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ABSTRACT 
 

We investigate the generalizability of the deep contextual models along two dimensions: (i) 

when data includes unreliable or noisy categories and (ii) when data is out-of-distribution 

(OOD). Specifically, we focus on the Transformer-based BERT (Bidirectional Encoder 

Representation from Transformer) model for recognizing COVID-19 misinformation data 

from online social media. A set of studies are designed to examine the generalizability of a 

diverse array of BERT-based transfer learning techniques. The investigation also includes 

shallow non-contextual models. Results obtained from extensive systematic experimentation 

show that the BERT-based models generalize poorly on the OOD data as well as when the 

domain contains unverified samples. Notably, these deep contextual models are not more 

effective, and at times worse, than shallow non-contextual models. 

 
We explain possible reasons for the poor generalizability of deep contextual models. 
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1. INTRODUCTION 
 

Though Transformer-based [1] deep contextual models have achieved state-of-the-art 

performance on some static benchmark Natural Language Processing (NLP) datasets [2, 3], it is 

not clear yet how generalizable these models are when used in practical datasets that are noisy 

and dynamic [4]. The challenge of generalizability arises from the nature of both training and 

test data. When training data is contaminated with noisy labels, deep learning models’ 

generalizability degrades substantially [5]. Generalizability also stumbles when a model is 

applied to out-of-distribution (OOD) data [6]. 

 

A common-sense heuristic is that to be generalizable, deep contextual models must acquire a 

deep understanding of the language [4]. Transformer-based models aspire to achieve this 

“understanding” by learning language representations from a general-purpose unlabeled source 

data that is amenable to a downstream task (e.g., text classification) via transfer learning [7]. 

These representations capture semantic and syntactic relationships of the words (i.e., complex 

characteristics of word use) as well as their contextual relationships (i.e., polysemy) [8]. 

However, these properties of a deep contextual pretrained model (PTM) may not be enough to 

ensure its generalizability. For example, if the target domain contains samples with unreliable or 

noisy labels, then transfer learning may not yield an optimal performance. Due to the 

involvement of non-expert labelers [9] as well as when the expert-labelers lack the domain 

knowledge [10], existence of noisy labels in practical datasets is unavoidable. On the other hand, 
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even if the training data has reliable labels, a shift in the data distribution in practical problems 

results in poor generalization. This issue becomes severe when the domain is expected to go 

through a continuous shift in distribution. For example, in the domain of online social media, the 

language changes continuously [11], as a result, the test data distribution drifts from the train 

distribution over time [12]. To cope well with this type of OOD data, NLP techniques are not 

only required to learn the language model but also to understand the changing pattern in the 

language [13]. Since the development and evaluation of the deep contextual models occur under 

the assumption that train and test samples are independent and identically distributed (i.i.d.) 

[14], it is not apparent whether these models understand the language change for being able to 

generalize over OOD data. 

 

In this paper, we systematically study the generalizability of the deep contextual model BERT 

(Bidirectional Encoder Representation from Transformer) [15]. Specifically, we investigate 

whether BERT-based models are generalizable when (i) training data samples contain noisy 

labels, and (ii) test data is OOD. As an example of an NLP task that captures these two 

challenges of generalizability, we focus on the problem of misinformation detection from online 

social media data related to Coronavirus or COVID-19 pandemic. Designing an effective text 

classifier for this problem is a daunting task due to the nature of the COVID-19 social media 

data. Unlike the curated static NLP datasets on which deep contextual models like BERT are 

tested [16], COVID-19 online misinformation datasets are noisy and dynamic. Creating reliable 

labels for COVID-19 misinformation data is both an expensive and a time-consuming task. As a 

consequence, not only misinformation datasets may contain samples with noisy labels [17], but 

also there may exist noisy categories (e.g., an entire category could be labeled as “unverified” 

due to lack of knowledge during the time of data collection [18]). The dynamic nature of 

COVID-19 misinformation is due to the variation in the misinformation narrative across 

geographic regions [19] as well as variation over time (caused by the faster evolution of 

misinformation themes [20]). As a result of these two dynamic aspects of the COVID-19 data, a 

contextual model developed using localized data or data collected from a specific duration of 

time, may find it challenging to generalize over data from different regions or future periods, 

which are OOD. Previously deep contextual models including BERT were utilized to design text 

classifiers for detecting COVID-19 misinformation [18, 21, 22, 23]. However, the train and test 

samples used for the development of these approaches were i.i.d., i.e., test data is randomly 

selected from the dataset used for training. As a consequence, the generalizability of these 

approaches has not been verified yet. 

 

Our generalizability study on the deep contextual model BERT spans along two dimensions: we 

use (i) train data with unreliable categories to evaluate models on in-distribution test data, and 

(ii) train data with reliable categories to evaluate models on OOD test data. Moreover, we 

include a diverse set of OOD data with varying degrees of distribution shift. For a comparative 

understanding, our study includes shallow non-contextual models such as Word2Vec [24] and 

FastText [25], which are based on shallow neural networks. 

 

We examine a diverse set of techniques, both contextual and non-contextual, for the study. The 

techniques are broadly divided into two paradigms of transfer learning: (i) it involves 

domainagnostic (DA) pretrained models (PTM) that learns language representations from 

general-purpose unlabeled data [7], and (ii) it involves domain-specific (DS) PTMs that learns 

representations from domains that are similar to the target domain [26]. Two knowledge-transfer 

approaches (both for DA and DS BERT PTMs) are used [27]: (i) extracted feature-based (FB) 

learning in which the BERT-extracted features such as word embeddings from the model’s 

output are fed into another neural network for training using the target data, and (ii) adding a 

classification layer on top of the BERT PTM, then fine-tuning (FT) its hidden layers using the 

target data. The non-contextual Word2Vec and FastText models are used only as feature 
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extractors in FB learning (both as DA and DS PTMs). These models are pretrained to learn 

representations of a set of words from a source dataset. The representations or word 

embeddingsare then transferred as features to train a text classifier by using the target data [28]. 

 

Contributions. We design a set of studies to conduct a deeper investigation of the 

generalizability of the deep contextual BERT model. We emphasize two dimensions of 

generalizability (in presence of noisy categories and varying-degree of OOD data) that has not 

yet been explored. Our main contributions include the following findings. 

 

• The deep contextual BERT-based models (both DA and DS) do not generalize well (i) in 

presence of unreliable categories in the training data, and (ii) on OOD data. 

• Unlike the observed superior generalizability of contextual models in [14], we find that 

the shallow non-contextual Word2Vec and FastText-based models exhibit competitive 

and sometimes better performance over BERT. 

• We show that there could be considerable variation in the distribution shift across OOD 

datasets. We examine the models at the backdrop of the varying space of OOD. We show 

that depending on the nature of the OOD data (e.g., spatially-varying or temporally-

varying) and the degree of the distribution shift, the generalizability performance of the 

models varies. 

• We explain the lack of robustness of the deep contextual models. While the BERT-based 

models can learn contextual representations within the static space of the source data, they 

are not good at understanding the language change. Even when a BERT PTM is created 

by using COVID Twitter data (e.g, the COVID-Twitter-BERT (CT-BERT) [29]), it does 

not generalize well on the COVID-19 OOD data due to its lack of understanding of the 

language change. The priors (learned from the source data) of the BERT PTMs are much 

stronger than those of the non-contextual models, which may have imposed heavy inertia 

on their adaptation capability in the latent space for capturing the language change present 

in the target data. 

 

2. RELATED WORK 
 

In the machine learning based NLP, the text input data is encoded with latent representations or 

embeddings amenable for solving a downstream task. These embeddings are learned by neural 

pretrained models (PTMs) from general-purpose unlabeled data by using the self-supervised 

learning approach [30]. Then, the embeddingsare transferred to the downstream task either via 

fine-tuning or by feature extraction [27]. 

 

Shallow Non-contextual Models. The PTM Word2Vec [24] and FastText [25] are predictive 

models that are based on shallow neural networks. Both models learn word embeddings from the 

unlabelled Wikipedia corpus. Word2Vec uses two types of models for learning: Continuous 

Bag-of-Words (CBOW) and Skip-Gram. CBOW learns embeddings by predicting the most 

likely word in the given context, while in Skip-Gram the model learns by predicting the context 

using the given word. Both Word2Vec and FastText learn non-contextual word embeddings 

from their co-occurrence information. The main limitation of Word2Vec is that it is unable to 

encode out-of-vocabulary words. FastText overcomes this limitation by extending the 

Word2Vec model. Specifically, it first breaks the words into several sub-words (or n-grams) and 

then feeds them into the neural network. 

 

Deep Contextual Models. Unlike Word2Vec and FastText PTMs, the BERT PTM [15] can learn 

contextual embeddings. It utilizes an autoencoding technique with bi-directional context 

modeling. BERT is based on the Transformer model [1], which is a very deep neural 
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architecture equipped with a multi-head attention mechanism. Two variants of the BERT 

architecture are generally used: BERT Large and BERT Base. BERT Large uses 24 encoder 

layers with 24 bidirectional self-attention heads each with 1042 hidden dimensions, while BERT 

Base uses 12 encoder layers with 12 bi-directional self-attention heads each with 768 hidden 

dimensions. Both variants are pretrained using unlabeled data extracted from the BooksCorpus 

with 800M words and English Wikipedia with 2,500M words. BERT learns the embeddings by 

utilizing the surrounding context signals from the text corpora. Specifically, it learns using two 

predicting tasks: by predicting random missing words (15%) using the rest of the sentence (i.e., 

a masked language modeling task); and by predicting whether two sentences appear next to each 

other. BERT provides a [CLS] token at the start of the sequence, whose embeddingsare treated 

as the representation of the text sequence(s). 

 

3. DATASET, STUDY DESIGN AND MODELS 
 

In this section, we describe the dataset pre-processing, design of the studies, and the DA as well 

as DS PTM-based transfer learning approaches that include both shallow non-contextual and 

deep contextual models. 

 

3.1. Dataset 
 

We use a COVID-19 social media misinformation dataset collected by Princeton University’s 

Empirical Studies of Conflict Project (ESOC) [19]. The dataset contains 5,613 distinct 

misinformation stories originated from social media posts such as tweets and news articles 

during the full year of 2020. These stories came from over 80 countries and spanned across 35 

languages. 

We have four reasons for choosing this dataset for the study of the generalizability of predictive 

models. (i) It is a multi-class misinformation dataset that contains tweets and news stories from 

social media belonging to three misinformation categories, i.e., false reporting, conspiracy, and 

fake remedy. It is challenging to design effective models by using only misinformation samples 

of various types. (ii) The dataset is heavily skewed having more than 75% of samples in the 

false reporting category. Thus, generalizing over the minority classes is a challenging task for 

the models. (iii) Though all misinformation samples belong to one of the three categories, there 

exists significant variation in the misinformation themes within the categories. The ESOC 

project report [19] shows that false narratives are localized, i.e., the nature of misinformation 

changes across regions and countries. This nuanced nature of misinformation makes it harder for 

the models to generalize. (iv) Finally, the dataset contains metadata that we leverage to create an 

array of diverse OOD test sets. 

 

Pre-processing. For training and evaluating the models, we only used the text written in English. 

We extracted a total of 1,235 English text samples originated from predominantly 

Englishspeaking countries as well from countries where the primary language is not English, 

e.g., Hindi, Tagalog, Sinhala, Chinese, and Urdu. Out of the 1,235 samples, 951 samples belong 

to the false reporting category (class 0), 186 samples belong to the conspiracy category (class 1), 

and 98 samples belong to the fake remedy category (class 2). We consider these three categories 

reliable as they were labeled and verified by domain experts [19]. 

 

We use two metadata, i.e., primary language and publication date, to create two orthogonal OOD 

test sets. The first OOD test set contains misinformation samples that exhibit distribution shift 

along the dimension of geographic locations, while the second OOD test samples exhibit 

varying degrees of distribution shift along the temporal dimension. The process of creating these 

orthogonal OOD test sets is described next in the study design sub-section. 
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3.2. Study Design 
 

Our generalizability study spans two dimensions. 

 

• Dimension 1: Train data with unreliable categories and in-distribution test data. 

• Dimension 2: Train data with reliable categories and OOD test data. Generalizability on 

OOD data is examined in two orthogonal dimensions. 

 

– Dimension 2(a): OOD data - shift along geographical dimension 

– Dimension 2(b): OOD data - shift along temporal dimension 

 

First, we create a benchmark in study 1 by using train data with reliable categories and 

indistribution test data. In study 2, we evaluate generalizability of the models along dimension 1. 

Then, in studies 2 and 3, the models are evaluated on two orthogonal OOD data (dimensions 

2(a) and 2(b)). Two additional studies 5 and 6 are designed to corroborate the observations of 

dimension 2 (studies 3 and 4). The last two studies are reported in the technical appendix. 

 

Study 1 (Creating Benchmark): Train Data with Reliable Categories & In-Distribution Test 

Data: To create a benchmark, we use the train data with its three reliable categories and 

indistribution test data, i.e., train and test data are i.i.d. Specifically, we create train-test folds by 

randomly selecting 80% samples for training and 20% samples for testing. 

 

Study 2 (Dimension 1): Train Data with an Unreliable Category & In-Distribution Test Data: 

We create an unreliable category by sampling 25% of the data from each of the three categories 

and labeling those sampled data with a new category called “unverified”. Thus, the new 

category contains noisy-labeled samples. Test data is i.i.d., created by sampling 20% of the data. 

 

Study 3 (Dimension 2a): Train Data with Reliable Categories & OOD Test Data - Obtained 

From Disparate Geographic Locations: For this study, we divide the data based on whether it is 

originated from English or non-English speaking countries. The samples from English-speaking 

countries (a total of 1,042) are used for training and samples written in English by non-English 

countries (a total of 193) are used for testing. Since the COVID-19 misinformation themes are 

localized and vary across geographic regions [19], this test set can be considered as OOD. 

 

Study 4 (Dimension 2b): Train Data with Reliable Categories & OOD Test Data - Obtained 

From Various Periods in Future: For creating train-test folds for this study, we consider the 

temporal dimension. By using the publication date metadata, we split all English samples into 

the following 5 subsets: January-April (658 samples), May-June (234 samples), July-August 

(151 samples), September-October (100 samples), and November-December (88 samples). The 

January-April subset is used for training and the remaining 4 subsets are used for testing. Since 

the models only see the January-April data, the unseen samples of the four test sets during 

MayDecember are from the “future”. Given the rapid propagation of COVID-19 data and 

dynamics in the nuanced narrative of misinformation [19, 31, 20], these four test sets from the 

“future” can be considered as OOD. 

 

Sample distribution per class (both train and test) for all studies is given in the technical 

appendix. 
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3.3. Deep Contextual Model: BERT 
 

The contextual BERT is used in both FT and FB learning. While FT is done using only the DA 

PTM (by following mixed-domain transfer learning protocol [32]), the FB learning utilizes both 

the DA as well as DS BERT PTMs. 

 

DA BERT Fine-tuning (FT): For the FT experiments, we use the sequence classifier DA BERT 

PTM. This PTM adds a single linear layer on top of the BERT model. The pretrained weights of 

all hidden layers of the PTM and the randomly initialized weights of the top classification layer 

are adapted during FT. Two variants of DA BERT are used: BERT Base and BERT Large, 

obtained from the Hugging Face library [33]. These two variants are utilized to determine 

whether increased model capacity (i.e., BERT Large) improves generalization. 

 

DA BERT Feature-based (FB) Learning: We use only the BERT Base model as a feature 

extractor. Two techniques are employed to extract the fixed embeddings, which are 

subsequently used to train a linear classifier. The first technique involves using the embeddings 

of the classification token (i.e., the [CLS] token), which is the first token of the last layer hidden 

state [34, 35]. These embeddingsare obtained by passing the target data through the BERT 

model. The second technique involves the extraction of the embeddings of the final hidden layer 

[36]. Then, global average pooling is applied for training a linear classifier. 

 

DS BERT Feature-based (FB) Learning: We use the following DS BERT PTMs: SciBERT [26], 

Bio-Clinical BERT (BC BERT) [37], and COVID-Twitter-BERT (CT-BERT) [29]. These DS 

PTMs are chosen as their embeddings encode specifically the context of the health domain. The 

SciBERT model is pretrained using scientific papers from mostly the biomedical domain. The 

BC BERT model is trained on electronic health records from ICU patients at the Beth Israel 

Hospital in Boston, Massachusetts. These two BERT DS PTMs are based on the BERT Base 

model while the CT-BERT is based on the BERT Large model and is pretrained on a corpus of 

160M tweets about the coronavirus during the period from January 12 to April 16 in 2020. 

These three models are obtained from the Hugging Face library [33]. We use the second feature 

extraction technique (presented in DA BERT FB Learning) for these models. 

 

3.4. Shallow Non-Contextual Models: Word2Vec &FastText 
 

The non-contextual models are used only as feature extractors (i.e., in FB learning). We utilize 

both the DA and DS embeddings from Word2Vec and FastText for transfer learning. In addition 

to this, we combine the DA and DS embeddings to see whether it improves generalization. The 

embeddings are used for the extraction of more expressive features via a Convolutional Neural 

Network (CNN), which is described at the end of this sub-section. 

 

DA Embeddings for Feature-based (FB) Learning: The Word2Vec DA pretrained embeddings 

are obtained from Google Code [38]. The embedding vectors are 300-dimensional. We get the 

FastText DA pretrained 300-dimensional embeddings from [39]. 

 

DS Embeddings for Feature-based (FB) Learning: The DS embeddingsare learned by training 

the Word2Vec and FastText models using the target data. We create both 300-dimensional and 

400-dimensional embeddings. Our goal is to see whether increasing the embedding dimension 

improves generalization. For creating the DS embeddings, we pre-process the data as follows. 

First, the text is converted to lower-case and tokenized, then single-character tokens are 

removed, followed by lemmatizing the tokens. Finally, the lemmatized tokens are used for 

learning their embeddings by the models. 
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Combine DS and DA Embeddings for Feature-based (FB) Learning: We concatenate the 

300dimensional DA embeddings with the 300-dimensional DS embeddings and use the resulting 

600dimensional embeddings for extracting higher-level features via a CNN. 

 

Extraction of Expressive Features by a CNN: Both the DS and DA embeddings are used to train 

a CNN classifier that extracts higher-level and more expressive features by employing a single 

convolutional layer [28]. The CNN architecture consists of five layers. The first layer is the 

embedding layer. Its dimension varies based on the dimension of pretrained embeddings. The 

second layer is a one-dimensional convolution layer that has 200 filters of dimension 3 x 3 with 

“same” padding and ReLU activation. The third layer is a one-dimensional global max-pooling 

layer, and the fourth layer is a dense layer with 100 neurons along with ReLU activation. The 

last layer is the classification layer with softmax activation. We use this setting for the CNN 

architecture as it was found empirically optimal in our experiments. During the training, we 

adapted the DA, DS, and the concatenated word embeddings. Unlike in [28], we find the CNN 

classifier to be more effective when the embeddings are tuned. 

 

4. RESULTS AND ANALYSIS 
 

 
 

(a) Study 1 (benchmark): Train data (reliable categories) & in-distribution test data. (b) Study 2: Train 

data (with an unreliable category) & in-distribution test data. 

 

Figure 1: Avg. test accuracy (y-axis), standard deviation (top of each bar in boxes), and avg. F1 scores 

(shown inside the bars). “CLS”: embeddings of the classification token; “LL”: embeddings from the last 

hidden layer. 

 

Experimental Setting. For learning DS Word2Vec and FastTextembeddings, we used the 

SkipGram model from the Gensim library [40]. For the validation purpose, 10% of the training 

data is used. The BERT-based models were trained for 10 epochs (both in FT and FB learning 

experiments) using the Rectified Adam optimizer [41] on a batch size of 16. The non-contextual 

embeddings based CNNs are trained for 20 epochs using the Adam optimizer on a batch size of 
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64. Each experiment was run 5 times, and an average accuracy, as well as standard deviation for 

the accuracy, are reported. In addition to this, the average F1 score for each class is presented. 

All experiments are done using Transformers, Scikit-learn, TensorFlow 2.0, and PyTorch 

libraries. 

 

Study 1. Figure 1(a) shows the benchmark results from study 1. Since the train and test samples 

are i.i.d., both non-contextual and contextual models generalize well, achieving above 90% test 

accuracy. Though the training data was highly imbalanced (sample size for the 3 classes are 

757, 159, & 72), all models obtain above 80% avg. F1 score for the smaller classes (i.e., classes 

1 and 2). The CT-BERT FB and FastText DA (400) exhibit the best performance (above 95% 

avg. test accuracy and above 90% avg. F1 score on the smallest class 2). BERT Large FT 

performs slightly better than BERT Base FT. Also, the DS BERT models perform better than the 

DA BERT models. 

 

 
 

Figure 2: Study 3: Train data (reliable categories) = English speaking countries; Test data (OOD) = non-

English speaking countries. 

 

Study 2. The effect of the unreliable category is shown in Figure 1(b). Both the non-contextual 

and contextual models generalize poorly on in-distribution test data due to the presence of a 

noisy category. Interestingly, non-contextual Word2Vec performs slightly better than other 

models. Also, overall the FB BERT techniques exhibit better effectiveness than the FT-based 

techniques. Compared to study 1, there is an increase in the standard deviation for the test 

accuracies for most of the models. 

 

Study 3. The generalizability of all models in study 3 has declined (Figure 2) as compared to 

study 1 due to the geographically varying OOD test data. The training data is skewed (sample 

size for the 3 classes are 786, 182, & 74), which explains the poor F1 score in class 2. The zero 

F1 score for class 1 could be due to having only 4 test samples. Optimal models include both 

contextual (BERT Large FT and CT-BERT) and non-contextual (FastText DA 300). 
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Study 4. The decline in the generalizability of all models is more pronounced in study 4, as 

shown in Figure 3. All models show zero F1 scores for the September-October class 2 due to 

zero test 

 

 
   

(a) May – June    (b) July – August 

 

 
  

(c) September - October   (d) November - December 
 
Figure 3: Study 4: Avg. test accuracy (y-axis), standard deviation (top of each bar in boxes), and avg. F1 

scores (shown inside the bars). Train data (reliable categories) = samples from JanuaryApril; Test data 

(OOD) = 4 test sets from May-December. 
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cases. Also, class 2 for the November-December set has only one test sample, which lowered 

most of the models’ F1 scores. We observe that compared to study 3, both contextual and 

noncontextual models perform poorly due to temporally-varying OOD test data. Their average 

test accuracies remain mostly below 80%. This may indicate that the temporally-varying OOD 

data goes through a larger shift in distribution compared to the geographically-varying OOD 

data. 

 

We further observe that all models’ generalizability decreases more over the future periods. For 

example, their November-December performance is much worse than the May-June 

performance. There is a substantial drop in the F1 scores of the minority classes (e.g., class 1). It 

indicates that may be more distribution-shift has occurred during the later months, hence models 

were not able to capture the language change well. The performance drop in BERT DA 

techniques (FT and FB) is more than BERT DS FB learning techniques. Fine-tuning on the 

BERT Base PTM always yields the worst generalization of all. The DS CT-BERT exhibits the 

best generalization performance. On the November-December data, it obtains the highest F1 

score for class 1. 

 

However, the non-contextual models do not generalize well on class 1. 

 

Discussion. 

 

Various techniques have been proposed to handle noisy-labeled text data that includes loss 

correction [42] and architectural modification [43]. However, these approaches create noisy 

samples by artificially corrupting samples, e.g, by uniform label flipping and random label 

flipping [43]. In our study, we investigate another dimension of the label-unreliability issue. 

Instead of randomly corrupting labels across the existing categories, we introduce a new 

category in the dataset that is based on samples randomly collected from the existing categories. 

We “pretend” that we do not have domain knowledge to determine the veracity status 

(misinformation or not, or what type of misinformation) of the samples from this new category. 

The inclusion of an “unverified” category is not an artifact in the context of COVID-19 

misinformation detection problem [16]. Our intention was to see how the deep contextual 

models perform in presence of a noisy category. We observe more than a 20% drop in all 

models’ performance compared to the benchmark study. We argue that we have yet to design a 

new class of techniques for handling noisy categories, as we did with noisy labels [42, 43]. 

 

Previously deep contextual models’ robustness on OOD data was studied and it was shown that 

BERT-based models were more generalizable than shallow non-contextual models (e.g., 

Word2Vec) [14]. However, our results are contrary to this observation. We find that both the 

contextual and non-contextual models’ generalizability vary based on the degree of distribution 

shift in the OOD data. 

 

We capture the variation in distribution shift by using two orthogonal OOD datasets: variation 

along the spatial dimension (study 3) and variation along the temporal dimension (study 4). In 

addition to this, we capture the increased degree of variation within the space of the 

temporallyvarying data (i.e., by using 4 tests sets in study 4). 

 

Results from studies 3 and 4 reveal some useful insights. First, all models generalize poorly in 

study 4 as compared to study 3. Could this be due to the larger training set in study 3 (study 3 

samples = 1042, study 4 samples = 658)? In the technical appendix, we provide additional 

results (from study 5) showing that better generalization in study 3 is not due to its larger 

training set. What if we could increase the training set in study 4? Would that improve the 

models’ generalizability? We conduct a variation of study 4 by using a larger training set (i.e., 
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study 6, reported in the technical appendix). We create this training set by combining samples 

from January to October (1146 samples). Then, models are evaluated on the November-

December OOD test set. However, we did not observe significant increase in the models’ 

generalizability. 

 

Results from study 3 to study 6 offer useful insights into the nature of the distribution shift in the 

two OOD datasets: (i) there might be a larger shift in distribution along the temporal dimension 

than the spatial dimension and (ii) the distribution shift becomes larger in the temporally-varying 

data as the temporal distance between the training and test data increases. We evaluate the 

contextual and non-contextual models at the backdrop of this diverse OOD space. 

 

We see that when models were tested on the spatially-varying OOD data (study 3), the BERT-

based models did not generalize better than the non-contextual models. In the case of the 

temporallyvarying OOD data (study 4), we find only the DS CT-BERT model to exhibit some 

generalizability on the November-December test set. However, on the 3 test sets from May-

October, when distribution shift is comparatively smaller, non-contextual models exhibit 

competitive performance. 

 

Thus, we argue that to acquire a deep understanding of a model’s generalizability, we must 

consider the diverse nature of the OOD data. 

 

Two pertinent questions arise on the BERT-based models’ poor generalizability. 

 

• Question 1: Why do these models exhibit the worst generalizability in study 4 as 

compared to study 3? 

• Question 2: Why do these models’ generalizability is notbetter, and sometimes worse, 

than the non-contextual models? 

 

One possible answer to question 1 is that while the BERT-based models can learn contextual 

representations within the static space of the source data,they are not good at understanding the 

language change. This could explain why all BERT-based models performed worst in study 4 

(data is OOD due to shifting distribution along the temporal dimension) as compared to study 3 

(data is OOD due to a shift in misinformation narrative across geographic locations). Though 

only the CT-BERT showed good performance on the November-December data in study 4, its 

generalizability is significantly poor as compared to its performance in study 1 and study 3. We 

argue that its understanding of the shifting language space is not very deep. This could be due to 

the nature of the pretraining data that was limited within the initial four months (i.e., January-

April of 2020) since the pandemic began. Thus, this PTM captured only as much language 

change that was present during that narrow time frame. 

 

For question 2, one possible explanation is that the priors (learned from the source data) of both 

the DA and DS BERT models (except the CT-BERT) are much stronger than those of the 

noncontextual models, which may have imposed heavy inertia on its adaptation capability in the 

latent space for capturing the language change present in the target data. 

 

5. CONCLUSION 
 

In this paper, we examine the generalizability of the deep contextual models along two 

dimensions: (i) in presence of noisy categories and (ii) on OOD data containing varying degree 

of distribution shift. A systematic set of studies involving various BERT PTM-based approaches 

show that the deep contextual models do not generalize well when data contains unreliable 

categories and is OOD. We explain the lack of generalizability of the deep contextual models. 
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In the future, we will include additional contextual models in our generalizability investigation 

that are (i) Transformer-based non-BERT and (ii) not Transformer based. 

 

APPENDIX 
 

In this Appendix, we present the sample distribution per class for all studies. Then, we describe 

the design of two data ablation studies and analyze the results. 

 

Sample Distribution in the Studies 
 

In this section, we present the sample distribution for both the training and test samples for all 

studies. 

 

Study 1, 2, & 3 Figure 4 shows that in studies 1, 2, and 3, the sample distribution is heavily 

skewed, i.e., the number of samples in the “False Reporting” class is significantly larger than 

other classes. In study 2, the “Unverified” category (class 3) contains more samples than classes 

1 and 2. 

 

 
 (a) Study 1 (b) Study 2 (c) Study 3 

 
Figure 4: Sample distribution. 

 

In study 3 (Figure 4(b)), the number of test samples from class 2 is only 4, which explains why 

all models obtain an average zero F1 score on class 2. 

 

Study 4 In study 4, the training dataset is created using samples from January-April of 2020, 

while the four OOD test sets are created using samples from May-June, July-August, 

SeptemberOctober, and November-December, respectively. Sample distribution for both the 

training and all test datasets are shown in Figure 5. Similar to the previous three studies, the 

datasets are heavily skewed. The test samples in some classes in the September-October and 

November-December datasets are scarce. For example, class 2 in the September-October dataset 

has no samples and class 3 in the November-December dataset has only one sample. This 

explains why we could not reliably evaluate the performance of the models on class 2 

(September-October dataset) and class 3 (November-December dataset). 

 

Design of the Data Ablation Studies 
 

We design two data “ablation” studies by editing the existing datasets. The goal is to corroborate 

the observed performance of the models on the OOD data in studies 3 and 4. In study 3, models 

were evaluated on the geographically varying OOD data, and in study 4, the evaluation was 

based on the temporally varying OOD data for various degrees of the distribution shift. We 
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observed that models were more generalizable on the geographically varying OOD data (study 

3) than in the case of the temporally varying OOD data. To determine whether better 

generalizability in 

 

 
  

(a) May-June         (b) July-August (c) September-October 

 

 
 

(d) November-December 

 

Figure 5: Sample distribution for the four datasets in study 4. 

 

 
 

(a) Study 5 (b) Study 6 

 

Figure 6: Sample distribution. 

 

study 3 is due to the larger size of the training data, we design a new study (study 5). 

 

In addition to this, we observed that in study 4, the models generalized extremely poorly on the 

September-December test datasets compared to the test datasets from the earlier months 

MayAugust. To determine whether the poor performance during later months is due to the 

smaller training set (i.e., the January-April training set) or due to the larger shift in the test data, 

we design a study (study 6). 
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These two new studies are intended to explain away the effect of the size of the training set in 

studies 3 and 4. 

 

Study 5: Explaining Away the Effect of Larger Training Set in Study 3 The size of the training 

data in study 2 (i.e., 1042) is much larger than the training set in study 3 (i.e., 658). However, we 

 

 
  

(a) Study 5.    (b) Study 6. 

 

Figure 7: Avg. test accuracy (y-axis), standard deviation (top of each bar in boxes), and avg. F1 scores 

(shown inside the bars). “CLS”: embeddings of the classification token; “LL”: embeddings from the last 

hidden layer. 

 

believe that better generalization in study 3 is not due to its larger training set. Thus, for 

explaining away the effect of a larger training set in study 3, we reduce its size so that it 

becomes equal to the size of the training set in study 4. The sample distribution for study 5 is 

shown in Figure 6(a). 

 

Study 6: Explaining Away the Effect of Smaller Training Set in Study 4 We find that models 

generalize poorly on all four test sets in study 4. The performance degradation is severe in the 

September-October and November-December test sets. We believe that this decline in 

generalization is not due to the smaller training set, but because of the nature of the OOD test 

data, i.e., data from the distant future (e.g., samples from September-December) exhibit more 

distribution shift compared to the near future (e.g., samples from May-August) 

 

For explaining away the effect of the size of the training set in study 4, we increase its size by 

combining samples from January to October. Then, models trained using this large set of 1146 

samples are evaluated on the November-December OOD test set. The sample distribution for 

study 6 is shown in Figure 6(b). 
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Results of the Data Ablation Studies Below we present the results obtained from the two 

data ablation studies. 

 

Study 5. Figure 7(a) shows the results from study 5. We observe that although the size of the 

training set is reduced from 1042 to 656, the performance of the models either remained 

unchanged or increased, which explains away the effect of the size of the training set in study 3. 

Study 6. Figure 7(b) shows the results obtained from the study 6. Even after increasing the size 

of the training set, the performance gain of the best contextual model from study 4, i.e., the 

CTBERT Base FB (last layer), is minor (its test accuracy increased from 0.709 to 0.745). BERT 

FT models are benefited most from the increased data. However, none of the models exceed test 

accuracy above 80% and achieve above 50% average F1 score on the minority classes. Thus, we 

see that increasing training data by including samples from “near-future” months did not 

improve the generalizability of the models on the November-December OOD data, which 

explains away the effect of the size of the training set in study 4. 

 

Results from studies 5 and 6 indicate that (i) temporally varying OOD data shows more 

distribution shift than geographically varying OOD data and (ii) the degree of the distribution 

shift increases as the temporal distance between the training data and the test data increases. 

That is why the models generalize poorly on the temporally varying OOD data in study 4 and 

perform significantly poorly on the November-December test data from study 4. 
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