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ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has significantly enhanced the
performance of large language models (LLMs) in tasks such as summarization, dialogue
generation, and content moderation. However, the reliance on human-annotated data makes
RLHF expensive and difficult to scale. To address these challenges, Reinforcement Learning
from Al Feedback (RLAIF) has emerged as a promising alternative. In RLAIF, Al-generated
preference labels replace human feedback, offering a more cost-effective and scalable
solution while maintaining competitive performance. Despite its success in single-model
families, RLAIF’s generalizability across diverse model architectures and scales remains
unclear. This study extends the evaluation of RLAIF by applying it to three different model
families—T5, Phi-3.5, and LLaMa 3.2— representing a variety of model sizes and
architectures. We compare RLAIF with traditional supervised fine-tuning (SFT) and examine
the impact of model size on its effectiveness. Our findings reveal that RLAIF improves model
alignment across all architectures, although the extent of the improvement varies depending
on the model type. The research contributes to the broader discussion on improving the
efficiency and scalability of reinforcement learning techniques for LLM alignment. By
evaluating RLAIF across multiple architectures, our work provides practical guidance for
implementing Al feedback-based alignment techniques that are applicable to a wide range of
LLMs, advancing the field of Al model fine-tuning.
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1. INTRODUCTION

Recent advances in large language models (LLMs) have greatly benefited from Reinforcement
Learning from Human Feedback (RLHF), a method that improves model performance in tasks such
as summarization, dialogue generation, and content moderation [1], [2]. However, the reliance on
high-quality human annotations presents significant scalability challenges, rendering RLHF both
costly and time-consuming. As the demand for more scalable methods grows, an alternative
approach—Reinforcement Learning from Al Feedback (RLAIF)—has emerged. In RLAIF,
human-generated preference labels are replaced by Al-generated ones, effectively reducing both
costs and the time required for training, while maintaining comparable performance in various tasks
[3]. Recent work by Lee et al. [4] demonstrated that RLAIF performs on par with RLHF across
multiple language generation tasks.
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Despite these advancements, several questions remain unanswered regarding RLAIF’s
effectiveness across different model architectures and scales. Previous evaluations focused
primarily on models from the same family (e.g., PaLM 2), leaving a gap in understanding how
RLAIF generalizes to diverse architectures. Additionally, Al-generated preference labels are
known to suffer from position bias, where the order in which response candidates are presented can
skew model preferences [5]. While Lee et al. [4] identified this issue, their study did not
systematically address methods for mitigating position bias in RLAIF-generated preferences.

The motivation for this study stems from the need to understand how RLAIF performs across
different model families and at various scales, especially in comparison to traditional Supervised
Fine-Tuning (SFT). Given the scalability challenges of RLHF and the potential of RLAIF to
address them, it is essential to explore how well RLAIF adapts to diverse architectures and model
sizes. Our study aims to address these gaps by systematically evaluating RLAIF's effectiveness
across T5, Phi 3-5, and LLaMa 3.2, representing a range of model architectures. Specifically, we
aim to investigate the following objectives:

1. Performance Variation Across Model Families: How does RLAIF improve model
alignment in different architectures compared to traditional SFT?

2. Scaling Effects: How does RLAIF's effectiveness vary with model size? Does it show
better performance with larger models, or is its effectiveness independent of model size?

Through these evaluations, we aim to offer deeper insights into the applicability of RLAIF across
different model scales and architectures. Our findings will contribute to advancing the discussion
on scaling reinforcement learning techniques to align large language models effectively and
efficiently, providing a clearer path for future research in this domain.

2. LITERATURE REVIEW

2.1. Encoder-Decoder Architecture

The original Transformer model [8] follows an encoder-decoder architecture, commonly used for
sequence-to-sequence tasks such as machine translation and summarization. The encoder maps an
input sequence to a continuous representation, which the decoder then processes to generate an
output sequence. The encoder consists of multiple identical layers, each with self-attention and
feed-forward neural networks, while the decoder includes an additional cross-attention mechanism
to attend to encoder outputs.

The introduction of attention mechanisms, particularly the self-attention mechanism in
Transformers mitigated these challenges by enabling models to focus on different parts of the input
sequence simultaneously. Self-attention assigns varying importance to different tokens in the input,
allowing for a more dynamic representation of contextual relationships. It addresses the long-range
dependency problems that Long Short-Term Memory (LSTM) networks [6] and Gated Recurrent
Networks (GRUs) [7] suffer from.

2.2. T5 (223M) — Encoder-Decoder Architecture (Seq2Seq Model)

T5 was originally created by Raffel et al [6]. It is a transformer-based encoder-decoder model,
which makes it particularly suitable for translation and summarisation tasks. The pre-training
objective for these models is commonly a denoising autoencoder uses masked span prediction.
Masked span prediction involves randomly masking spans of text within an input sequence and
training the model to predict the missing content. This helps the model learn strong contextual
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representations and improves its ability to generate meaningful text.
2.3. Encoder-Only models

Encoder-Only architectures such as BERT [7] are designed primarily for representation learning
and downstream classification tasks. These models utilize bidirectional self-attention, allowing
them to capture context from both past and future tokens in a sentence. As a result, they excel in
tasks such as text classification, named entity recognition and question answering.

2.4. Decoder-Only models

Decoder-only architectures, such as GPT [9] focus on autoregressive text generation. These models
use a unidirectional self-attention mechanism, where each token attends only to previous tokens,
making them suitable for generative tasks like language modeling and text completion. Unlike the
encoder--decoder setup, decoder - only models generate text iteratively, predicting one token at a
time. To enforce and prevent tokens from attending to future token, masked self- attention is
applied. This ensures that a token at position t can only attend to position < t, maintaining the
autoregressive nature of the model.

2.4.1.Phi-3.5 — Compact, Instruction-Tuned Autoregressive Model

Phi-3.5 (3.8B)[10] is a decoder-only Transformer model, optimized for instruction-following and
reasoning tasks. Unlike standard language models trained only on generic text, Phi-3.5 undergoes
instruction tuning, where it is fine-tuned on datasets designed to enhance its ability to follow
prompts, answer complex queries, and generate structured responses. The model employs causal
language modeling (CLM) as its primary training objective. Phi-3.5 is particularly effective for
structured text generation, including summarization tasks.

2.4.2.LLaMA 3.2 — A Scalable Autoregressive Transformer

LLaMA 3.2 (1B), developed by Meta Al [11], is a decoder-only Transformer model designed for
high-quality text generation. It follows the causal language modeling (CLM) paradigm, where the
model predicts the next token in a sequence given the previous context. This autoregressive nature
enables LLaMA 3.2 to generate coherent, contextually relevant text by progressively extending
input sequences. Due to its lightweight design, LLaMA 3.2 (1B) is well-suited for chatbots,
summarization, and multilingual text processing, offering a balance between efficiency and
language modeling capability.

2.5.Enhancing model performance

To improve the performance of decoder-only models in various NLP tasks, multiple strategies have
been developed. These techniques focus on optimizing model outputs, fine-tuning for specific use
cases, and improving generalization capabilities.

2.5.1.Prompting (Zero-shot prompting and few-shot prompting)

Zero-shot prompting [12] refers to leveraging a model’s pre-trained knowledge to generate
responses without additional fine-tuning. The model is provided with a prompt and must generate an
appropriate output solely based on its training data. While effective in many scenarios, zero- shot
prompting can sometimes produce inaccurate or overly generic responses, as the model has not
been explicitly trained for specific tasks. In few-shot prompting [12], the model is provided with a
small set of example inputs and outputs to guide its response generation. By including these
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examples within the prompt, the model can better understand the desired format and produce more
relevant answers. This technique improves accuracy compared to zero-shot prompting but requires
well-crafted examples to function optimally.

2.5.2.Supervised Fine-Tuning

Supervised fine-tuning (SFT)[13] involves training a model on a labeled dataset to improve its
performance on specific tasks. In this process, the model is fine-tuned on domain-specific data,
enabling it to generate more accurate and contextually appropriate responses. SFT helps models
adapt to structured tasks like summarization, dialogue generation, and information retrieval, but
requires high-quality labeled datasets and significant computational resources.

Low-Rank Adaptation (LoRA)[14] is a parameter-efficient fine-tuning technique that enables
adaptation without modifying all model weights. Instead of updating the entire network, LoRA
inserts low-rank matrices into existing weight layers and fine-tunes only these additional
parameters. This reduces memory and computational costs, making LoRA a practical alternative to
full fine-tuning, especially for large models.

2.5.3.Reinforcement Learning

2.4.3.1 Reinforcement Learning with Human Feedback (RLHF)

Reinforcement Learning (RL) techniques have been increasingly used to optimize large language
models (LLMs) by incorporating human feedback or reward-based mechanisms. RLHF [1], [2]
enhances model alignment with human preferences by leveraging human annotations to refine
generated outputs. The process consists of pretraining, where the model is trained using standard
supervised learning on large text corpora, followed by reward model training, in which human
annotators rank multiple responses generated by the model to create a dataset used to train a reward
model that assigns a score to new outputs. The final stage, policy optimization, fine-tunes the model
using Proximal Policy Optimization (PPO) [15] or similar reinforcement learning algorithms to
maximize the reward score assigned by the trained model. However, RLHF has limitations,
including biases in human preferences that may lead to skewed outputs, high computational
expenses associated with training and optimizing, and potential mode collapse, where the model
generates overly safe or generic responses, reducing diversity and creativity in text generation.

Reward modeling [16] is an essential component of RLHF, where a separate neural network is
trained to predict human preference scores. Instead of direct reinforcement learning, the reward
model serves as an intermediary, guiding the primary language model to produce better responses.
Reward modeling helps mitigate human annotation costs by automating the evaluation process,
though it remains susceptible to biases introduced during training.

2.4.3.2 Reinforcement Learning with AI Feedback (RLAIF)

Reinforcement Learning with Al Feedback (RLAIF, Figure 1) [3] replaces human annotators with
an Al-based reward model to reduce dependence on human labor. Instead of using human-ranked
outputs, a secondary Al system evaluates and assigns rewards based on predefined criteria. This
method offers scalability and efficiency advantages over RLHF but comes with its own challenges,
such as model alignment issues where Al evaluators may introduce unintended biases, leading to
suboptimal reward assignment, and the loss of human intuition, as Al feedback may struggle with
subjective or context-dependent assessments [4].
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Figure 1. RLAIF technique in detail.

3.METHODOLOGY

This section describes the techniques used to generate preferences, the rationale for models of
different scales, the reinforcement learning setup and evaluation metrics.

3.1. Data

We used the following datasets for our experiment:

e Reddit TLDR-17 [17] - comprehensive corpus compiled from Reddit posts between 2006
and 2016 accompanied by the summaries of the post (See Figure 2).

e Reddit TLDR-17 preferences [17] - a dataset created from a subset of Reddit TLDR-17.
Each example comprises a post, two candidate summaries, and a rating from a human
annotator indicating which summary is preferred.

In this study, we explored how RLAIF performs using a dataset rich in real-world language, such as
Reddit posts. To maintain comparability and validate their findings across different model
architectures, we use the same type of dataset as used by Lee et al [4]. This ensures that any
observed differences in performance are due to variations in model scale rather than inconsistencies
in data.
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content

I think it should be fixed on either Shifting seasonal
UTC standaxrd oxr UTC+1 year around, time is no longerx
with the current zone offsets. worth it.
Moving timescales add a lot of
complexity to the implementation of
timekeeping systems and have [dubious
value] (

I think seasonal shifting time made
sense in the pre-electric past, when
timekeeping was morxre flexible and
artificial light was inefficient and
often dangexous.

Now we have machines that work easily
with simple timekeeping rules, and
it's moxre beneficial to spend a small
amount on enexgy for lighting, and
save the larger cost of engineering
things to work with the complex
timekeeping rules, as well as saving
the irritation to humans.

Lighting has gotten much more
efficient over time; we can squeeze
out a lot moxre photons per unit of
enexgy from a 2012 CFL ox LED than a
candle could in 1780, ox a lightbulb
could in 1950.

Thexre's a lot of room for improvement
in how we use lights as well; as
lighting contrxol gets moxe
intelligent, thexe will be a lot of
savings from not illuminating
inactive spaces constantly.

Figure 2. An example row of the TLDR-Reddit dataset. This corpus contains preprocessed posts
from the Reddit dataset (Webis-TLDR-17). The dataset consists of 3,848,330 posts with an average
length of 270 words for content, and 28 words for the summary. Content is used as document and
summary is used as summary.

3.2. Model Selection

To evaluate the effectiveness of Reinforcement Learning from Al feedback (RLAIF) across
different model architecture scales, we selected three distinct language models: TS5, Phi-3.5 and
Llama 3.2. These models were chosen to analyze how RLAIF performs under varying training
paradigms, model sizes and architectures.

T5 was included in our selection, because unlike the other models (e.g Palm XS in Lee et al [4]), it
follows a Seq2Seq structure rather than a decoder-only design. This allowed us to assess how
RLAIF performs on a non-autoregressive model, as Seq2Seq architectures excel in structured tasks
such as summarization and translation. Additionally, T5 is widely used for structured NLP
applications, making it an ideal candidate for evaluating the impact of RLAIF beyond free-form
text generation.

LLaMA 3.2 was chosen as a mid-scale model to assess RLAIF’s impact on an extensively pre-
trained and well-aligned architecture. By comparing its performance to both a smaller (T5) and a
larger (Phi-3.5) model, we were able to evaluate whether RLAIF scales effectively and provides
meaningful improvements across different model sizes.

Phi-3.5, the largest model in our selection, represents a high-resource setting optimized for
instruction-following and structured text generation. Since it has already undergone fine-tuning
with Al-generated data, evaluating RLAIF on Phi-3.5 helps determine whether additional feedback-
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driven refinement leads to further performance gains. By comparing it to LLaMA 3.2 and TS5, we
were able to assess whether RLAIF offers greater benefits to larger-scale models or if its impact is
more pronounced in smaller architectures.

3.3. Prompting

We adopted the Detailed + Chain-of-Thought (CoT) Zero-Shot prompting method (see Figure 3),
which achieves the highest accuracy of 78.0% for summary tasks across our three models [4]. This
approach enhances reasoning by guiding the model through intermediate steps while requiring no
task-specific examples. By leveraging detailed instructions combined with CoT reasoning, we
improve performance on complex tasks without additional fine-tuning.

Preamble A good summary is a shorter piece of text that has the essence of the original. It tries to accomplish the same
purpose and conveys the key information from the original post. Below we define four evaluation axes for
summary quality: coherence, accuracy, coverage, and overall quality.

Coherence: This axis answers the question “how coherent is the summary on its own?” A summary is coherent if
it’s easy to understand when read on its own and free of English errors. A summary is not coherent if it’s difficult
to understand what the summary is trying to say. Generally, it’s more important that the summary is
understandable than it being free of grammar errors.

Accuracy: This axis answers the question “does the factual information in the summary accurately match the
post?” A summary is accurate if it doesn’t say things that aren’t in the article, it doesn’t mix up people, and
generally is not misleading.

Coverage: This axis answers the question “how well does the summary cover the important information in the
post?” A summary has good coverage if it mentions the main information from the post that’s important to
understand the situation described in the post. A summary has poor coverage if someone reading only the
summary would be missing several important pieces of information about the situation in the post. A summary
with good coverage should also match the purpose of the original post (e.g. to ask for advice).

Overall quality: This axis answers the question “how good is the summary overall at representing the post?” This
can encompass all of the above axes of quality, as well as others you feel are important. If it’s hard to find ways to
make the summary better, the overall quality is good. If there are lots of different ways the summary can be made
better, the overall quality is bad.

You are an expert summary rater. Given a piece of text and two of its possible summaries, explain which summary
best adheres to coherence, accuracy, coverage, and overall quality as defined above.

Sample to Text - {text}
Summary 1 - {summary1}

annotate Summary 2 - {summary2}

Ending Consider the coherence, accuracy, coverage, and overall quality of each summary and explain which one is
better.
Rationale:

Figure 3. Example of an Al feedback prompt with Chain-of-Thought Zero-shot prompting.
3.4. Model Training

All SFT models were trained using the LoRA [14] method to reduce computational overhead while
maintaining performance because of our limited resources. Fine-tuning was performed on the
training set of Reddit TLDR-17 with a batch size of 64 for 80 epochs. We used the Adafactor

[18] optimizer with a learning rate of 10—5. The LoRA method was applied to the attention layers,
reducing the number of trainable parameters. The maximum input and output lengths were set to
1024 and 64 tokens, respectively.

Reward models (RMs) were initialized from a TS5 checkpoint, ensuring consistency across all
models. We fine-tuned the RM on the full training split of a preference dataset, where labels reflect
Al preferences for Al feedback RMs. Training followed a ranking loss approach with a sigmoid
activation function [16], effectively optimizing the RM to differentiate between preferred and less
preferred outputs by maximizing their log-sigmoid score differences. We used the Adafactor
optimizer with a learning rate of 10—5 and a batch size of 64, with a maximum input length of 1024
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tokens. Training continued until the loss and accuracy curves plateau, typically within 3—4 epochs.

For reinforcement learning, we initialized each task with the corresponding SFT model as the initial
policy. All models were trained using Proximal Policy Optimization (PPO)[15]. To encourage
exploration, we sampled from the language model policies with a temperature of T=0.9. Training
was conducted for 10 epochs with a batch size of 128 and a learning rate of 107°. We applied a KL
divergence penalty with $=0.05 to balance optimization stability. This setup followed the
experimental framework of Lee et al. [4].

3.5. Measurements

To evaluate the effectiveness of Reinforcement Learning from Al Feedback (RLAIF) across
different model scales, we structured our experiment around two key aspects: performance, scaling
effects. We utilized ROUGE and BERTScore as evaluation metrics. Below, we explain how we
measure and analyze each aspect.

3.5.1.Performance
We assessed model performance using the following automatic evaluation metrics:

1. ROUGE-1 [19]: Measures the overlap of unigrams (single words) between the generated
summary and the reference summary.

2. ROUGE-2 [19]: Measures the overlap of bigrams (two consecutive words) between the
generated summary and the reference summary.

3. ROUGE-L [19]: Captures the longest common subsequence (LCS) between the generated
summary and the reference summary, reflecting fluency and coherence.

4. BERTScore [20]: Uses embeddings from BERT to compare the semantic similarity between
generated and reference summaries, providing a more contextualized assessment of quality.

We compared the performance of models fine-tuned with Supervised Fine-Tuning (SFT) against
those trained using RLAIF. We analyzed improvements in scores across different model
architectures, highlighting how RLAIF impacts different model families and their ability to
generate high-quality summaries. We also examined whether performance gains were consistent
across different ROUGE variants and BERTScore, assessing improvements in lexical overlap and
semantic similarity.

To calculate the percentage of the improvement between the Supervised Fine-Tuning (SFT) and
RLAIF models, we used the following equation 1:

RLAIF Score — SFT Score 4
SFT Score 100

Improvement (%) =

(D
3.5.2. Scaling Effects

We investigated the impact of scaling by comparing models of varying sizes: TS5, Phi 3-5, and
LLaMA 3.2. The key measurements include:

5. Changes in ROUGE-1, ROUGE-2, ROUGE-L, and BERTScore as model size increases.
6. The relative improvement of RLAIF over SFT across different model sizes and architecture.

We analyzed whether larger models benefit more from RLAIF compared to smaller models. By
observing trends in performance across T5, Phi 3-5, and LLaMA 3.2, we determine if scaling
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improves the effectiveness of reinforcement learning from Al feedback.

4. RESULTS

4.1.Performance

205

Table 1. Results show performance improvements across different architectures after applying the RLAIF

process.

Metric ROUGE-1 ROUGE-2 ROUGE-L BERT Score
SFT T5 0.0433 0.0036 0.0389 0.3288
RLAIF T5 0.0768 0.0053 0.0684 0.4030

(+77.2%) (+47.2%) (+75.8%) (+22.6%)
SFT Llama 3.2 (1B) 0.0593 0.0059 0.0701 0.3688
RLAIF LLama (1B) | 0.1063 0.0111 0.0932 0.4129

(+79.3%) (+89%) (+32.9%) (+12.0%)
SFT Phi-3.5 (3.8B) 0.0593 0.0299 0.1093 0.3705
RLAIF Phi-3.5 (3.8B)[ 0.0826 0.0388 0.2090 0.4285

(+39.3%) (+29.8%) (+91.1%) (+15.6%)

4.1.1.ROUGE-1 (Unigram Content Coverage)

The transition from SFT to RLAIF results in the most substantial improvement for the LLaMA
3.2 model, with RLAIF boosting the ROUGE-1 score by 79.3% (from 0.0593 to 0.1063) (Table 1).
This substantial gain indicates that RLAIF significantly enhances the LLaMA 3.2 model’s ability
to capture key individual terms from reference summaries, pointing to an improved content selection
capability. In contrast, the improvements for Phi 3-5 and TS5 were more modest, at 39.3% and 77.2%,
respectively.

4.1.2.ROUGE-2 (Phrase-Level Accuracy)

All models exhibit relatively low ROUGE-2 scores (Table 1), except for Phi 3-5, which achieves a
decent score of 0.0389. However, the most significant improvement is observed in the LLaMA

3.2 model, where RLAIF enhances performance by 89% (from 0.0059 to 0.0111). This substantial
gain suggests that RLAIF significantly improves the model's ability to retain multi-word
expressions, advancing from simply recognizing individual words to effectively preserving
meaningful phrases.

4.1.3.ROUGE-L (Sequential Coherence)

The Phi-3.5 model demonstrates the most remarkable improvement in ROUGE-L when trained
with RLAIF, showing a 91.1% increase (from 0.1093 to 0.2090) (Table 1). This substantial gain
indicates that RLAIF dramatically enhances Phi-3.5's ability to maintain coherent sequences that
match reference summaries, suggesting improved narrative flow and structural coherence.
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4.1.4.BERTScore (Semantic Similarity)

All models show substantial improvement in BERTScore when using RLAIF (Table 1). The T5
model demonstrates the largest relative improvement with a 22.6% increase (from 0.3288 to
0.4030), highlighting how RLAIF considerably enhances T5's semantic understanding capabilities.
However, the Phi-3.5 model achieves the highest absolute BERTScore (0.4285) after RLAIF
training, representing a 15.7% improvement over its SFT baseline. This indicates that while T5
shows the greatest relative semantic gains, Phi-3.5 ultimately delivers superior semantic fidelity in

its generated outputs.

4.2.Scaling effects

Table 2. Results demonstrate improvements across models in relation to scaling effects.

Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore
Improvement Improvement Improvement Improvement

T5 (Small; | +77.2% +47.2% +75.8% +22.6%

738M)

LLaMA 32 | +79.3% +89% +32.9% +12.0%

(Medium; 1B)

Phi- 3.5(Large, | +39.3% +29.8% +91.1% +15.6%

3.8B)

@® ROUGE-1

100
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Figure 4. Results per model across all three evaluation metrics.
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Figure 5. The diagrams depict how performance and improvement vary with scale.
4.3.Cross-Metric Analysis

LLaMA 3.2 shows the most dramatic improvements in ROUGE-1 and especially ROUGE-2,
suggesting that RLAIF particularly enhances this model's lexical precision and ability to maintain
important phrases from reference texts (See Figure 4 and 5).

Phi-3.5 demonstrates the most significant gains in ROUGE-L and achieves the highest absolute
BERTScore, with only modest improvements in ROUGE-1 and ROUGE-2. This suggests that
RLAIF has substantially enhanced the model’s ability to generate coherent and fluent sequences
while preserving the semantic integrity of the text. The model excels in maintaining overall
meaning and structural alignment, even when it does not match individual words or phrases exactly.
These attributes are crucial for high-quality summarization, where the focus is on conveying the
essence of the content, rather than merely replicating specific word choices (See table 2).

T5 shows the largest relative improvement in BERTScore (+22.6%), while demonstrating
consistent improvements across other metrics. This suggests that RLAIF particularly enhances T5's
semantic understanding capabilities, even though its absolute performance remains below that of
larger models. (See table 2)

5. DISCUSSION

The results reveal that while RLAIF improves performance across all model scales, the nature and
magnitude of improvement varies significantly by architecture. The most dramatic transformations
occur in:

1. LLaMA 3.2 with RLAIF for lexical precision (ROUGE-1) and especially phrase preservation
(ROUGE-2).

2. Phi-3.5 with RLAIF for sequential coherence (ROUGE-L) and highest absolute semantic
similarity (BERTScore).

3. TS5 with RLAIF for relative improvement in semantic understanding (largest percentage
gain in BERTScore).

These findings suggest that larger models like Phi-3.5 particularly benefit from RLAIF in aspects
related to higher-order language understanding, such as coherence and semantic fidelity. Phi-3.5's
use of synthetic data helps fine-tune its performance in these areas, ensuring strong results in
structural alignment and semantic preservation. Besides, Phi-3.5 has more parameters, which
means they have a greater capacity to learn complex patterns and relationships in data. This makes
them particularly adept at tasks that require higher-order language understanding, such as
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maintaining structural coherence and semantic fidelity over long text sequences. The additional
parameters allow the model to capture nuances in language and better maintain logical flow and
meaning across sentences, paragraphs, or even entire documents. Meanwhile, medium-scale
models with lower parameters like LLaMA 3.2 show remarkable improvements in lexical and
phrasal accuracy, while smaller models like T5 demonstrate significant relative gains in semantic
understanding when trained with RLAIF, despite starting from a lower baseline.

Notably, TS5 starts with the lowest ROUGE variants and the lowest BERTScore among the three
models, yet it shows significant improvement across all metrics. After training, TS5 achieves a
BERTScore that is quite close to those of the other models, highlighting the efficiency of RLAIF in
enhancing semantic understanding in smaller models. This is particularly evident in BERTScore,
where T5 shows the highest relative improvement (+22.6%). This is expected given T5's encoder-
decoder architecture, which is particularly suited for tasks like summarization. Despite its initially
lower performance, T5 benefits greatly from the RLAIF approach, making substantial strides in
semantic similarity, thereby demonstrating that even smaller models can achieve considerable
improvements in understanding and summarization tasks when trained effectively.

In contrast, larger models like LLaMA 3.2 and Phi-3.5 achieve high performance in their respective
strengths: Phi-3.5 excels at maintaining structural coherence and semantic fidelity (ROUGE-L and
BERTScore), benefiting from synthetic data training, while LLaMA 3.2 makes substantial progress
in lexical precision (ROUGE-1) and phrase retention (ROUGE-2). The findings suggest that
RLAIF can significantly enhance different aspects of language generation depending on the model
size and architecture, with smaller models benefiting the most from semantic improvements, while
larger models excel in coherence and structural alignment.

6.CONCLUSION AND FUTURE WORK

In this paper, we set out to explore how well Reinforcement Learning from Al Feedback (RLAIF)
works across different types of language models and sizes, and how it compares to traditional
supervised fine-tuning (SFT). We tested RLAIF on three models—T35, Phi 3-5, and LLaMA 3.2—
which differ in both architecture and scale, to understand how RLAIF impacts each model's
performance.

Our results showed that RLAIF improves performance for all model sizes, but the improvements
varied depending on the architecture. LLaMA 3.2 saw major gains in lexical accuracy and phrase
retention, Phi 3-5 improved the most in structural coherence and semantic accuracy, and T5 made
the biggest leap in semantic understanding. These findings suggest that RLAIF is effective across
the board, but works differently depending on the model. Smaller models like TS5 showed the most
relative improvement in understanding and summarization tasks, while larger models like Phi-3.5
performed better in tasks requiring structural coherence.

1. Performance Across Different Models: RLAIF improved model performance across all three
architectures. For Phi-3.5, the biggest gains were seen in maintaining coherence and
preserving meaning, while TS made impressive strides in understanding and summarizing
text. LLaMA 3.2 showed the most progress in lexical precision and keeping phrases intact.

2. Effect of Model Size: The size of the model influenced how RLAIF worked. Larger models
like Phi-3.5 excelled at maintaining coherence and structure, while
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LLaMA 3.2 showed solid gains in lexical precision. T5, which is a smaller model, saw the
biggest improvement in semantic understanding, with the largest relative boost in
BERTScore.

RLAIF proves to be highly efficient but not consistent across different model architectures, with
each architecture benefiting from tailored improvements suited to their strengths, such as
summarization for TS5 and coherence for Phi-3.5. This highlights the need for a deeper exploration
of how RLAIF interacts with various model types and sizes. Additionally, while RLAIF
demonstrates immediate improvements, it remains unclear whether these gains will hold
consistently across time or diverse tasks, which requires further validation.

In short, RLAIF works well for all model sizes, but the type of improvement varies depending on
the model's strengths. Larger models improve in aspects like structure and coherence, while smaller
models benefit the most in terms of understanding and semantic accuracy.

In future work, we aim to explore various directions to improve model performance and robustness.
One such direction is fully training the model parameters instead of using LoRA (Low-Rank
Adaptation) to evaluate whether this approach yields significant gains. Fully training may unlock
the model’s full potential, improving accuracy and efficiency, especially in summarization and
content generation tasks.

We also plan to train for more epochs to determine whether extended training enhances
performance. This will reveal if the model has reached optimal performance or if further training
refines its coherence and semantic accuracy.

Future research will aim to address the limitations and explore several directions to further validate
and enhance the effectiveness of RLAIF. Given that the results varied depending on the model
architecture, an important step would be to test RLAIF on a broader range of model families,
including newer architectures and those optimized for specific domains. This will help in
understanding whether RLAIF's performance improvements can be generalized to other LLMs,
especially those fine-tuned for specialized tasks.

Moreover, while RLAIF shows promise in improving performance across different architectures,
further research is needed to investigate the long-term stability of these improvements and their
generalizability across various tasks. Extending the scope to newer or emerging models, such as
Claude 4 and other advanced architectures, will provide valuable insights into the scalability and
applicability of RLAIF in a wider context.

In terms of performance, models trained with direct Reinforcement Learning from Al Feedback (d-
RLAIF) are expected to outperform those trained with traditional RLAIF, especially in tasks that
demand high-quality text generation. Unlike standard RLAIF, which typically relies on a reward
model trained using human preferences, d-RLAIF bypasses this step by directly using Al- generated
feedback to optimize the model’s responses. This direct reward learning strategy simplifies the
pipeline and may lead to more efficient training, enabling faster convergence and potentially
improving output quality by ensuring a tighter alignment between the model’s training objectives
and the intended task. However, improvements depend on model architecture, task complexity, and
configuration. Thus, thorough evaluation using appropriate accuracy and quality metrics is
essential.

By incorporating d-RLAIF across different models, we aim to assess whether it provides
measurable advantages over traditional RLAIF. Comparing identical architectures trained with both
approaches will help determine the effectiveness of d-RLAIF in enhancing generation quality and
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training efficiency. These efforts will offer insights into the scalability of RLAIF and its potential
to boost the performance of models like Claude 4 across diverse applications.

These future efforts will provide valuable insights into the scalability and adaptability of RLAIF,
allowing us to explore its potential for broader use cases and more advanced model architectures.

REFERENCES

(1]
(2]
(3]
(4]
(3]

(6]
(7]

(8]
(9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

N. Stiennon et al., “Learning to summarize from human feedback,” Feb. 15, 2022, arXiv:
arXiv:2009.01325. doi: 10.48550/arXiv.2009.01325.

L. Ouyang et al., “Training language models to follow instructions with human feedback,” Mar. 04,
2022, arXiv: arXiv:2203.02155. doi: 10.48550/arXiv.2203.02155.

Y. Bai et al., “Constitutional Al: Harmlessness from Al Feedback,” Dec. 2022, [Online]. Available:
http://arxiv.org/abs/2212.08073

H. Lee et al., “RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with Al
Feedback,” 2024.

P. Pezeshkpour and E. Hruschka, “Large Language Models Sensitivity to The Order of Options in
Multiple-Choice Questions,” Aug. 22, 2023, arXiv: arXiv:2308.11483. doi:
10.48550/arXiv.2308.11483.

C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,”
Sep. 19,2023, arXiv: arXiv:1910.10683. doi: 10.48550/arXiv.1910.10683.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers  for  Language  Understanding,”  Oct. 2018, [Online].  Available:
http://arxiv.org/abs/1810.04805

A. Vaswani et al., “Attention Is All You Need,” in 31st Conference on Neural Information Processing
Systems (NIPS 2017), Jun. 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by
Generative Pre-Training”.

“Phi-3.5 SLMs,” TECHCOMMUNITY.MICROSOFT.COM. Accessed: Mar. 17, 2025. [Online].
Available:  https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-  the-new-
multi-lingual-high-quality-phi-3-5-slms/4225280

“Llama 3.2: Revolutionizing edge Al and vision with open, customizable models,” Meta Al.
Accessed: Mar. 17, 2025. [Online]. Available: https://ai.meta.com/blog/llama-3-2-connect- 2024-
vision-edge-mobile-devices/

J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” Jan. 2022,
[Online]. Available: http://arxiv.org/abs/2201.11903

J. Howard and S. Ruder, “Universal Language Model Fine-tuning for Text Classification,” May
23,2018, arXiv: arXiv:1801.06146. doi: 10.48550/arXiv.1801.06146.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models,” Oct. 16, 2021, arXiv:
arXiv:2106.09685. doi: 10.48550/arXiv.2106.09685.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization
Algorithms,” Aug. 28, 2017, arXiv: arXiv:1707.06347. doi: 10.48550/arXiv.1707.06347.

H. Zhou, C. Wang, Y. Hu, T. Xiao, C. Zhang, and J. Zhu, “Prior Constraints-based Reward Model
Training for Aligning Large Language Models,” Sep. 18, 2024, arXiv: arXiv:2404.00978. doi:
10.48550/arXiv.2404.00978.

M. Volske, M. Potthast, S. Syed, and B. Stein, “TL;DR: Mining Reddit to Learn Automatic
Summarization,” in Proceedings of the Workshop on New Frontiers in Summarization, Copenhagen,
Denmark: Association of Computational Linguistics, Sep. 2017, pp. 59-63.

N. Shazeer and M. Stern, “Adafactor: Adaptive Learning Rates with Sublinear Memory Cost,” Apr.
11,2018, arXiv: arXiv:1804.04235. doi: 10.48550/arXiv.1804.04235.

C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in Text Summarization
Branches Out, Barcelona, Spain, Jul. 2004, pp. 74-81.

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “BERTScore: Evaluating Text
Generation with BERT,” Feb. 24, 2020, arXiv: arXiv:1904.09675. doi: 10.48550/arXiv.1904.09675.

Wang, H. (2025). Efficient and robust reinforcement learning from human feedback. Proceedings of
the AAAI Conference on Artificial Intelligence, 39(27), 28730-28730.



Computer Science & Information Technology (CS & IT) 211

https://doi.org/10.1609/aaai.v39i27.35123

[22] Lande, J. (2023, September 7). Google research explores: Can Al feedback replace human input for
effective  reinforcement  learning in  large  language  models? = MarkTechPost.
https://www.marktechpost.com/2023/09/07/google-research-explores-can-ai-feedback-replace-
human-input-for-effective-reinforcement-learning-in-large-language-models

[23] Curuksu, J. (2025, April 4). Fine-tune large language models with reinforcement learning from human
or Al feedback. AWS Machine Learning Blog. https://aws.amazon.com/blogs/machine-learning/fine-
tune-large-language-models-with-reinforcement-learning-from-human-or-ai-feedback

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution
(CC BY) license.


https://airccse.org/

