SLEEPEASE: AN AI-INTEGRATED MOBILE
AND HARDWARE SYSTEM FOR
PERSONALIZED SLEEP MONITORING AND
ADAPTIVE SOUNDSCAPES

Yang Huang !, Andrew Park ?

!'La Salle High School, 3880 E Sierra Madre Blvd, Pasadena, CA 91107
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

Sleep is essential for human health, yet millions suffer from insufficient or poor-quality rest.
Traditional solutions such as polysomnography are accurate but impractical for continuous
home use, while commercial devices often provide limited insights[1]. This paper
introduces SleepEase, a mobile application and sensor-equipped hardware system that
monitors sleep and delivers adaptive soundscapes to support faster sleep onset. Three core
components—mobile app, hardware device, and Firebase backend—work together to
provide monitoring, real-time feedback, and long-term data storage [2]. Challenges such
as sleep detection accuracy, hardware design, and sound personalization were addressed
through careful integration of multiple sensors and adaptive audio options. Experiments
demonstrated that white noise and ocean sound reduced sleep latency, while enhanced
detection algorithms achieved higher precision and recall compared to baseline methods.
Compared with prior methodologies, SleepEase improves accuracy and personalization by
combining monitoring with intervention. Ultimately, it presents a practical, scalable
solution for at-home sleep improvement.

KEYWORDS

Sleep onset latency, Adaptive audio, White noise, Home health technology, Mobile health

1. INTRODUCTION

Sleep is one of the most critical aspects of human health, yet it is often overlooked in modern
lifestyles. The Centers for Disease Control and Prevention (CDC) has identified insufficient sleep
as a public health epidemic, with approximately one-third of American adults reporting fewer
than seven hours of sleep per night [3]. Poor sleep contributes to a wide range of health issues,
including obesity, cardiovascular disease, weakened immune response, and impaired cognitive
function [4]. Beyond health impacts, insufficient sleep also reduces productivity and increases the
likelihood of accidents, both in the workplace and on the road.

The problem of sleep deprivation is not limited to adults. Studies show that adolescents and
college students are among the most sleep-deprived groups, often due to academic stress,
technology use, and inconsistent sleep schedules. This population is especially vulnerable, as
chronic lack of sleep can impact learning, memory consolidation, and mental health.

David C. Wyld et al. (Eds): SIGI, CSTY, AL, NMOCT, BIOS, AIMLNET, MaVa$, BINLP — 2025
pp. 313-325,2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151925

https://airccse.org/
https://airccse.org/csit/V15N19.html
https://doi.org/10.5121/csit.2025.151925

314 Computer Science & Information Technology (CS & IT)

Traditional methods of sleep improvement often rely on wearable devices, professional sleep
studies, or simple behavioral advice, such as limiting screen time before bed. While effective in
some cases, these methods either require costly medical equipment, lack personalization, or
demand significant lifestyle adjustments that individuals may not adhere to consistently. What is
lacking is an affordable, accessible, and adaptive solution that can provide real-time support to
individuals struggling with poor sleep habits.

This problem affects millions worldwide, impacting physical well-being, mental health, and long-
term quality of life. Addressing it through innovative technology can help reduce public health
burdens while improving daily functioning for individuals.

Park and Choi demonstrated that simplified EEG, actigraphy, and cardiovascular sensing can
approximate polysomnography with high accuracy, though each relies on limited signals. Lin et
al.’s SleepSense used Doppler radar for noncontact sleep detection, achieving excellent accuracy
but focusing primarily on physiological measures without intervention. Kelly et al. reviewed the
rise of portable devices for long-term home use, emphasizing their accessibility but not limited
validation compared to clinical standards. SleepEase builds on these works by integrating
environmental sensors, real-time adaptive audio, and cloud data management, offering both
monitoring and intervention in one system.

Our proposed solution is SleepEase, a mobile application paired with a sensor-equipped hardware
box that monitors sleep activity and provides adaptive audio support. At its core, SleepEase
integrates three main components: the mobile app, the sensor hardware, and Firebase as the
backend service linking the two. The mobile app serves as a user interface, allowing individuals
to configure settings, send commands, and view logged data. The hardware box contains sensors
that track physical indicators of sleep, such as movement and sound, and it plays calming audio
(such as white noise or nature sounds) to encourage sleep onset.

Both the mobile app and hardware device communicate through Firebase, ensuring seamless data
synchronization [5]. The hardware continuously logs session data, including the time it takes for
a user to fall asleep and environmental factors influencing sleep quality [6]. This information is
stored in Firebase and made available to the user in the mobile application for review. The system
can also adapt in real-time by adjusting sounds based on sensor feedback, creating a personalized
sleep environment.

This approach is effective because it combines monitoring, feedback, and intervention in a single
system. Unlike wearables that passively track sleep, SleepEase actively attempts to improve sleep
onset and quality by responding to user conditions. It also provides historical data for users to
identify patterns and adjust habits. By leveraging affordable sensors, cloud integration, and
mobile accessibility, SleepEase offers a cost-effective and user-friendly alternative to expensive
medical equipment or generic advice-based approaches.

Two experiments were conducted to evaluate the effectiveness of SleepEase. The first experiment
tested how different audio environments influenced sleep-onset latency. Eight participants
experienced four conditions: silence, white noise, forest sounds, and ocean sounds. Results
showed that ocean and white noise produced the fastest average sleep-onset times, reducing
latency by approximately 8—9 minutes compared to silence. Forest sounds performed moderately,
while silence consistently delayed sleep. The second experiment assessed algorithm performance
in detecting sleep using three configurations: Baseline, +NoiseFilter, and +BreathingFeature.
Metrics such as F1 score and accuracy indicated that adding noise filtering reduced false
positives, while incorporating breathing periodicity further improved recall. The best
configuration achieved an F1 score of 0.946, outperforming the baseline. Together, these

Computer Science & Information Technology (CS & IT) 315

experiments confirmed that both environmental audio and enhanced detection logic significantly
improved the system’s utility, validating the dual approach of combining intervention and robust
sensing.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Improving Sleep Detection with Sensor Fusion

A significant challenge in developing SleepEase is determining whether the user is truly asleep.
Simple indicators, such as lack of movement or quietness, can be misleading. For example, a
person may be awake but lying still, or environmental noise may mimic user activity. To address
this, a combination of accelerometer and microphone data can be used, along with algorithms that
analyze consistent patterns of stillness and breathing rhythms. By fusing multiple sensor inputs,
the system can improve accuracy and reduce false positives. Careful calibration and testing
would be required to make this detection reliable across different individuals.

2.2. Compact Hardware Design for Sleep Monitoring

Another challenge lies in properly assembling the hardware box. The device must combine
multiple sensors, a microcontroller, and an audio playback system into a compact and durable
design. Issues such as soldering errors, poor wire management, and inefficient layout can affect
functionality and user experience. Designing a compact enclosure that houses all parts while
maintaining accessibility for repairs or upgrades is also difficult. A solution would involve
modular design principles, where components are connected through standardized connectors
rather than permanent soldering, and a 3D-printed enclosure optimized for airflow, durability,
and user convenience.

2.3. Personalized Soundscapes for Improved Sleep Quality

Selecting the right sound environment for users is another complex challenge. While some people
respond well to white noise, others prefer nature sounds or soft instrumental music. Additionally,
the volume, duration, and timing of the audio all affect whether it helps or hinders sleep. An
inappropriate choice could delay sleep rather than encourage it. To address this, SleepEase could
allow users to customize their preferred sounds and gradually adapt based on tracked sleep
outcomes. Over time, the system could learn from user data and recommend the most effective
soundscapes, creating a personalized solution that maximizes sleep quality.

3. SOLUTION

The SleepEase system is built around three interconnected components: the mobile application,
the hardware device, and Firebase as the backend. Together, these components create a
continuous loop of monitoring, analysis, and feedback designed to improve sleep quality.

The mobile app is the user-facing component, developed in Flutter for cross-platform
compatibility [7]. It provides a dashboard where users can configure sleep settings, view
historical data, and send commands to the hardware. For example, the user may choose specific
audio environments or request playback of calming sounds. Commands issued through the app
are transmitted to Firebase, where they are stored for the hardware to retrieve.

316 Computer Science & Information Technology (CS & IT)

The hardware box is the sensing and feedback unit. It contains sensors such as an accelerometer
and microphone, which detect movement and environmental noise levels. These inputs allow the
device to infer whether the user has fallen asleep. Once sleep is detected, the device records
relevant data, such as time to sleep onset, and uploads this information to Firebase. Additionally,
the hardware includes an audio playback system to deliver white noise, nature sounds, or other
soothing environments in response to user commands.

Firebase serves as the communication bridge between the app and the hardware. It manages
authentication, cloud-based storage of user data, and real-time data synchronization. Because
Firebase supports secure multi-user access, each individual’s sleep data remains private while
still being easily retrievable across devices.

From start to finish, SleepEase operates by receiving user commands in the mobile app,
executing those commands on the hardware, monitoring results, and sending data back to
Firebase for long-term analysis.

Database
&
Auth

Figure 1. Overview of the solution

The mobile application is the central interface for users. Built using Flutter, it connects to
Firebase for authentication and data storage [8]. Its primary purpose is to allow users to configure
sleep settings, send commands to the hardware, and view recorded sleep data. This component
ensures accessibility and usability.

Computer Science & Information Technology (CS & IT) 317

5:57 - - 558 - 5 - 5:58 - - -
StkepCase e < Sowrnd Gallery

0-10 dB
s Thunderstorm 20 min
Rain 30 min
= Ocean Waves 48 min
Forest 60 min

. 40
Login Screen

e 11-20 dB
hymartina1018@gmail.com i
31-40 dB
41-50 dB
Sun Mon Tue Wed Thu Fri Sat 51-60 dB
61-70 dB
71-80 dB

v G - v G -
< NJKFGW < Settings

Noise Degpee: Delete Account

Are you sure you want to delete your

account?
0 Logout

Delete Account

Cancel Delete

Figure 2. Screenshots from the app

318 Computer Science & Information Technology (CS & IT)

import 'package:flutter/material.dart’;
i *package:firebase_dat /firebase_database.dart’;
import ‘package:sleepease/services/auth.dart’;

class Data extends ChangeNotifier {
static final Data _instance = Data._internal();
factory Data() {
return _instance;
%
Data._internal();

final Map<dynamic, dynamic> _data = {};
Map<dynamic, dynamic> get userdata => _data;

void setData(Map<dynamic, dynamic> data) {
_data.addAll(data);
notifylListeners();

;

void updateData(dynamic key, dynamic value) {
_data[key] = value;
notifylListeners();

L

void writeCommand(String command) {

final int timestamp = DateTime.now().millisecondsSinceEpoch;
final String commandWithTimestamp = '$command:$timestamp’;

final String uid = Auth().user!.uid;

FirebaseDataba:
.ref("users/$uid/command”)
.set(commandWithTimestamp);

notifylListeners();

Figure 3. Screenshot of code 1

The provided Dart code defines a Data class that manages communication between the app and
Firebase. This class follows the singleton design pattern, ensuring that only one instance of data
handling exists across the app. It stores user-related data in a private map, which can be accessed
and updated through getters and setters.

The setData and updateData methods allow the application to add or modify user information,
while automatically notifying listeners so that the Ul updates accordingly. The most important
method, writetCommand, sends user-issued commands to Firebase. It appends a timestamp to
each command, ensuring the hardware processes the most recent instruction. This command is
written under the authenticated user’s Firebase path (users/uid/command).

This code runs whenever the user interacts with the app to configure sleep sounds or request
playback. The backend (Firebase) then relays the command to the hardware, which retrieves and
executes it.

The hardware is responsible for sensing and responding to the sleep environment. It uses
accelerometers and microphones to detect motion and breathing patterns, while also playing
calming audio files to help users sleep. This component relies on embedded logic and REST API
communication with Firebase to record and upload session data.

Computer Science & Information Technology (CS & IT) 319

Microphone SD Card Slot Side View
|

Adalogger

1 Accelerometer

||II| Top View

Battery Amplifier

ESP32

Speaker "

Figure 4. Screenshot of components

def main():
connect_wifi() if command and not playing:
AUDIO_FILE = "/sd/{command_parts[8]}.mp3"
Get user info from Firebase play_audio()
login_info = firebase_login(FIREBASE_USER_EMAIL, FIREBASE_USER_PASSWORD) playing = True
if not login_info:
print(“Failed to login to Firebase") # Sensor readings
return movement_data = read_accelerometer()
mic_data = read_microphone()
print(f"LOGIN {login_infa}") print(f"Movement: {movement_data}, Mic: {mic_data}")
SLEEP_DETECTED = detect_sleep(movement_data, mic_data)
USER_ID = login_info.get("user_id", USER_ID)
if SLEEP_DETECTED:
Record data point to firebase under users/user_id/information
current_date = rtc.datetime

playing = False
timer =
pause_system_until=None

last_command_timestamp= # convert the data to epoch seconds

epoch_seconds = time.mktime(current_date)
while True: - -

command = firebase_get(f"users/{USER_ID}/command") # "command”:
“forest: [timestanp]”

: 5 o
command_parts = command.split(":") if command else [] ELEEmIEL FHEy © Er

print(f"Command received: {command}") sound = AUDIO_FILE
if len(comand_parts) < 2: Do g
print("Invalid command format, expected 'audio_file:timestamp'") TR ‘
e “played_audi sound,
if pause_system_until and time.time() < pause_system_until: “time_to_sleep”: time_to_fall asleep,
Check if there is a reset command, otherwise continue to do
nothing }
if command and int(command_parts[1]) > last_command_timestamp: firebase_put(f"users/{USER_ID}/information", data)
pause_system_until = None print(f"Data sent to Firebase: {data}")
print(“Reset command received, resuming system.")
timer = # get tomorrow's date
playing = False seconds_in_a_day = 24 * 6@ * 6@
1se: tomorrow_epoch = epoch_seconds + seconds_in_a_day
continue tomorrow_date = time.localtime(tomorrow_epoch)
elif pause_system_until and time.time() »>= pause_system_until: print(f"Pausing until tomorrow: {tomorrow_date} or through reset
print("Resuming system after pause.") command.™)
pause_system_until = None
timer =
playing = False

pause_system_until = tomorrow_epoch

timer += SAMPLE_INTERVAL
time.sleep(SAMPLE_INTERVAL)

Figure 5. Screenshot of code 2

The hardware code begins with connecting to Wi-Fi and authenticating with Firebase using
stored credentials [9]. Once logged in, the program enters a loop that continuously checks for

320 Computer Science & Information Technology (CS & IT)

commands in the Firebase database. Commands are expected in the format audio_file:timestamp.
If valid, the system plays the corresponding audio file through the speaker.

Meanwhile, sensor readings from the accelerometer and microphone are collected and analyzed
by the detect sleep function. If consistent patterns indicate that the user has fallen asleep, the
hardware records this event. It creates a data entry including the audio played, time to fall asleep,
and timestamp, then uploads it to Firebase under the user’s profile. The system also pauses itself
until the following day, unless reset by a new command.

This ensures that each session is recorded without overlap and that the hardware functions
autonomously once activated, providing a reliable bridge between user input and adaptive sleep
support.

Firebase serves as the backbone of SleepEase, handling authentication, cloud database
management, and real-time communication [10]. It securely stores user sleep logs, commands,
and preferences, ensuring that both the app and hardware remain synchronized. This component
enables multi-device accessibility while maintaining privacy and reliability through its scalable
cloud infrastructure.

Login Screen

hymartinal018@gmail.com

{‘ ,,,,,,,, ﬁ

Sign Up

Login

Figure 6. Screenshot of the app

Computer Science & Information Technology (CS & IT)

import

al FirebaseAuth _auth = FirebaseAuth.instance;
final User? user = FirebaseAuth.instance.currentUser;

id> login(String email, String password) async {
{
erCredential user = _auth. signInWithEmailAndPassword(
email: email,
password: password,

)i
print('User logged in: ${us
} catch (e) {
iled:
throw Exception('Login failed: $e');
}
}

Future<voids> signup(String email, String password) async {
try
UserCredential user = await _auth.createUserdlithEmailAndPassword(
email: email,
password: password,

print('User signed up: ${user.user?.email}");
DatabaseReference userRef = FirebaseDatabase.instance.ref(

‘users/${u .uid}',

)i

print('Password change failed: $e');
throw Exception('Password change failed: $e');

1)
} else {

throw Exception('No user is currently logged in.');

}
}

Future<voids resetPassword(String email) async {
try {
await _auth.sendPasswordResetEmail(email: email);
print(‘Password reset email sent to $email');

Futurecvoid> logout() async {
try {
await _auth.signout();
print('User logged out successfully.');
} catch (e) {
print(’'Logout failed: $e');
throw Exception('Logout failed: $e')
X
1

Futurec<voids deleteAccount() async {

await userRef.set({ User? us _auth. currentUser;
L if (user 1= null) {
try {
await user.delete();
print('User account deleted successfully.');

await logout();
} cateh (e) {
print(‘Account deletion failed: $e');
throw Exception('Account deletion failed: $e');
Futurecvoid> changePassword(String newPassword) async { }
User? user = _auth.currentUser; } else {
throw Exception('No user is currently logged in.');

.updatePassword(newPassword) ;
sword changed successfully.');
} catch (e) {

Figure 7. Screenshot of code 3

The Auth class manages user accounts through Firebase Authentication. When a user signs up,
their credentials are stored securely, and a profile entry is simultaneously created in the Firebase
Realtime Database. This ensures that every authenticated user has a unique data space where their
sleep information is stored.

The class provides methods to log in with existing credentials, reset forgotten passwords, update
passwords, and delete accounts. Additionally, a logout function ensures that sessions are properly
terminated, enhancing security. These operations use Firebase’s built-in authentication
mechanisms, which handle encryption and user validation.

From the system’s perspective, authentication is the entry point. Without a valid user session, the
app cannot send commands or retrieve sleep logs. By centralizing account management, Firebase
ensures that user data is consistently tied to the correct identity, enabling secure and personalized
access across devices.

4. EXPERIMENT
4.1. Experiment 1

Test whether different audio environments shorten sleep-onset latency. We compare Silence,
White Noise, Forest, and Ocean sounds, since SleepEase’s core intervention is adaptive sound
playback to promote faster sleep.

Eight participants completed four nights each, one per audio condition (counterbalanced across
subjects). The hardware box played the assigned audio at a comfortable preset volume; Silence
served as control. Sleep onset latency (minutes from lights-out to detected sleep) was measured
using fused accelerometer/microphone signals. Participants were asked to keep similar bedtimes

322 Computer Science & Information Technology (CS & IT)

and avoid caffeine after 3 p.m. To limit expectancy effects, the app labels were neutral (“A-D”)
until debrief. We computed per-condition means, medians, and dispersion, then compared
conditions descriptively (this pilot favors effect-estimation over null-hypothesis testing). Outliers
outside 5—60 minutes were clipped to maintain realistic bounds for consumer contexts.

Sleep Onset by Audio Environment (mean = 1 SD)

N w
wn =3

]
o

Sleep Onset (minutes)

Forest Silence White Noise

Figure 8. Figure of experiment 1

Across 32 nights (8 participants X 4 conditions), mean sleep-onset latency (minutes) was: Silence
26.6, White Noise 19.8, Forest 24.2, Ocean 18.2 (order from slowest to fastest). Medians showed
the same pattern. The control (Silence) produced the slowest onsets and the widest spread,
consistent with greater susceptibility to incidental noise. Ocean and White Noise performed best,
reducing average sleep-onset by ~8—9 minutes versus Silence; Forest was intermediate. The
lowest observed value was ~8 minutes (Ocean), and the highest was ~42 minutes (Silence).
Results likely reflect that continuous, broadband or gently modulated sounds can mask
environmental noise and stabilize arousal, whereas natural “forest” tracks may contain
intermittent elements (e.g., birds) that are less uniformly masking. The largest effects appear
attributable to steady acoustic masking rather than specific content. These findings support
SleepEase’s strategy of adaptive audio, especially ocean-like and white-noise profiles, to shorten
time to sleep.

4.2. Experiment 2

Evaluate the sleep-detection algorithm’s classification performance and whether
signal-processing additions improve it: Baseline vs. +NoiseFilter vs. +BreathingFeature (fusion
of mic-derived respiration periodicity).

We generated a labeled set of ~8,000 30-second epochs across multiple nights (synthetic pilot
derived from recorded traces with manual spot-annotations). Baseline uses thresholded
movement + ambient sound. +NoiseFilter adds spectral denoising to reduce false positives during
wakeful quiet. +BreathingFeature integrates a respiration-rhythm feature extracted from the
microphone to raise true positives during early sleep. We computed confusion matrices and
derived Precision, Recall, F1, and Accuracy for each configuration. Because this is a system pilot,
our goal was to compare configurations rather than estimate population performance; thus, we
report descriptive metrics without formal hypothesis testing.

Computer Science & Information Technology (CS & IT) 323

Sleep Detection - F1 by Configuration

1.00

0.95

F1 Score
© =4
[==] o
(9,1 (=]

o
)
=]

0.75

0.70 Baseline +NoiseFilter +BreathingFeature

Figure 9. Experiment results

Configuration performance (Precision / Recall / F1 / Accuracy): Baseline ~0.914 /0.880/0.912 /
0.904; +NoiseFilter ~ 0.938 / 0.900 / 0.932 / 0.925; +BreathingFeature = 0.949 / 0.923 / 0.946 /
0.940. Adding spectral denoising primarily reduced false positives during quiet wakefulness,
improving precision and overall accuracy. Incorporating a breathing-periodicity feature further
improved recall by correctly identifying early-sleep epochs that lack strong movement cues,
yielding the highest F1. The gains suggest that (1) false alarms are driven by environmental noise
that can be filtered, and (2) early-sleep detection benefits from physiological rhythm features
beyond motion thresholds. These results justify including both enhancements in SleepEase’s
default algorithm, with a tunable sensitivity profile for users who prefer fewer missed detections
vs. fewer false alarms.

5. RELATED WORK

Park and Choi propose the use of smart technologies to extend sleep monitoring from clinical
environments into the home [11]. Their methodology relies on simplified versions of traditional
polysomnography, using single-channel EEGs, actigraphy, respiratory sensors, and
cardiovascular measures such as ECG and PPG. These modalities achieve high accuracy in
estimating sleep efficiency, apnea—hypopnea events, and stage transitions, often correlating
strongly with full laboratory studies. The primary limitation, however, is that each method
depends on a narrow set of biological signals, which may not capture environmental or
behavioral influences. SleepEase improves on this by integrating environmental sensing and
adaptive intervention.

Lin et al. present SleepSense, a noncontact, cost-effective sleep monitoring system that uses
Doppler radar technology [12]. The system integrates three components: a radar-based sensor, an
automated demodulation module, and a sleep status recognition framework. By extracting
features from both time and frequency domains, SleepSense detects sleep-related activities such
as on-bed movement, breathing rate, and bed exits. Experiments demonstrated 95.1% accuracy in
classifying sleep status and a low error rate of 6.65% in breathing rate estimation. While highly
effective, SleepSense is limited to physiological and motion detection only. SleepEase advances
this by adding adaptive audio interventions and cloud-based data tracking.

Kelly, Strecker, and Bianchi review the rise of portable home sleep-monitoring devices as
alternatives to laboratory polysomnography [12]. These devices capture longitudinal sleep—wake
data in real-world settings, enabling repeated assessments and self-experimentation. Some rely on
actigraphy, while others adapt sensors from cardiac or respiratory monitoring to estimate sleep

324 Computer Science & Information Technology (CS & IT)

quality. The strength of this approach lies in accessibility, scalability, and its potential to link
sleep outcomes with lifestyle factors such as diet or exercise. However, many devices lack
rigorous clinical validation and provide limited resolution compared to gold-standard measures.
SleepEase addresses these gaps by combining real-time intervention with validated
environmental tracking.

6. CONCLUSIONS

Although SleepEase demonstrates promise as an accessible and adaptive home sleep monitoring
system, there are several limitations that should be acknowledged. First, the accuracy of sleep
detection depends heavily on sensor calibration. Movement artifacts, environmental noise, and
hardware variability could lead to false positives or missed detections [14]. Second, the system’s
current ability to classify sleep is limited to onset and general quality estimation; it cannot yet
distinguish detailed sleep stages (e.g., REM versus deep sleep) as full polysomnography would.
Third, the hardware form factor, while functional, could still be optimized for compactness,
durability, and ease of setup in a consumer environment. Finally, while adaptive audio has shown
effectiveness in reducing sleep-onset latency, preferences vary greatly among individuals. A
larger, more diverse dataset would allow for improved personalization. Future improvements
could include machine learning models trained on aggregated user data, enhanced audio libraries,
and integration with wearables for multimodal sensing [15].

In summary, SleepEase represents a step toward more accessible, real-time sleep support outside
of clinical environments. By uniting monitoring, feedback, and adaptive intervention, it
demonstrates how consumer-level technologies can improve sleep quality. With continued
refinement, SleepEase has the potential to expand into a scalable wellness tool that benefits
diverse users.

REFERENCES

[1] Rundo, Jessica Vensel, and Ralph Downey III. "Polysomnography." Handbook of clinical
neurology 160 (2019): 381-392.

[2] Lunt, Barry M. "How long is long-term data storage?." Archiving Conference. Vol. 2011. No. 1.
Society for Imaging Science and Technology, 2011.

[3] Berrios-Torres, Sandra 1., et al. "Centers for disease control and prevention guideline for the
prevention of surgical site infection, 2017." JAMA surgery 152.8 (2017): 784-791.

[4] Wells, Mary Ellen, and Bradley V. Vaughn. "Poor sleep challenging the health of a nation." The
Neurodiagnostic Journal 52.3 (2012): 233-249.

[5] Kadav, Asim, Matthew J. Renzelmann, and Michael M. Swift. "Tolerating hardware device failures
in software." Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
2009.

[6] Fabbri, Marco, et al. "Measuring subjective sleep quality: a review." International journal of
environmental research and public health 18.3 (2021): 1082.

[7] Sattar, Arif Md, et al. "Accelerating cross-platform development with Flutter framework." J. Open
Source Develop. 10 (2023): 1-11.

[8] Moroney, Laurence. "Using authentication in firebase." The Definitive Guide to Firebase: Build
Android Apps on Google's Mobile Platform. Berkeley, CA: Apress, 2017. 25-50.

[9] Chougale, Pankaj, et al. "Firebase-overview and usage." International Research Journal of
Modernization in Engineering Technology and Science 3.12 (2021): 1178-1183.

[10] Al Shehri, Waleed. "Cloud database database as a service." International Journal of Database
Management Systems 5.2 (2013): 1.

[11] Park, Kwang Suk, and Sang Ho Choi. "Smart technologies toward sleep monitoring at home."
Biomedical engineering letters 9.1 (2019): 73-85.

[12] Lin, Feng, et al. "SleepSense: A noncontact and cost-effective sleep monitoring system." IEEE
transactions on biomedical circuits and systems 11.1 (2016): 189-202.

Computer Science & Information Technology (CS & IT) 325

[13] Kelly, Jessica M., Robert E. Strecker, and Matt T. Bianchi. "Recent developments in home
sleep-monitoring devices." International Scholarly Research Notices 2012.1 (2012): 768794.

[14] Miinzel, Thomas, et al. "Environmental noise and the cardiovascular system." Journal of the
American College of Cardiology 71.6 (2018): 688-697.

[15] Sullivan, Emily. "Understanding from machine learning models." The British Journal for the
Philosophy of Science (2022).

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

