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ABSTRACT 
 

Basketball is one of the most popular sports worldwide, with over 610 million people aged 

6 to 54 playing the game at least twice a month, according to FIBA. However, access to 

systematic and professional basketball training remains limited, especially in developing 

countries, where only 1%–3% of players may receive professional coaching. This lack of 

access makes it difficult for most basketball enthusiasts to learn and refine proper shooting 

techniques. To address this issue, we propose Sharp Shooter—a mobile application that 

helps users improve their shooting form without requiring professional training or 

expensive equipment. 

 
Our solution combines several cutting-edge technologies: MediaPipe is used to extract key 

body landmarks from users' uploaded shooting videos; these landmarks are then analyzed 

by a large language model (LLM) to provide expert-level feedback [10]. Additionally, the 

app matches users’ shooting forms with those of professional NBA players stored in a 

custom database, allowing users to see which NBA player their form most resembles—

further enhancing engagement and motivation. 

 
The project integrates several key components, including a cross-platform front end built 

with Flutter, a Flask-based backend hosted on AWS, and a machine learning pipeline 

utilizing YOLOv5 for object detection and Random Forest or LSTM for motion quality 

assessment [11]. During development, we encountered challenges related to efficient video 

processing, backend scalability, data security, and precise motion evaluation. These were 

addressed through asynchronous data handling, load balancing, encrypted 

communications, and model optimization. 

 
The app was tested in various real-world use cases, including indoor and outdoor shooting 

scenarios, different lighting conditions, and varied camera positions. It consistently 

delivered actionable feedback, helping users recognize flaws in their form and track 

improvement over time. 
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Our findings demonstrate that Sharp Shooter is a scalable, accessible, and affordable tool 

for basketball players at all levels. It offers a novel way for individuals—especially in 

under-resourced communities—to receive professional-style feedback and engage with the 

game in a more meaningful and data-driven way. 
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1. INTRODUCTION 
 

According to FIBA, over 610 million people aged 6-54 worldwide play basketball at least twice a 

month. However, for developed countries and some Asian countries, only about 5% -10% of the 

basketball population can receive more systematic training (such as school teams and club tiers) 

[1]. For the vast majority of developing countries, only 1%-3% of the basketball population may 

receive truly professional guidance (such as professional coaching, scientific training systems). 

(FIBA celebrates more than 610 million players globally on second edition of World Basketball 

Day | FIBA Basketball) In this case, we want to help more people, especially people in 

developing countries or those who cannot receive professional basketball education due to 

poverty. As we all know, without professional training, it is difficult for beginners to learn the 

correct shooting form. (Uzun, Ahmet & Pulur, Atilla. (2018). The effect of shooting training on 

the development of the shot hit rate for basketball players. Journal of Human Sciences. 15. 

10.14687/jhs.v15i4.5563.) That’s why our project primarily focuses on correcting shooting forms, 

enabling a wider range of basketball enthusiasts to correct their shooting form through our app, 

even if they lack access to professional basketball training. In addition, media clutch points made 

statistics on the number of fans of some personal social media accounts of active NBA players 

and published the ranking list, mainly including ins and X. The results showed that the total 

number of social media fans of all NBA active and retired stars may be between 1 billion and 3 

billion, and the number of independent fans (after removing the duplication) is about 500 million 

to 1.5 billion [5]. (NBA surpasses one billion likes and followers on social media - NBA.com: 

NBA Communications) In this case, tens of millions of fans want to show their connections with 

NBA stars, and our project provides them with this opportunity. After analyzing the users' 

shooting form, we compare their shooting data with the shooting data of NBA stars stored in the 

database, thereby identifying the NBA star whose shooting form is the most similar to that of the 

user. 

 

1.1. First Methodology 
 

The first methodology attempts to send the user's shooting video to a real-world basketball coach, 

who will analyze the user's shooting posture. The disadvantages of this are: first, it is very 

expensive, and it costs $97 for a user to do a shooting analysis. Our app is completely free 

because it uses LLM. Second, the analysis time required for the first methodology is very long, 

because obviously basketball coaches are not always available, so it takes several days to conduct 

an analysis. However, our app does not require manual work, so it only takes a few tens of 

seconds to conduct a shooting analysis. 

 

1.2. Second Methodology 
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The second methodology attempts to obtain the user's arm angle (between the upper arm and the 

forearm) when shooting through the shooting videos submitted by the user, and then give 

different correction suggestions to the user based on different arm angles. This is a good solution, 

but its disadvantages are: first, the arm angle when shooting cannot fully reflect the problem of a 

person's shooting posture. It should also consider the angle of shoulder rotation, whether the wrist 

is fully compressed, whether the hip is fully flexed, whether the knee is fully flexed, etc. (Okazaki, 

V. H. A., Rodacki, A. L. F., & Satern, M. N. (2015). A review on the basketball jump shot. Sports 

Biomechanics, 14(2), 190–205. https://doi.org/10.1080/14763141.2015.1052541) [6]. However, 

our project uses mediapipe to comprehensively analyze 33 key points of the human body. This 

makes our shooting posture analysis more accurate and can also provide users with more targeted 

suggestions. 

 

1.3. Third Methodology 
 

The third methodology obtains the angle changes of the user's elbow, shoulder, and knee joints 

when shooting through the videos submitted by the user, and makes them into charts to help users 

correct their shooting posture. Compared with the second methodology, this method focuses on 

more points, but still ignores some key points such as the wrist. At the same time, this 

methodology only provides users with charts but does not give any suggestions. However, our 

APP can give our users extremely accurate and effective shooting posture correction suggestions 

through the random forest algorithm plus LLM. 

 

Our project - Sharp Shooter can solve this problem very well. Users can download our App 

through Apple Store or Google Play. Once they download our app, they can send their shooting 

videos to our app. After users upload their videos, our App will use MediaPipe to get the 

landmarks and then send the landmarks to a Large Language Model to receive feedback. To begin 

with, MediaPipe will analyze the users’ shooting videos and get the landmarks. After that,  our 

App will send the landmarks to a Large Language Model [9]. When the Large Language Model 

receives the landmarks of users, it will expertly inform the user of any issues with their shooting 

forms and provide guidance on how to correct them. Besides, after getting the users' landmarks, 

we will compare their shooting data with the shooting data of NBA stars stored in the database, 

thereby identifying the NBA star whose shooting form is the most similar to that of the user.  

 

The first experiment tested the accuracy of our random forest algorithm in analyzing the user's 

shooting posture and shooting arc. The second experiment tested the processing time of our video 

analysis system for videos of different lengths and sizes. In the first experiment, we wrote a 

helper function to display the confusion matrix. Through the confusion matrix, we can see how 

many correct and incorrect judgments our model made, and then see the accuracy of our model. 

In the second experiment, we input multiple videos of different lengths and sizes into the system 

and recorded their respective processing times. By comparing the processing times, we can see 

our system's ability to process data. The most significant finding in the first experiment is that our 

model has a very high accuracy rate in judging whether a user's shooting posture is good or bad. 

The most significant finding in the second experiment is that our system can process videos in 

about 40 seconds. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 
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2.1. Flutter Frontend Optimization for Video and Real-Time Feedback 
 

One major component is the front end of the app built with Flutter. Implementing this part may 

raise several potential challenges, including real-time video stream handling, smooth user 

interface performance, and reliable communication with the backend. To address video stream 

processing, I could use Flutter’s native plugins such as camera or ffmpeg, and apply 

asynchronous methods to minimize lags. To enhance the interface, I could employ Material 

Design or Cupertino widgets with customized themes to balance aesthetics and usability. For 

efficient backend communication, I could adopt WebSocket or gRPC to reduce latency and 

provide real-time feedback. 

 

2.2. Scaling Flask Backend with Secure and High-Performance AWS Integration 
 

Another major component is the backend server, which uses the Flask architecture and connects 

to the AWS database. There may be several problems in implementing this part, such as how to 

ensure the high concurrency processing capability of the server, how to ensure data security, and 

how to optimize database query performance. To solve the high concurrency problem, I could use 

Gunicorn or Uvicorn to run with Flask, and combine it with load balancing (such as AWS's ALB) 

to distribute requests. To ensure data security, HTTPS could be used to encrypt communication, 

and access control and regular backups could be enabled at the database level. As for query 

optimization, I could use indexes, caches (such as Redis), and asynchronous task queues (such as 

Celery) to reduce the pressure on the database and ensure that posture analysis results can be 

stored and retrieved efficiently.  

 

2.3. Machine Learning for Basketball Detection and Shooting Analysis 
 

Another major component is machine learning logic. I had to think about how to identify the 

position of the basketball and also the basket, how to identify the user's shooting motion, and how 

to tell whether the user's shooting form and shooting arc were  good or not. I could use yolov5 or 

Faster R-CNN to identify the basketball and the basket.  For identifying the user's shooting 

motion, I could use  MediaPipe or BlazePose or OpenPose To detect key points such as wrists, 

elbows, shoulders, knees, ankles, etc.. To  judge the quality of shooting form  and shooting arc, I 

could use Random Forest or LSTM to analyze the user's shooting action.  

 

3. SOLUTION 
 

The three major components that comprise the SharpShooter project are the Flutter mobile 

application, the Flask backend server, and lastly the machine learning algorithm to classify good 

and bad shots. To start, the user is able to open the SharpShooter mobile app and upload videos of 

themselves shooting a basket. Upon uploading and submitting a video, the video is then sent to 

the backend server, where it is processed by the computer vision and machine learning algorithms. 

The computer vision contains the use of Mediapipe for finding the user’s landmarks and a Yolov5 

model for finding the basketball’s landmarks. Once the landmarks have been identified and a 

dataframe has been created, the data frame is passed to the machine learning model, a trained 

RandomForestClassifier, where a classification is found for “good” or “bad.” This result is then 
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saved in our Firebase database, where the user can come back later and check to find their results 

[7]. The trained RandomForestClassifier was trained on good and bad shot data in house as well 

as data gathered from the internet. In addition to the main flow, the backend server also takes the 

user’s uploaded video and compares it’s landmarks to a variety of NBA player’s landmarks with 

the intention of finding the player they shoot the most alike. The video of the player they shoot 

the most alike is returned back to the user, inspiring them to keep practicing. After each video is 

broken down by the computer vision and machine learning model, an LLM analyzes the resulting 

landmark data and classification and provides some feedback and advice for the user to put into 

practice. 

 

 
 

Figure 1. Overview of the solution 

 

The Flutter mobile application for the SharpShooter project serves the purpose of being the user’s 

interface, allowing the user to upload their own videos and see their analysis. The mobile 

application was created with the Flutter framework, and is available on both Google Play and iOS 

app stores. 
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Figure 2.  Screenshot of upload and analyze page 

 

 
 

Figure 3. Screenshot of code 1 

 

The screenshot above depicts the sendVideoToServer function, the function utilized by the 

SharpShooter app to take a video file at a given file path and send it to the backend server. The 

function starts by declaring a custom http client, which is necessary because the backend server 

does not have a registered ssl. Afterwards, the multipart request is created to contain the user_id 

and the video file itself. The request is being made to the ‘/get_prediction’ route on the server, as 

this is where the server accepts the video files for analysis. After the request is created, the 

request is sent and the response is awaited [8]. The response is then checked to see if the status 

code was 200, in which case, a print statement declaring the video was uploaded successfully 
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executed. Once the back end server receives the video, it will begin processing it and will 

eventually save it in the database, where the mobile app will eventually check it. 

 

The Flask back-end server serves the purpose of being the processing center for all of the user’s 

videos. Every user is able to use the mobile app to upload their own videos for the server to use 

the machine learning algorithm to process them.  

 

 

 
 

Figure 4. Screenshot of code 2 

 

As seen in the screenshot above, the ‘/get_prediction’ route on the Flask server is responsible for 

receiving the video files from the users, and then using the prediction_process() function to 

process the video using the machine learning algorithm [14]. Upon receiving the video in the 
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get_prediction route, the Flask server saves the video file locally, and passes the path of the video 

to the prediction_process method in a new thread. Putting the prediction_process in a new thread 

keeps the request from stalling, as the prediction_process does take upwards of 2 minutes 

oftentimes. Within the prediction_process method, the video is firstly broken down and the 

landmarks are collected for the user’s shot form as well as the trajectory for the basketball’s 

motion. After these have been found and saved, the trained landmark and trajectory models are 

loaded up and are ready for predicting [15]. Once the models have been loaded and the data paths 

and features have been found for the landmark and trajectory data, the resulting predictions for 

the user’s form and arc are calculated using the landmark_features and trajectory_features. 

Afterwards, corresponding to the prediction value of either 0 for bad or 1 for good, the 

classification is reassigned to the string value of “good” or “bad”. 

 

The machine learning algorithm within the SharpShooter project serves the purpose of analyzing 

a user’s submitted video to determine if their shot form and arc are good or bad. The machine 

learning algorithm has a lot of moving parts, and relies on technologies like mediapipe, yolov5, 

and a trained RandomForrest model.   

 

 
 

Figure 5. Screenshot of code 3 

 

In the above screenshot, the break_down_video function that was referenced earlier can be seen. 

The break_down_video function is used for processing a video and outputs the data frame of 

MediaPipe landmarks of the shooter as well as the basketball landmarks for the shot arc. The 

function starts by creating a cv2 capture instance with the video, opening it alongside a csv file to 

iterate frame by frame, and finding the landmark data and storing it inside the csv file. For each 

frame in the capture instance, the landmarks and yolo_results are found to determine what the 

user’s landmarks are as well as if they are shooting or not. If the user is shooting and has not 

released the ball yet, then the landmarks will be collected and saved into the landmark_data.csv 

file. Once the video has been iterated through for the landmarks, the use_basketball_detection() 

function will utilize some code from a previous project by github user Stardust87 to find the arc 

trajectory landmarks of the basketball. Both of these landmarks are the data that the models used 

for training and what they take as inputs for predicting.  
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4. EXPERIMENT 
 

4.1. Experiment 1 
 

The major components whose accuracy is of the utmost importance for the proper function of the 

SharpShooter mobile application are the machine learning classification models for both the shot 

trajectory and shot form. It is critical that these models work well, as they are the main service of 

the app and provide the user with analysis on their basketball shot. 

 

To test the accuracy of the shot trajectory and form models, we will utilize a helper function we 

have built to show a confusion matrix using the Seaborn and Matplotlib python libraries. The 

initial cufusion_matrix function originates from the Scikit-learn library, as do the 

RandomForestClassifier models we use as a base for both models. Once the confusion matrix 

data has been gathered, the Matplotlib figure is created, and the data is displayed demonstrating 

the Predicted values compared to the Actual values. This confusion matrix setup will allow us to 

clearly see how many accurate predictions the model makes immediately next to how many it 

gets incorrect.  

 

 
 

Figure 6. Code of experiment 1 

 



234                                   Computer Science & Information Technology (CS & IT) 

 

 
 

Figure 7. Figure of experiment 1 

 

After running the code and performing the collection of our graphs, we have found that both the 

landmark and trajectory classification models are quite accurate. During the collection of our data, 

we were expecting a few inaccuracies due to the difference in data size for good and bad samples. 

Due to this difference in data size, we were expecting the model accuracy to suffer, in that it 

would not be as capable of accurately classifying an input. However, after performing the 

experiment, we have found that the landmark classification model was quite capable of accurately 

classifying data, as it only made three incorrect predictions out of 230 total points. We believe the 

reason for this consistency is due to the simplicity of the training data, as both models are trained 

on their own landmark-based data as opposed to complete image sets. 

 

4.2. Experiment 2 
 

Another major factor in ensuring a quality user experience is the analysis response time for each 

of the user video analysis. Ensuring these videos are analyzed in a prompt and consistent manner 

will display stability and make the service convenient for users. 

 

To find the average video response time, we will conduct an experiment to find it by running 

multiple video analysis trials. Two experimenters will work together to achieve this, the first 

experimenter being responsible for the submission of the videos of different length and the 

second experimenter being responsible for the recording of the time. The first experimenter will 
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submit a video and inform the second experimenter to start the stopwatch. Finally when the first 

experimenter notices that the video response is completed they will let the second know to stop 

the timer and update the record.  
 

 
 

Figure 8. Figure of experiment 2 

 

5. RELATED WORK 
 

Here is the official website of an app that is also trying to provide users with shooting form 

analysis [2]. Different from our project, it sends users' shooting videos directly to a real world 

basketball coach for shooting posture analysis, rather than a Large Language Model, which leads 

to the fact that it is paid (each analysis of a shot costs 97$) while our project is completely free. 

Obviously, this is a huge gap. In addition, it can not compare the user's shooting form with the 

NBA stars’ shooting form, so as to find the NBA star who is most similar to the user.  ( Actually, 

we are the first ones to achieve so.) And also, if its users are not satisfied with the analysis results, 

they need to pay 97$  for a second analysis, but our users only need to upload the video again to 

get a brand new answer. Lastly, it is not trying to solve the problem in a “Computer Science” way. 

It sends its users’ shooting videos to a basketball coach. However, how many videos can a single 

basketball coach see through in a day? Our Large Language Model can respond to thousands of 

requests in a few minutes. 

 

Here is a github project which designs a flutter application that uses pose estimation to provide 

personalized instructions on correcting users' basketball shooting form [3]. Different from our 

project, it gives fixed suggestions to its users based on their arm angles. (As you can see in the 

picture below)  However, our project sends our users’ shooting data to a Large Language Model 

( I’m pretty sure that we are the very first one to do so. ) which means they can get different 

answers based on their own situations.  In addition, it can not compare the user's shooting form 

with the NBA stars’ shooting form, so as to find the NBA star who is most similar to the user. 

( Actually, we are also the first ones to achieve so.)  
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Figure 9. Code of the project 

 

Here is another github project which records its users’ joint angle and makes it into a chart [4]. 

(As you can see in the picture below) In this way, its users can interpret it and change their 

shooting form. It’s a really good way to look deep into our shooting form, but it ignores the 

shooters’ wrist and chest. However, using mediapipe, our project can comprehensively analyze 

33 key points of the human body. And also, this methodology only makes it into a chart but won’t 

give you any suggestions. In contrast, our Random forest algorithm + Large Language Model can 

give you detailed suggestions based on your own situations. Lastly, it can not compare the user's 

shooting form with the NBA stars’ shooting form, so as to find the NBA star who is most similar 

to the user. As I said, we are the first one to achieve so. 

 

 
 

Figure 10. Chart of the project 



Computer Science & Information Technology (CS & IT)                                      237 

 

6. CONCLUSIONS 
 

Regarding the limitations of our project, first of all, I think ChatGPT is part of it [12]. As we all 

know, ChatGPT has its own shortcomings in some aspects, such as the formatting of replies and 

the accuracy of data analysis results. Secondly, I think our project's requirements for user-

submitted videos are also limited to a certain extent. For example, we require that the videos 

submitted by users need to keep the camera angle as fixed as possible, otherwise it will affect the 

final analysis results. But in real life, people are used to shooting moving shots, such as moving 

the camera with the movement of the characters, which leads to the fact that if users want to use 

our APP for shooting analysis, they may need to record a separate video that meets our 

requirements. Lastly, Our random forest algorithm tends to judge whether the user's shooting arc 

is good or bad, and tends to judge all arcs as good arcs. If I have enough time, the first problem is 

still difficult to solve, because this is a common problem of all the large language models we can 

see on the market. For the second problem, I think the mediapipe currently used in our project is 

difficult to solve, because it is difficult to find a fixed coordinate system in a moving shot, which 

is crucial for analyzing the user's shooting action [13]. For the third question, I think our 

shortcoming is that there are too few samples of bad shooting arcs, or the definition of good and 

bad shooting arcs is not rigorous enough. We can add more samples of bad shooting arcs to our 

algorithm and define the quality of shooting arcs more accurately. 

 

As a computer science student who loves basketball, I have seen many people who love 

basketball. Many of them do not have access to professional basketball training. They can only 

learn basketball by themselves bit by bit. They often feel very struggling and painful because 

basketball is a competitive sport and no one wants to lose to others on the court. Therefore, I 

sincerely hope that my project can help other people in the world who love basketball like me but 

cannot access professional basketball training. 
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