: (i) self-custody first–

the owner may at any time spend the UTXO unilaterally; (ii) cryptoeconomic deterrence– the

recovery provider’s worst-case loss always exceeds any potential cheating gain; and (iii)

verifiable liveness– all protocol branches are decidable via publicly auditable SPV proofs. Our

formal algorithm and threat analysiscollectively demonstrate that each participant’s incentives are

aligned under realistic market conditions and chain-reorganisation assumptions.

Compared with federation-based recovery and BitVM2-style full-program verification, the

proposed design offers a more lightweight trust surface and lower on-chain cost, yet inherits the

censorship resistance of Bitcoin’s base layer. The remaining challenges– most notably capital

inefficiency of locked deposits and exposure to extreme BTC price shocks– outline clear

directions for future research, including reusable collateral schemes and oracle-driven,

dynamically-adjusted margins. Overall, RBR advances the state of keyless asset recovery by

showing that strong user sovereignty and practical, economically secure recovery guarantees are

simultaneously attainable without altering the Bitcoin consensus rules.

REFERENCES

[1] Komlo C., and Goldberg I., (2020)“FROST: Flexible Round-Optimized Schnorr Threshold

Signatures", Cryptology ePrintArchive, Paper 2020/852:https://eprint.iacr.org/2020/852.pdf

[2] Gennaro R., and Goldfeder S., (2020) “Fast Multiparty Threshold ECDSA with Fast Trustless

Setup”, Cryptology ePrintArchive, Paper 2020/540:https://eprint.iacr.org/2020/540.pdf

72 Computer Science & Information Technology (CS & IT)

[3] Maxwell G., (2018) “Taproot: Privacy Preserving Bitcoin Transactions”,https://github.

com/bitcoin/bips/blob/master/bip-0341.mediawiki

[4] Linus R., (2024)“BitVM2: Extending Bitcoin’s Computation Model”, https://bitvm.org/bitvm2

[5] Kurbatov O., (2024) “Extending the SPV Contract Concept with Privacy Gadgets”,

Telecommunication and Information Technologies 83,doi: 10.31673/2412-4338.2024.024961.

AUTHORS

Oleksandr Kurbatov is a PhD Candidate at Karazin Kharkiv National University, Ukraine. His research

focuses on public-key infrastructure, blockchain technologies, and anonymous decentralized voting

systems. Currently working as the Lead Cryptography Researcher at Distributed Lab.

Yaroslav Panasenko is the Chief Technology Officer at Distributed Lab. He holds a B.Sc. in Software

Engineering from Kharkiv Polytechnic Institute. His research interests span decentralized anonymous

banking systems, blockchain infrastructure, biometric systems, and AI safety and security.

Pavlo Kravchenko earned his PhD in Cryptography from Kharkiv National University of Radioelectronics

in 2012. He now works as a technology entrepreneur, software architect specializing in cryptographic

solutions, and Chief Executive Officer of Distributed Lab. His research interests include public-

infrastructure security, blockchain protocols, and privacy-preserving cryptographic systems.

Volodymyr Dubinin holds an M. Sc. in Computer Science and is Co-Founder of Distributed Lab. His

research interests span Decentralized Systems, Artificial Intelligence, Blockchain Scalability, and

Cryptographic Protocol Design.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

