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ABSTRACT

This paper presents the design and evaluation of a low-cost 3D scanning system that
integrates an Arducam Time-of-Flight (ToF) camera, a Raspberry Pi for data processing,
and a custom motorized turntable driven by an RP2040 microcontroller [1]. The objective
was to create an accessible and affordable alternative to professional 3D scanners while
maintaining sufficient accuracy for prototyping and educational use [2]. The system
captures depth images as the turntable rotates the object, producing a complete set of views
for reconstruction. Experiments demonstrated strong dimensional accuracy, with
deviations under +0.7%, and reliable performance under low and moderate lighting
conditions, though bright light increased noise. Comparisons with related methodologies
highlighted how our approach prioritizes affordability, modularity, and static object
scanning, contrasting with solutions aimed at robotics or large-scale mapping. Overall, the
system provides a practical pathway toward democratizing 3D scanning technology,
balancing cost with usability and performance.
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1. INTRODUCTION

Affordable and accessible 3D scanning remains a significant challenge for hobbyists, educators,
and small-scale researchers. Commercial 3D scanners—such as structured light or laser-based
systems—often cost thousands of dollars, limiting wider use in home fabrication or educational
settings. Even lower-cost alternatives, like photogrammetry using a smartphone, require
extensive post-processing, good lighting, and surface detail to extract satisfactory models.

Time-of-Flight (ToF) cameras offer a promising alternative [3]. They directly measure distances
by calculating the time light takes to reflect off surfaces back to the sensor, enabling generation
of depth maps with relatively low computational effort and compact hardware setups Wikipedia.
However, ToF devices inherently suffer from noise, systematic biases, multipath interference,
and a trade-off between resolution and accuracy Wikipediat+4ResearchGate+4arXiv+4. Despite
this, past research has shown that with the right filtering and alignment techniques, ToF data can
still produce reasonably accurate 3D reconstructions—often within a couple of centimeters of
error ResearchGate+1.

Meanwhile, the DIY and maker communities have explored low-cost 3D scanner
implementations using Arduino or Raspberry Pi controllers combined with distance sensors and
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stepper-driven turntables Reddit+5SIJARSCT+5A1I3DP+5 [4]. These systems prioritize price and
accessibility over precision. Leveraging such examples shows a clear interest in democratizing
3D scanning.

In this project, we aim to design an affordable, automated 3D scanning system that balances cost,
ease of use, and reconstruction quality [5]. By combining a ToF camera, Raspberry Pi, and a
motorized turntable built with an RP2040 microcontroller, the goal is to produce accurate 3D
models from depth data in a controlled, replicable process.

Methodology A (Cui et al.) combined 3D superresolution with probabilistic scan alignment to
overcome ToF sensor noise. Its strength was high-quality reconstructions from low-fidelity
sensors, though it required complex algorithms. Our project improved accessibility by using
simpler software while achieving acceptable accuracy.

Methodology B (Francis et al.) applied a ToF PMD camera to autonomous ground vehicles for
obstacle detection. Their system emphasized real-time perception and optimal mounting angle for
navigation. While effective for robotics, it did not prioritize object-level reconstruction. Our
system shifts focus from mobility to static object scanning with turntable automation.

Methodology C (May et al.) enhanced mapping robustness with calibration, filtering, and a
modified ICP alignment, adding loop-closure and global optimization. This yielded reliable large-
scale 3D maps. Our project differs by focusing on small object digitization, trading large-scale
mapping techniques for compact, low-cost reconstruction pipelines.

Our proposed system integrates three core components:

Time-of-Flight Depth Sensing: An Arducam ToF camera provides real-time depth maps.
Advantages include compactness, direct range measurement, and low processing demand—
critical for embedded platforms repos.hcu-
hamburg.de+15ijnrd.org+15ResearchGate+15ResearchGate.

Motorized Turntable for Automated Capture: A stepper motor controlled by an RP2040
microcontroller (running CircuitPython) precisely rotates the object in user-defined increments.
This automation enables multiple depth snapshots from different angles without manual
repositioning.

Data Aggregation and 3D Reconstruction Using Raspberry Pi: The Raspberry Pi orchestrates the
scan cycle, triggers capture at each orientation, accumulates depth frames, and processes them
into point clouds and mesh models using open-source reconstruction libraries.

This setup addresses several existing gaps:

Cost-effective and open-source: The entire system can be built for a fraction of the price of
commercial scanners, using accessible components and community-friendly software setups.
Automated and repeatable: Automating the turntable removes human inconsistencies and
simplifies scanning workflows, enhancing reproducibility.

Adequate accuracy: Though ToF cameras have limitations, combining multiple views, calibration,
and filtering can yield satisfactory results suitable for rapid prototyping or educational use
ResearchGate arXiv.
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Overall, our method offers a practical middle ground: more reliable than pure photogrammetry in
uncontrolled environments, yet far less expensive than professional-grade scanners. It empowers
users to quickly digitize small objects for applications in reverse engineering, 3D printing, digital
archiving, and educational demonstrations.

Two experiments were designed to evaluate the performance of the scanner. The first experiment
tested dimensional accuracy by scanning a calibration cube of known size. Theults showed that
the reconstructed side lengths deviated by less than £0.7% from ground truth, with a mean of
49.95 mm compared to the true 50 mm. This confirmed that the system could produce metrically
consistent models suitable for applications such as prototyping and classroom use. The second
experiment tested environmental robustness by scanning a cylindrical object under different
lighting conditions. In low and moderate light, the scanner performed well, with errors under 0.5%
and low surface noise. However, bright light degraded performance, increasing surface variability
and introducing larger dimensional errors. These results highlighted both the strengths (good
baseline accuracy, repeatability) and weaknesses (susceptibility to bright environments) of the
system. Together, the experiments demonstrated that the scanner is reliable in controlled indoor
conditions but requires further refinement to handle more challenging environments.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Minimizing ToF Sensor Noise and Calibration Errors

One of the most significant challenges in our system is the inherent noise and calibration
requirements of the Time-of-Flight (ToF) camera. Depth maps generated by ToF sensors are
susceptible to multipath interference, edge distortion, and ambient light effects, which can reduce
the fidelity of 3D reconstructions. Even minor misalignments in calibration could lead to
compounding errors across multiple scans. To address these issues, we could implement a
calibration routine using a reference object of known dimensions before scanning. Additionally,
depth filtering and temporal averaging techniques could be applied to reduce sensor noise and
improve the accuracy of point cloud data.

2.2. Ensuring Precise Turntable-Scan Synchronization

Another key challenge lies in the synchronization of the turntable with the scanning process.
Since the stepper motor drives the platform in small increments, any slippage, jitter, or
miscalculated steps could misalign the depth frames, causing visible artifacts in the 3D model. To
minimize this, we could utilize microstepping drivers for smoother rotation, apply closed-loop
motor feedback systems to ensure positional accuracy, or introduce software-based alignment
correction during post-processing. Proper synchronization ensures that each depth image
corresponds to the correct orientation of the object, which is critical for assembling accurate 3D
meshes.

2.3. Optimizing Depth Data Processing on Raspberry Pi

Processing large volumes of depth data on the Raspberry Pi is another substantial challenge.
High-resolution depth maps require significant memory and computational resources, which can
strain the Pi’s hardware and slow reconstruction. To mitigate these issues, we could implement a
lightweight data pipeline that converts each frame into a point cloud and stores it in a compressed
format. For reconstruction, computationally heavy operations such as surface meshing could be
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deferred to a remote workstation or cloud service. This hybrid approach would allow Raspberry
Pi to handle acquisition efficiently, while still producing detailed 3D models through external
resources.

3. SOLUTION

Our 3D scanner system integrates three major components: the Time-of-Flight (ToF) camera, the
turntable assembly powered by an RP2040 microcontroller, and the Raspberry Pi [6]. Together,
these components automate the scanning process by combining depth acquisition, mechanical
rotation, and digital reconstruction.

The workflow begins when an object is placed on the motorized turntable. The Raspberry Pi
serves as the central controller, initializing the Arducam ToF depth camera and communicating
with the RP2040 microcontroller, which is responsible for stepper motor control. At each
incremental step of rotation, the Pi triggers the camera to capture a depth frame of the object’s
surface. The process continues until a full rotation has been completed, resulting in a collection of
depth maps covering all perspectives on the object.

Once the acquisition is complete, the Raspberry Pi processes the collected data. Depth images are
converted into point clouds, aligned according to the turntable’s angle increments, and merged
into a unified dataset. From this dataset, surface reconstruction algorithms generate a 3D mesh.
Finally, the resulting model can be exported in formats such as STL or OBJ for use in 3D printing,
CAD applications, or digital archiving [7].

This modular architecture ensures that each subsystem performs a well-defined role. The ToF
camera provides accurate depth data, the RP2040 guarantees precise mechanical control, and the
Raspberry Pi integrates acquisition with computational tasks. The combination results in an
accessible, affordable, and fully automated 3D scanning system.

TOF Camera

3D Model

Raspberry Pi  —— Output

Turntable

Figure 1. Overview of the solution

The ToF camera is the primary sensor for capturing 3D information. Its role is to generate depth
maps by measuring the time light takes to reflect back to the sensor. Implemented through the
Arducam module, this component relies on infrared time-of-flight measurement and outputs
depth frames that form the foundation of the point cloud.
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Figure 2. Figure of component 1

import ev2
from arducam_tof_sdk import ArducamCamera

# Initialize camera
cam = ArducamCamera()

cam.initialize()

# Capture a depth frame
depth_frame = cam.capture()

# Display as grayscale depth image
cv2.imshow("Depth Map®, depth_frame)
cv2.waitKey(0)

# Save frame for later reconstruction
ov2.imwrite("depth_frame.png", depth_frame)

cam.close()
Figure 3. Screenshot of code 1

This snippet initializes the Arducam ToF camera, captures a depth frame, and saves it for later
use [8]. The variable depth frame stores a 2D array of distance values in millimeters. Functions
like initialize() and capture() handle camera setup and acquisition, while cv2.imwrite() stores the
frame for downstream processing. During scanning, this function runs repeatedly after each
turntable increment, ensuring one depth map per orientation.

The turntable assembly rotates the scanned object to expose all sides to the ToF camera.
Controlled by an RP2040 microcontroller running CircuitPython, it uses a stepper motor for
precise, incremental movement. This ensures that each captured depth frame corresponds to a
consistent rotation angle.

Figure 4. Figure of component 2
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import board
import digitalio
import time

# Stepper motor pins

step_pin = digitalio. DigitallnOut(board. GP2)
dir_pin = digitalio.DigitalinOut(board.GP3)
step_pin.direction = digitalio.Direction.OUTPUT
dir_pin direction = digitalio. Direction. OUTPUT

def rotate(degrees, step_delay=0.002):
steps_per_rev = 200 # 1.8" stepper
steps = int((degrees / 360) * steps_per_rev)
dir_pin.value = True # set rotation direction
for _ in range(steps):
step_pin.value = True
time.sleep(step_delay)
step_pin value = False

time sleep(step_delay)

# Example: rotate 10°
rotate(10)

Figure 5. Screenshot of code 2

This CircuitPython code drives a stepper motor connected to the RP2040. The rotate() function
calculates how many steps correspond to the requested degree rotation. Each step is pulsed by
toggling the step pin, with a delay (step_delay) controlling speed. For example, rotate(10) rotates
the platform 10°. In practice, Raspberry Pi signals the RP2040 over UART or GPIO to execute
rotations in sync with the camera.

The Raspberry Pi aggregates depth frames into a unified 3D model. Using libraries such as
Open3D or PCL, it converts depth maps into point clouds, aligns them according to rotation
increments, and performs surface reconstruction to produce watertight mesh models [10].

Figure 6. Figure of component 3

import open3d as 03d
import numpy as np

# Load stored depth frames (simulated)
depth_images = ["depth_frame1.png", "depth_frame2.png"]

ped_list = [
for i, img_path in enumerate(depth_images):
depth = 03d.io.read_image(img_path)
intrinsics = 03d.camera.PinholeCameralntrinsic(
640, 480, 500, 500, 320, 240
)
ped = 03d.geometry.PointCloud.create_from_depth_image(
depth, intrinsics

)

# Rotate based on tumtable angle

rotation = pcd.get_rotation_matrix_from_xyz((0, 0, np.radians(i*10)))
ped.rotate(rotation)

ped_list.append(ped)

# Merge point clouds

combined = ped_list[0]

for cloud in ped_list[1:]:
combined += cloud

# Mesh reconstruction
mesh, _ = 03d.geometry. TriangleMesh.create_from_point_cloud_poisson(combined, depth=8)

# Save final mesh
03d.io.write_triangle_mesh("scan_result.obj", mesh)

Figure 7. Screenshot of code 3
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This Python snippet uses Open3D to convert depth frames into point clouds, align them by
turntable angle, and merge them [9]. Each depth image is loaded and transformed into 3D
coordinates using camera intrinsics. The rotate() call adjusts each cloud to match its orientation
on the turntable. After combining all point clouds, Poisson surface reconstruction creates a
watertight mesh. The final model is saved as scan_result.obj, ready for visualization or 3D
printing.

4. EXPERIMENT

4.1. Experiment 1

We tested the dimensional accuracy of the scanner by scanning a calibration cube of known size.
This experiment is important to evaluate whether the scanner produces metrically reliable models.

A 50 mm x 50 mm % 50 mm calibration cube was placed on the turntable and scanned at 36
increments (10° per step). The Raspberry Pi processed the captured depth frames into a mesh
using Open3D. The resulting mesh was measured digitally across three orthogonal axes.
Measurements were repeated five times to evaluate consistency. Control data was the true cube
size (50 mm per side). The key metric was the percentage error between the scanned
measurement and the ground truth. This design isolates geometric accuracy and helps identify
systematic scale errors or ToF noise.

Trial Measured X | Measured Y | MeasuredZ | Avg. Side Error (%)
(mm) (mm) {mm) (mm)
1 492 50.6 50.1 49.97 -0.06%
2 49.8 50.4 50.2 50.13 +0.26%
3 489 50.5 49.6 49.67 -0.66%
4 49.4 50.2 50.3 49.97 -0.06%
5 497 50.3 50.0 50.00 0.00%

Figure 8. Figure of experiment 1

Mean side length: 49.95 mm

Median side length: 49.97 mm

Lowest value: 49.67 mm

Highest value: 50.13 mm

The scanner produced results with an average side length of 49.95 mm compared to the ground
truth of 50 mm, resulting in a negligible average error of -0.1%. The median of 49.97 mm further
supports the consistency of results. The smallest deviation occurred in Trial 3, where an average
of 49.67 mm was measured, corresponding to a -0.66% error. The largest deviation occurred in
Trial 2, where the measurement exceeded the true size by +0.26%. These results suggest that
systematic calibration errors were minimal, and most discrepancies likely arose from ToF sensor
noise or surface reflectivity variations. The relatively tight error range (+0.7%) demonstrates that
the system can produce dimensionally accurate models suitable for prototyping and educational
use. Accuracy is highest when objects have sharp, well-defined edges, and degradation is
expected for irregular or reflective objects.
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4.1. Experiment 2

We tested the effect of ambient lighting conditions on scan quality, as ToF cameras are known to
be sensitive to infrared interference from environmental light sources.

A cylindrical object (height: 100 mm, diameter: 40 mm) was scanned under three controlled
lighting conditions: low light (~50 lux), office light (~300 lux), and bright light (~1000 lux). The
same scanning procedure was used for each condition, producing point clouds of the object. We
measured the standard deviation of surface points from the fitted cylinder surface in each
condition. This metric quantifies noise as variation in surface reconstruction. The ground truth
was a caliper measurement of the cylinder dimensions. Results allowed us to evaluate
environmental robustness and establish the best use conditions for the scanner.

4.2C - Effect of Lighting on Scan Quality
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Figure 9. Figure of experiment 2

Lighting conditions had a measurable impact on scan quality. Under low light, measurements
were closest to ground truth, with height error at +0.4% and diameter error at -0.5%. In office
lighting, errors remained small (+0.2% and +0.25%), but surface noise slightly increased (¢ = 0.9
mm). Bright light produced the largest errors, including a -0.3% height underestimation and a
+1.25% diameter overestimation, accompanied by significantly higher surface noise (c = 1.6
mm). These results align with known ToF limitations, where ambient infrared light introduces
multipath interference and increases variability. The findings suggest that the scanner operates
best in low to moderate lighting conditions, while accuracy decreases in very bright environments.
To mitigate this, software filtering or physical shielding could be added in future iterations.
Opverall, the system demonstrates robustness across normal indoor lighting, though bright sunlight
remains a challenge.

5. RELATED WORK

The methodology described by Cui, Schuon, Chan, Thrun, and Theobalt focuses on developing a
robust pipeline for 3D object scanning using a time-of-flight (ToF) camera [11]. Unlike
traditional high-precision scanners, the ToF camera employed is designed for low-cost, high-
volume production and therefore suffers from significant random noise and systematic bias in its
measurements. The central challenge addressed in this methodology is obtaining reliable 3D
reconstructions despite these limitations.

The authors propose a two-stage algorithmic framework. First, they employ a 3D super-
resolution technique that fuses multiple noisy depth images to increase the effective spatial
resolution of the captured data. By integrating depth scans from slightly different viewpoints, the
method is able to reduce random noise while enhancing fine structural detail.
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Second, the system applies to a probabilistic scan alignment algorithm that explicitly models the
noise characteristics of the ToF sensor. Unlike conventional rigid alignment approaches such as
Iterative Closest Point (ICP), which degrade in the presence of substantial measurement
uncertainty, this probabilistic approach incorporates uncertainty into the registration process. This
allows for more accurate alignment of scans taken around the object from different angles.

The combined method—super-resolution for data enhancement and probabilistic alignment for
accurate registration—results in reconstructed 3D models of significantly improved quality
compared to baseline techniques. Importantly, the methodology demonstrates that even low-cost
ToF sensors, when paired with carefully designed algorithms, can achieve practical, high-quality
3D scanning, opening pathways for accessible and affordable consumer-level applications.

Francis, Anavatti, Garratt, and Shim present a methodology for using a Time-of-Flight (ToF)
photonic mixer device (PMD) camera as a 3D vision sensor for autonomous ground vehicles
(AGVs) [12]. The primary objective of this system is to enable autonomous navigation in
hazardous environments by providing reliable obstacle detection and avoidance without human
intervention.

The ToF camera is first calibrated and ground-tested before integration into a mobile robotic
platform. The sensor continuously captures depth data, which is then transformed into Cartesian
coordinates to represent objects and free space within a workspace grid map. This map is
structured as a two-dimensional array of cells, with each cell indicating either an obstacle or a
traversable region. Path planning is achieved by employing a graph search algorithm that
identifies a collision-free sequence of cells, allowing the AGV to navigate toward its target
location.

A significant design aspect of the methodology involves optimizing the camera’s mounting angle.
The authors observed discrepancies in detection caused by pixel response, detection rate,
perceived maximum distance, and infrared scattering from ground surfaces. To address this, they
determined that the optimal mounting angle should be approximately half of the vertical field-of-
view of the PMD camera, thereby maximizing coverage and minimizing blind spots.

Further refinements were introduced through the implementation of feature-tracking and scene
flow techniques, which stabilized the sensor and improved the reliability of obstacle detection
while the AGV was in motion. Experimental validation was performed using both static and
dynamic tests, demonstrating that the integration of ToF-based sensing provided robust 3D
perception at relatively low computational cost. However, results also indicated that such
integration is not entirely straightforward, requiring careful calibration and sensor placement for
effective operation.

May, Droeschel, Fuchs, Holz, and Niichter propose a methodology for constructing robust 3D
maps using time-of-flight (ToF) cameras, addressing the well-known limitations of precision and
reliability inherent to such sensors [13]. Their approach begins with careful calibration of the ToF
device to correct systematic depth measurement biases. This step ensures that the raw sensor data
is normalized and suitable for downstream processing.

To further mitigate noise, the authors apply a sequence of filtering techniques designed to reduce
random fluctuations and suppress spurious reflections often caused by multipath interference or
reflective surfaces. Once filtered, the point clouds are aligned through a novel extension of the
Iterative Closest Point (ICP) algorithm, which improves robustness against residual noise
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compared to conventional ICP. This modified alignment process is particularly well-suited for
environments where depth inconsistencies could otherwise cause registration failure.

In addition to local registration, the methodology incorporates global relaxation and loop-closure
strategies. When the scanning trajectory revisits previously mapped regions, loop-closure
detection is used to correct cumulative drift. Global optimization then redistributes residual
alignment errors throughout the entire model, leading to more consistent large-scale
reconstructions. Finally, surface smoothing is applied to reduce remaining artifacts and provide a
more visually coherent 3D representation.

The authors validate their approach through laboratory experiments with ground truth
comparisons, as well as larger indoor mapping trials. Results demonstrate that ToF-based
mapping, when enhanced with calibration, filtering, robust ICP alignment, and global
optimization, can yield accurate and reliable 3D maps despite the inherent weaknesses of ToF
sensing technology.

6. CONCLUSIONS

While the proposed 3D scanning system demonstrates that affordable hardware can achieve
useful reconstructions, several limitations remain. First, the resolution and accuracy of the Time-
of-Flight (ToF) camera are inherently limited compared to professional-grade structured light or
laser scanners. This results in noise, missing data on reflective or transparent surfaces, and
reduced detail on fine geometries. Second, the computational capacity of the Raspberry Pi
restricts real-time reconstruction. Although downsampling and lightweight processing help
mitigate this, complex meshing or high-resolution point cloud fusion is best performed on
external hardware [15]. Third, the turntable mechanism, while effective, lacks closed-loop
feedback. This means any missed steps from the stepper motor could propagate alignment errors
into the final model. If given more development time, improvements could include GPU-
accelerated reconstruction, implementing real-time filtering on the Pi, and integrating encoders or
optical sensors to guarantee turntable precision [14]. Additionally, a more advanced ToF sensor
with higher resolution and reduced noise would further enhance scan quality.

This project demonstrates that a low-cost, modular 3D scanner using an Arducam ToF camera,
Raspberry Pi, and RP2040-driven turntable can provide reliable models for prototyping,
education, and hobbyist use. Despite limitations, the system illustrates a practical path toward
democratizing 3D scanning technology for broader accessibility.
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