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ABSTRACT 
 
Reinforcement Learning with Human Feedback (RLHF) has significantly enhanced the 

performance of large language models (LLMs) in tasks such as summarization, dialogue 

generation, and content moderation. However, the reliance on human-annotated data makes 

RLHF expensive and difficult to scale. To address these challenges, Reinforcement Learning 

from AI Feedback (RLAIF) has emerged as a promising alternative. In RLAIF, AI-generated 

preference labels replace human feedback, offering a more cost-effective and scalable 

solution while maintaining competitive performance. Despite its success in single-model 

families, RLAIF’s generalizability across diverse model architectures and scales remains 

unclear. This study extends the evaluation of RLAIF by applying it to three different model 

families—T5, Phi-3.5, and LLaMa 3.2— representing a variety of model sizes and 

architectures. We compare RLAIF with traditional supervised fine-tuning (SFT) and examine 

the impact of model size on its effectiveness. Our findings reveal that RLAIF improves model 

alignment across all architectures, although the extent of the improvement varies depending 

on the model type. The research contributes to the broader discussion on improving the 

efficiency and scalability of reinforcement learning techniques for LLM alignment. By 

evaluating RLAIF across multiple architectures, our work provides practical guidance for 

implementing AI feedback-based alignment techniques that are applicable to a wide range of 

LLMs, advancing the field of AI model fine-tuning. 
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1. INTRODUCTION 
 

Recent advances in large language models (LLMs) have greatly benefited from Reinforcement 

Learning from Human Feedback (RLHF), a method that improves model performance in tasks such 

as summarization, dialogue generation, and content moderation [1], [2]. However, the reliance on 

high-quality human annotations presents significant scalability challenges, rendering RLHF both 

costly and time-consuming. As the demand for more scalable methods grows, an alternative 

approach—Reinforcement Learning from AI Feedback (RLAIF)—has emerged. In RLAIF, 

human-generated preference labels are replaced by AI-generated ones, effectively reducing both 

costs and the time required for training, while maintaining comparable performance in various tasks 

[3]. Recent work by Lee et al. [4] demonstrated that RLAIF performs on par with RLHF across 

multiple language generation tasks. 
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Despite these advancements, several questions remain unanswered regarding RLAIF’s 

effectiveness across different model architectures and scales. Previous evaluations focused 

primarily on models from the same family (e.g., PaLM 2), leaving a gap in understanding how 

RLAIF generalizes to diverse architectures. Additionally, AI-generated preference labels are 

known to suffer from position bias, where the order in which response candidates are presented can 

skew model preferences [5]. While Lee et al. [4] identified this issue, their study did not 

systematically address methods for mitigating position bias in RLAIF-generated preferences. 

The motivation for this study stems from the need to understand how RLAIF performs across 

different model families and at various scales, especially in comparison to traditional Supervised 

Fine-Tuning (SFT). Given the scalability challenges of RLHF and the potential of RLAIF to 

address them, it is essential to explore how well RLAIF adapts to diverse architectures and model 

sizes. Our study aims to address these gaps by systematically evaluating RLAIF's effectiveness 

across T5, Phi 3-5, and LLaMa 3.2, representing a range of model architectures. Specifically, we 

aim to investigate the following objectives: 

 

1. Performance Variation Across Model Families: How does RLAIF improve model 

alignment in different architectures compared to traditional SFT? 

2. Scaling Effects: How does RLAIF's effectiveness vary with model size? Does it show 

better performance with larger models, or is its effectiveness independent of model size? 

 

Through these evaluations, we aim to offer deeper insights into the applicability of RLAIF across 

different model scales and architectures. Our findings will contribute to advancing the discussion 

on scaling reinforcement learning techniques to align large language models effectively and 

efficiently, providing a clearer path for future research in this domain. 

 

2. LITERATURE REVIEW 
 

2.1. Encoder-Decoder Architecture 
 

The original Transformer model [8] follows an encoder-decoder architecture, commonly used for 

sequence-to-sequence tasks such as machine translation and summarization. The encoder maps an 

input sequence to a continuous representation, which the decoder then processes to generate an 

output sequence. The encoder consists of multiple identical layers, each with self-attention and 

feed-forward neural networks, while the decoder includes an additional cross-attention mechanism 

to attend to encoder outputs. 

 

The introduction of attention mechanisms, particularly the self-attention mechanism in 

Transformers mitigated these challenges by enabling models to focus on different parts of the input 

sequence simultaneously. Self-attention assigns varying importance to different tokens in the input, 

allowing for a more dynamic representation of contextual relationships. It addresses the long-range 

dependency problems that Long Short-Term Memory (LSTM) networks [6] and Gated Recurrent 

Networks (GRUs) [7] suffer from. 

 

2.2. T5 (223M) – Encoder-Decoder Architecture (Seq2Seq Model) 

 

T5 was originally created by Raffel et al [6]. It is a transformer-based encoder-decoder model, 

which makes it particularly suitable for translation and summarisation tasks. The pre-training 

objective for these models is commonly a denoising autoencoder uses masked span prediction. 

Masked span prediction involves randomly masking spans of text within an input sequence and 

training the model to predict the missing content. This helps the model learn strong contextual 
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representations and improves its ability to generate meaningful text. 

 

2.3. Encoder-Only models 
 

Encoder-Only architectures such as BERT [7] are designed primarily for representation learning 

and downstream classification tasks. These models utilize bidirectional self-attention, allowing 

them to capture context from both past and future tokens in a sentence. As a result, they excel in 

tasks such as text classification, named entity recognition and question answering. 

 

2.4. Decoder-Only models 
 

Decoder-only architectures, such as GPT [9] focus on autoregressive text generation. These models 

use a unidirectional self-attention mechanism, where each token attends only to previous tokens, 

making them suitable for generative tasks like language modeling and text completion. Unlike the 

encoder--decoder setup, decoder - only models generate text iteratively, predicting one token at a 

time. To enforce and prevent tokens from attending to future token, masked self- attention is 

applied. This ensures that a token at position t can only attend to position ≤ t, maintaining the 

autoregressive nature of the model. 

 

2.4.1. Phi-3.5 – Compact, Instruction-Tuned Autoregressive Model 

 

Phi-3.5 (3.8B)[10] is a decoder-only Transformer model, optimized for instruction-following and 

reasoning tasks. Unlike standard language models trained only on generic text, Phi-3.5 undergoes 

instruction tuning, where it is fine-tuned on datasets designed to enhance its ability to follow 

prompts, answer complex queries, and generate structured responses. The model employs causal 

language modeling (CLM) as its primary training objective. Phi-3.5 is particularly effective for 

structured text generation, including summarization tasks. 

 

2.4.2. LLaMA 3.2 – A Scalable Autoregressive Transformer 

 

LLaMA 3.2 (1B), developed by Meta AI [11], is a decoder-only Transformer model designed for 

high-quality text generation. It follows the causal language modeling (CLM) paradigm, where the 

model predicts the next token in a sequence given the previous context. This autoregressive nature 

enables LLaMA 3.2 to generate coherent, contextually relevant text by progressively extending 

input sequences. Due to its lightweight design, LLaMA 3.2 (1B) is well-suited for chatbots, 

summarization, and multilingual text processing, offering a balance between efficiency and 

language modeling capability. 

 

2.5.Enhancing model performance 
 

To improve the performance of decoder-only models in various NLP tasks, multiple strategies have 

been developed. These techniques focus on optimizing model outputs, fine-tuning for specific use 

cases, and improving generalization capabilities. 

 

2.5.1. Prompting (Zero-shot prompting and few-shot prompting) 

 

Zero-shot prompting [12] refers to leveraging a model’s pre-trained knowledge to generate 

responses without additional fine-tuning. The model is provided with a prompt and must generate an 

appropriate output solely based on its training data. While effective in many scenarios, zero- shot 

prompting can sometimes produce inaccurate or overly generic responses, as the model has not 

been explicitly trained for specific tasks. In few-shot prompting [12], the model is provided with a 

small set of example inputs and outputs to guide its response generation. By including these 

https://www.zotero.org/google-docs/?n5mzL3
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examples within the prompt, the model can better understand the desired format and produce more 

relevant answers. This technique improves accuracy compared to zero-shot prompting but requires 

well-crafted examples to function optimally. 

 

2.5.2. Supervised Fine-Tuning 

 

Supervised fine-tuning (SFT)[13] involves training a model on a labeled dataset to improve its 

performance on specific tasks. In this process, the model is fine-tuned on domain-specific data, 

enabling it to generate more accurate and contextually appropriate responses. SFT helps models 

adapt to structured tasks like summarization, dialogue generation, and information retrieval, but 

requires high-quality labeled datasets and significant computational resources. 

 

Low-Rank Adaptation (LoRA)[14] is a parameter-efficient fine-tuning technique that enables 

adaptation without modifying all model weights. Instead of updating the entire network, LoRA 

inserts low-rank matrices into existing weight layers and fine-tunes only these additional 

parameters. This reduces memory and computational costs, making LoRA a practical alternative to 

full fine-tuning, especially for large models. 

 

2.5.3. Reinforcement Learning 
 

2.4.3.1 Reinforcement Learning with Human Feedback (RLHF) 

 

Reinforcement Learning (RL) techniques have been increasingly used to optimize large language 

models (LLMs) by incorporating human feedback or reward-based mechanisms. RLHF [1], [2] 

enhances model alignment with human preferences by leveraging human annotations to refine 

generated outputs. The process consists of pretraining, where the model is trained using standard 

supervised learning on large text corpora, followed by reward model training, in which human 

annotators rank multiple responses generated by the model to create a dataset used to train a reward 

model that assigns a score to new outputs. The final stage, policy optimization, fine-tunes the model 

using Proximal Policy Optimization (PPO) [15] or similar reinforcement learning algorithms to 

maximize the reward score assigned by the trained model. However, RLHF has limitations, 

including biases in human preferences that may lead to skewed outputs, high computational 

expenses associated with training and optimizing, and potential mode collapse,  where the model 

generates overly safe or generic responses, reducing diversity and creativity in text generation. 

 

Reward modeling [16] is an essential component of RLHF, where a separate neural network is 

trained to predict human preference scores. Instead of direct reinforcement learning, the reward 

model serves as an intermediary, guiding the primary language model to produce better responses. 

Reward modeling helps mitigate human annotation costs by automating the evaluation process, 

though it remains susceptible to biases introduced during training. 

 
2.4.3.2 Reinforcement Learning with AI Feedback (RLAIF) 

 

Reinforcement Learning with AI Feedback (RLAIF, Figure 1) [3] replaces human annotators with 

an AI-based reward model to reduce dependence on human labor. Instead of using human-ranked 

outputs, a secondary AI system evaluates and assigns rewards based on predefined criteria. This 

method offers scalability and efficiency advantages over RLHF but comes with its own challenges, 

such as model alignment issues where AI evaluators may introduce unintended biases, leading to 

suboptimal reward assignment, and the loss of human intuition, as AI feedback may struggle with 

subjective or context-dependent assessments [4]. 
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Figure 1. RLAIF technique in detail. 

 

3. METHODOLOGY 
 

This section describes the techniques used to generate preferences, the rationale for models of 

different scales, the reinforcement learning setup and evaluation metrics. 

 

3.1. Data 
 

We used the following datasets for our experiment: 

 

• Reddit TLDR-17 [17] - comprehensive corpus compiled from Reddit posts between 2006 

and 2016 accompanied by the summaries of the post (See Figure 2). 

• Reddit TLDR-17 preferences [17] - a dataset created from a subset of Reddit TLDR-17. 

Each example comprises a post, two candidate summaries, and a rating from a human 

annotator indicating which summary is preferred. 

 

In this study, we explored how RLAIF performs using a dataset rich in real–world language, such as 

Reddit posts. To maintain comparability and validate their findings across different model 

architectures, we use the same type of dataset as used by Lee et al [4]. This ensures that any 

observed differences in performance are due to variations in model scale rather than inconsistencies 

in data.  

 

https://www.zotero.org/google-docs/?3fm1Mf
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Figure 2. An example row of the TLDR-Reddit dataset. This corpus contains preprocessed posts 

from the Reddit dataset (Webis-TLDR-17). The dataset consists of 3,848,330 posts with an average 

length of 270 words for content, and 28 words for the summary. Content is used as document and 

summary is used as summary. 

 
 

3.2. Model Selection 
 

To evaluate the effectiveness of Reinforcement Learning from AI feedback (RLAIF) across 

different model architecture scales, we selected three distinct language models: T5, Phi-3.5 and 

Llama 3.2. These models were chosen to analyze how RLAIF performs under varying training 

paradigms, model sizes and architectures. 

 

T5 was included in our selection, because unlike the other models (e.g Palm XS in Lee et al [4]), it 

follows a Seq2Seq structure rather than a decoder-only design. This allowed us to assess how 

RLAIF performs on a non-autoregressive model, as Seq2Seq architectures excel in structured tasks 

such as summarization and translation. Additionally, T5 is widely used for structured NLP 

applications, making it an ideal candidate for evaluating the impact of RLAIF beyond free-form 

text generation. 

 

LLaMA 3.2 was chosen as a mid-scale model to assess RLAIF’s impact on an extensively pre- 

trained and well-aligned architecture. By comparing its performance to both a smaller (T5) and a 

larger (Phi-3.5) model, we were able to evaluate whether RLAIF scales effectively and provides 

meaningful improvements across different model sizes. 

 

Phi-3.5, the largest model in our selection, represents a high-resource setting optimized for 

instruction-following and structured text generation. Since it has already undergone fine-tuning 

with AI-generated data, evaluating RLAIF on Phi-3.5 helps determine whether additional feedback-

https://www.zotero.org/google-docs/?WjTMAt
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driven refinement leads to further performance gains. By comparing it to LLaMA 3.2 and T5, we 

were able to assess whether RLAIF offers greater benefits to larger-scale models or if its impact is 

more pronounced in smaller architectures. 

 

3.3. Prompting 
 

We adopted the Detailed + Chain-of-Thought (CoT) Zero-Shot prompting method (see Figure 3), 

which achieves the highest accuracy of 78.0% for summary tasks across our three models [4]. This 

approach enhances reasoning by guiding the model through intermediate steps while requiring no 

task-specific examples. By leveraging detailed instructions combined with CoT reasoning, we 

improve performance on complex tasks without additional fine-tuning. 

 

 
 

Figure 3. Example of an AI feedback prompt with Chain-of-Thought Zero-shot prompting. 

 

3.4. Model Training 
 

All SFT models were trained using the LoRA [14] method to reduce computational overhead while 

maintaining performance because of our limited resources. Fine-tuning was performed on the 

training set of Reddit TLDR-17 with a batch size of 64 for 80 epochs. We used the Adafactor 

 

[18] optimizer with a learning rate of 10−5. The LoRA method was applied to the attention layers, 

reducing the number of trainable parameters. The maximum input and output lengths were set to 

1024 and 64 tokens, respectively. 

 

Reward models (RMs) were initialized from a T5 checkpoint, ensuring consistency across all 

models. We fine-tuned the RM on the full training split of a preference dataset, where labels reflect 

AI preferences for AI feedback RMs. Training followed a ranking loss approach with a sigmoid 

activation function [16], effectively optimizing the RM to differentiate between preferred and less 

preferred outputs by maximizing their log-sigmoid score differences. We used the Adafactor 

optimizer with a learning rate of 10−5 and a batch size of 64, with a maximum input length of 1024 

https://www.zotero.org/google-docs/?NsQuLT
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tokens. Training continued until the loss and accuracy curves plateau, typically within 3–4 epochs. 

 

For reinforcement learning, we initialized each task with the corresponding SFT model as the initial 

policy. All models were trained using Proximal Policy Optimization (PPO)[15]. To encourage 

exploration, we sampled from the language model policies with a temperature of T=0.9. Training 

was conducted for 10 epochs with a batch size of 128 and a learning rate of 10−5. We applied a KL 

divergence penalty with β=0.05 to balance optimization stability. This setup followed the 

experimental framework of Lee et al. [4]. 

 

3.5. Measurements 
 

To evaluate the effectiveness of Reinforcement Learning from AI Feedback (RLAIF) across 

different model scales, we structured our experiment around two key aspects: performance, scaling 

effects. We utilized ROUGE and BERTScore as evaluation metrics. Below, we explain how we 

measure and analyze each aspect. 

 

3.5.1. Performance 

 

We assessed model performance using the following automatic evaluation metrics: 

 

1. ROUGE-1 [19]: Measures the overlap of unigrams (single words) between the generated 

summary and the reference summary. 

2. ROUGE-2 [19]: Measures the overlap of bigrams (two consecutive words) between the 

generated summary and the reference summary. 

3. ROUGE-L [19]: Captures the longest common subsequence (LCS) between the generated 

summary and the reference summary, reflecting fluency and coherence. 

4. BERTScore [20]: Uses embeddings from BERT to compare the semantic similarity between 

generated and reference summaries, providing a more contextualized assessment of quality. 

 

We compared the performance of models fine-tuned with Supervised Fine-Tuning (SFT) against 

those trained using RLAIF. We analyzed improvements in scores across different model 

architectures, highlighting how RLAIF impacts different model families and their ability to 

generate high-quality summaries. We also examined whether performance gains were consistent 

across different ROUGE variants and BERTScore, assessing improvements in lexical overlap and 

semantic similarity. 

To calculate the percentage of the improvement between the Supervised Fine-Tuning (SFT) and 

RLAIF models, we used the following equation 1: 
 

(1) 

3.5.2. Scaling Effects 

 

We investigated the impact of scaling by comparing models of varying sizes: T5, Phi 3-5, and 

LLaMA 3.2. The key measurements include: 

 

5. Changes in ROUGE-1, ROUGE-2, ROUGE-L, and BERTScore as model size increases. 

6. The relative improvement of RLAIF over SFT across different model sizes and architecture.  

 

We analyzed whether larger models benefit more from RLAIF compared to smaller models. By 

observing trends in performance across T5, Phi 3-5, and LLaMA 3.2, we determine if scaling 

https://www.zotero.org/google-docs/?a0PH36
https://www.zotero.org/google-docs/?xMts1u
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improves the effectiveness of reinforcement learning from AI feedback. 

 

4. RESULTS 
 

4.1.Performance 
 

Table 1. Results show performance improvements across different architectures after applying the RLAIF 

process. 

 

Metric ROUGE-1 ROUGE-2 ROUGE-L BERT Score 

SFT T5 0.0433 0.0036 0.0389 0.3288 

RLAIF T5 0.0768 

(+77.2%) 

0.0053 

(+47.2%) 

0.0684 

(+75.8%) 

0.4030 

(+22.6%) 

SFT Llama 3.2 (1B) 0.0593 0.0059 0.0701 0.3688 

RLAIF LLama (1B) 0.1063 

(+79.3%) 

0.0111 

(+89%) 

0.0932 

(+32.9%) 

0.4129 

(+12.0%) 

SFT Phi-3.5 (3.8B) 0.0593 0.0299 0.1093 0.3705 

RLAIF Phi-3.5 (3.8B) 0.0826 

(+39.3%) 

0.0388 

(+29.8%) 

0.2090 

(+91.1%) 

0.4285 

(+15.6%) 

 

4.1.1. ROUGE-1 (Unigram Content Coverage) 

 

The transition from SFT to RLAIF results in the most substantial improvement for the LLaMA 

3.2 model, with RLAIF boosting the ROUGE-1 score by 79.3% (from 0.0593 to 0.1063) (Table 1). 

This substantial gain indicates that RLAIF significantly enhances the LLaMA 3.2 model’s ability 

to capture key individual terms from reference summaries, pointing to an improved content selection 

capability. In contrast, the improvements for Phi 3-5 and T5 were more modest, at 39.3% and 77.2%, 

respectively. 

 

4.1.2. ROUGE-2 (Phrase-Level Accuracy) 

 

All models exhibit relatively low ROUGE-2 scores (Table 1), except for Phi 3-5, which achieves a 

decent score of 0.0389. However, the most significant improvement is observed in the LLaMA 

 

3.2 model, where RLAIF enhances performance by 89% (from 0.0059 to 0.0111). This substantial 

gain suggests that RLAIF significantly improves the model's ability to retain multi-word 

expressions, advancing from simply recognizing individual words to effectively preserving 

meaningful phrases. 

 

4.1.3. ROUGE-L (Sequential Coherence) 

 

The Phi-3.5 model demonstrates the most remarkable improvement in ROUGE-L when trained 

with RLAIF, showing a 91.1% increase (from 0.1093 to 0.2090) (Table 1). This substantial gain 

indicates that RLAIF dramatically enhances Phi-3.5's ability to maintain coherent sequences that 

match reference summaries, suggesting improved narrative flow and structural coherence. 
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4.1.4. BERTScore (Semantic Similarity) 

 

All models show substantial improvement in BERTScore when using RLAIF (Table 1). The T5 

model demonstrates the largest relative improvement with a 22.6% increase (from 0.3288 to 

0.4030), highlighting how RLAIF considerably enhances T5's semantic understanding capabilities. 

However, the Phi-3.5 model achieves the highest absolute BERTScore (0.4285) after RLAIF 

training, representing a 15.7% improvement over its SFT baseline. This indicates that while T5 

shows the greatest relative semantic gains, Phi-3.5 ultimately delivers superior semantic fidelity in 

its generated outputs. 

 

4.2.Scaling effects 
 

Table 2. Results demonstrate improvements across models in relation to scaling effects. 

 
 

Model ROUGE-1 

Improvement 

ROUGE-2 

Improvement 

ROUGE-L 

Improvement 

BERTScore 

Improvement 

T5 (Small; 

738M) 

+77.2% +47.2% +75.8% +22.6% 

LLaMA 3.2 

(Medium; 1B) 

+79.3% +89% +32.9% +12.0% 

Phi- 3.5(Large, 

3.8B) 

+39.3% +29.8% +91.1% +15.6% 

 

 

 
 

Figure 4. Results per model across all three evaluation metrics.  
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Figure 5. The diagrams depict how performance and improvement vary with scale. 

 

4.3.Cross-Metric Analysis 
 

LLaMA 3.2 shows the most dramatic improvements in ROUGE-1 and especially ROUGE-2, 

suggesting that RLAIF particularly enhances this model's lexical precision and ability to maintain 

important phrases from reference texts (See Figure 4 and 5). 

 

Phi-3.5 demonstrates the most significant gains in ROUGE-L and achieves the highest absolute 

BERTScore, with only modest improvements in ROUGE-1 and ROUGE-2. This suggests that 

RLAIF has substantially enhanced the model’s ability to generate coherent and fluent sequences 

while preserving the semantic integrity of the text. The model excels in maintaining overall 

meaning and structural alignment, even when it does not match individual words or phrases exactly. 

These attributes are crucial for high-quality summarization, where the focus is on conveying the 

essence of the content, rather than merely replicating specific word choices (See table 2). 

 

T5 shows the largest relative improvement in BERTScore (+22.6%), while demonstrating 

consistent improvements across other metrics. This suggests that RLAIF particularly enhances T5's 

semantic understanding capabilities, even though its absolute performance remains below that of 

larger models. (See table 2) 

 

5. DISCUSSION 
 

The results reveal that while RLAIF improves performance across all model scales, the nature and 

magnitude of improvement varies significantly by architecture. The most dramatic transformations 

occur in: 

 

1. LLaMA 3.2 with RLAIF for lexical precision (ROUGE-1) and especially phrase preservation 

(ROUGE-2). 

2. Phi-3.5 with RLAIF for sequential coherence (ROUGE-L) and highest absolute semantic 

similarity (BERTScore). 

3. T5 with RLAIF for relative improvement in semantic understanding (largest percentage 

gain in BERTScore). 

 

These findings suggest that larger models like Phi-3.5 particularly benefit from RLAIF in aspects 

related to higher-order language understanding, such as coherence and semantic fidelity. Phi-3.5's 

use of synthetic data helps fine-tune its performance in these areas, ensuring strong results in 

structural alignment and semantic preservation. Besides, Phi-3.5 has more parameters, which 

means they have a greater capacity to learn complex patterns and relationships in data. This makes 

them particularly adept at tasks that require higher-order language understanding, such as 
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maintaining structural coherence and semantic fidelity over long text sequences. The additional 

parameters allow the model to capture nuances in language and better maintain logical flow and 

meaning across sentences, paragraphs, or even entire documents. Meanwhile, medium-scale 

models with lower parameters like LLaMA 3.2 show remarkable improvements in lexical and 

phrasal accuracy, while smaller models like T5 demonstrate significant relative gains in semantic 

understanding when trained with RLAIF, despite starting from a lower baseline. 

 

Notably, T5 starts with the lowest ROUGE variants and the lowest BERTScore among the three 

models, yet it shows significant improvement across all metrics. After training, T5 achieves a 

BERTScore that is quite close to those of the other models, highlighting the efficiency of RLAIF in 

enhancing semantic understanding in smaller models. This is particularly evident in BERTScore, 

where T5 shows the highest relative improvement (+22.6%). This is expected given T5's encoder-

decoder architecture, which is particularly suited for tasks like summarization. Despite its initially 

lower performance, T5 benefits greatly from the RLAIF approach, making substantial strides in 

semantic similarity, thereby demonstrating that even smaller models can achieve considerable 

improvements in understanding and summarization tasks when trained effectively. 

 

In contrast, larger models like LLaMA 3.2 and Phi-3.5 achieve high performance in their respective 

strengths: Phi-3.5 excels at maintaining structural coherence and semantic fidelity (ROUGE-L and 

BERTScore), benefiting from synthetic data training, while LLaMA 3.2 makes substantial progress 

in lexical precision (ROUGE-1) and phrase retention (ROUGE-2). The findings suggest that 

RLAIF can significantly enhance different aspects of language generation depending on the model 

size and architecture, with smaller models benefiting the most from semantic improvements, while 

larger models excel in coherence and structural alignment. 

 

6. CONCLUSION AND FUTURE WORK 
 

In this paper, we set out to explore how well Reinforcement Learning from AI Feedback (RLAIF) 

works across different types of language models and sizes, and how it compares to traditional 

supervised fine-tuning (SFT). We tested RLAIF on three models—T5, Phi 3-5, and LLaMA 3.2— 

which differ in both architecture and scale, to understand how RLAIF impacts each model's 

performance. 

 

Our results showed that RLAIF improves performance for all model sizes, but the improvements 

varied depending on the architecture. LLaMA 3.2 saw major gains in lexical accuracy and phrase 

retention, Phi 3-5 improved the most in structural coherence and semantic accuracy, and T5 made 

the biggest leap in semantic understanding. These findings suggest that RLAIF is effective across 

the board, but works differently depending on the model. Smaller models like T5 showed the most 

relative improvement in understanding and summarization tasks, while larger models like Phi-3.5 

performed better in tasks requiring structural coherence. 

 

1. Performance Across Different Models: RLAIF improved model performance across all three 

architectures. For Phi-3.5, the biggest gains were seen in maintaining coherence and 

preserving meaning, while T5 made impressive strides in understanding and summarizing 

text. LLaMA 3.2 showed the most progress in lexical precision and keeping phrases intact. 

 

2. Effect of Model Size: The size of the model influenced how RLAIF worked. Larger models 

like Phi-3.5 excelled at maintaining coherence and structure, while 
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LLaMA 3.2 showed solid gains in lexical precision. T5, which is a smaller model, saw the 

biggest improvement in semantic understanding, with the largest relative boost in 

BERTScore. 

 

RLAIF proves to be highly efficient but not consistent across different model architectures, with 

each architecture benefiting from tailored improvements suited to their strengths, such as 

summarization for T5 and coherence for Phi-3.5. This highlights the need for a deeper exploration 

of how RLAIF interacts with various model types and sizes. Additionally, while RLAIF 

demonstrates immediate improvements, it remains unclear whether these gains will hold 

consistently across time or diverse tasks, which requires further validation. 

 

In short, RLAIF works well for all model sizes, but the type of improvement varies depending on 

the model's strengths. Larger models improve in aspects like structure and coherence, while smaller 

models benefit the most in terms of understanding and semantic accuracy. 

 

In future work, we aim to explore various directions to improve model performance and robustness. 

One such direction is fully training the model parameters instead of using LoRA (Low-Rank 

Adaptation) to evaluate whether this approach yields significant gains. Fully training may unlock 

the model’s full potential, improving accuracy and efficiency, especially in summarization and 

content generation tasks. 

 

We also plan to train for more epochs to determine whether extended training enhances 

performance. This will reveal if the model has reached optimal performance or if further training 

refines its coherence and semantic accuracy. 

 

Future research will aim to address the limitations and explore several directions to further validate 

and enhance the effectiveness of RLAIF. Given that the results varied depending on the model 

architecture, an important step would be to test RLAIF on a broader range of model families, 

including newer architectures and those optimized for specific domains. This will help in 

understanding whether RLAIF's performance improvements can be generalized to other LLMs, 

especially those fine-tuned for specialized tasks. 

 

Moreover, while RLAIF shows promise in improving performance across different architectures, 

further research is needed to investigate the long-term stability of these improvements and their 

generalizability across various tasks. Extending the scope to newer or emerging models, such as 

Claude 4 and other advanced architectures, will provide valuable insights into the scalability and 

applicability of RLAIF in a wider context. 

 

In terms of performance, models trained with direct Reinforcement Learning from AI Feedback (d-

RLAIF) are expected to outperform those trained with traditional RLAIF, especially in tasks that 

demand high-quality text generation. Unlike standard RLAIF, which typically relies on a reward 

model trained using human preferences, d-RLAIF bypasses this step by directly using AI- generated 

feedback to optimize the model’s responses. This direct reward learning strategy simplifies the 

pipeline and may lead to more efficient training, enabling faster convergence and potentially 

improving output quality by ensuring a tighter alignment between the model’s training objectives 

and the intended task. However, improvements depend on model architecture, task complexity, and 

configuration. Thus, thorough evaluation using appropriate accuracy and quality metrics is 

essential. 

 

By incorporating d-RLAIF across different models, we aim to assess whether it provides 

measurable advantages over traditional RLAIF. Comparing identical architectures trained with both 

approaches will help determine the effectiveness of d-RLAIF in enhancing generation quality and 
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training efficiency. These efforts will offer insights into the scalability of RLAIF and its potential 

to boost the performance of models like Claude 4 across diverse applications. 

 

These future efforts will provide valuable insights into the scalability and adaptability of RLAIF, 

allowing us to explore its potential for broader use cases and more advanced model architectures. 
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