

David C. Wyld et al. (Eds): SIGI, CSTY, AI, NMOCT, BIOS, AIMLNET, MaVaS, BINLP – 2025

pp. 327-342, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151926

OPTIMIZING CNN MODELS FOR REAL-
TIME HARDWARE CLASSIFICATION ON

RESOURCE CONSTRAINED HARDWARE: A

RASPBERRY PI 5 POWERED HARDWARE

SORTING SYSTEM

Jeremy Wang 1, Jonathan Sahagun 2

1 Lexington High School, Lexington, MA, United States
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

Within a work environment, the cleanliness and organization of tools contribute greatly to

the workers’ mental state and psychological well-being, allowing for more creativity and

productivity in the workplace [1]. This is largely an issue within the industrial industry,

where machines need to be built, maintained, and repaired. While being automated in

larger factories, the tedious task of sorting hardware, such as screws, nuts, and bolts, is

often performed manually in the context of smaller-scale factories and repair centers.

However, the tediousness of this task often undermines the importance of the task and is

often neglected or performed poorly. Existing industrial solutions to this issue are

expensive and inflexible. This paper presents a low-cost, autonomous hardware sorting

system that uses a custom-built Convolutional Neural Network (CNN) object detection

model trained using TensorFlow and Keras. The system runs entirely on a Raspberry Pi 5

and uses a Microsoft Lifecam Studio webcam together with an H-bot gantry for mechanical

sorting. The primary focus of research is on the optimization of the CNN for real-time

deployment on resource-constrained hardware. Multiple lightweight architectures such as

YOLOv8-Nano and MobileNetV2-SSD are proposed for examination and evaluated. A

custom dataset was created and labeled using Roboflow, with images consisting of three

hardware classes: screws, nuts, and standoffs. The trained model reached a mean average

precision (mAP) of 91.5%, with ∼125 ms for each inference while on the Raspberry Pi.

When integrated with the mechanical system, the full pipeline sorted hardware at an

average rate of 18.6 parts per minute with an accuracy of 90.0%. As the project is built

with a budget of $300, this project demonstrates the feasibility of deploying lightweight

deep learning models for automation tasks on embedded systems.

KEYWORDS

Convolutional Neural Network, Keras, Tensorflow, Edge AI, Model Optimization

1. INTRODUCTION

In industrial settings, productivity depends not only on efficient workflows, but also on the

organization of tools and hardware. While organization in traditional companies with office jobs

is simpler and cheaper to perform, organization in industrial facilities can be much more costly.

Within these companies, the cost can be largely attributed to the organization of various tools and

hardware used to manufacture and repair. After usage, tools and hardware are often scattered

https://airccse.org/
https://airccse.org/csit/V15N19.html
https://doi.org/10.5121/csit.2025.151926

328 Computer Science & Information Technology (CS & IT)

about, and misplaced tools cangreatly reduce the efficiency of workers who have subsequent

shifts. One of the reasons that this issue is commonly neglected is its tediousness. When tasked to

sort hardware, a worker is given a pile of mixed-up pieces of hardware of all different shapes and

sizes and is required to examine the pieces of hardware one-by-one and place them into

respective containers. Depending on the size of the company and the scale of the product that is

being worked with, the number of different varieties of fasteners and sizes of hardware can range

on a large scale. McMasterCarr’s catalog, commonly used by both hobbyists and industries,

consists of over 200,000 items [2]. This complexity combined with tediousness is why the task is

often neglected or performed poorly. In addition, this is also one of the main reasons why the

sorting is difficult to automate. Existing solutions are either extremely expensive or inflexible.

While larger companies may be able to afford a custom-built sorting system or hire specialized

manual sorters, the problem is exacerbated in smaller businesses. Many smaller businesses end

up with inefficient manual sorting processes, leading to a cycle of decreased productivity, lower

worker morale, and reduced operation output.

Recent advancements in computer vision and machine learning have made it increasingly

possible to automate complex visual detection tasks using affordable systems. However, doing so

on resource-constrained hardware has significant challenges such as limited processing power

and memory. Most popular object classification and detection models such as YOLO are not

directly suited for such environments without significant optimization or third-party hardware

acceleration. To address these issues, this paper presents a low-cost hardware sorting system built

around an optimized custom-trained CNN using TensorFlow and Keras. The model is designed to

perform on a Raspberry Pi 5 without external hardware support and uses live video input from a

Microsoft Lifecam Studio webcam. Detected items are then sorted with a two-axis H-bot gantry

system to bins corresponding to each hardware class. The key contribution of this research is in

the development and optimization of the CNN model. Several lightweight architectures including

YOLOv8-Nano, Ultralytics’ YOLOv11-Nano, EfficientDet-D0, and MobileNetV2-SSD were

evaluated based on inference latency, power usage, and detection accuracy. With the focus on

model architecture and deployment-specific constraints, this project demonstrates the feasibility

of building low-cost and scalable vision systems for automation in constrained environments. The

complete system was built for under $300 USD, offering a scalable solution where industrial

alternatives are either unaffordable or impractical.

While prior work has already demonstrated CNN deployment on embedded platforms such as the

Raspberry Pi, most studies rely on external accelerators or present isolated inference performance

without system-level integration. As a result, there remains limited understanding of how

different lightweight detection architectures and optimization strategies behave under the strict

latency and resource constraints of unassisted Raspberry Pi hardware. This work addresses that

gap by systematically evaluating four representative lightweight object detection modelstrained

on a custom dataset of industrial hardware components. Each model was benchmarked under

multiple quantization strategies and evaluated not only for detection accuracy but also for

inference latency, memory usage, and real-time viability when integrated into a robotic sorting

pipeline. By quantifying these trade-offs, this study contributes new empirical evidence for

deploying CNN-based object detection systems on resource-constrained devices, while

demonstrating their feasibility for low-cost industrial automation tasks.

Computer Science & Information Technology (CS & IT) 329

Figure 1. Overall architecture of the hardware sorting system, including camera input, Raspberry Pi

inference, and Firebase Database. Pi Image [3].

2. LITERATURE REVIEW

2.1. Sorting Systems

Mechanical sorting has long been employed in industrial settings, particularly for homogeneous

or size-based classification tasks. Well-made mechanical systems are extremely efficient and do

their designated task exceptionally well with little to no errors. Superior mechanical systems must

be created rigorously and tuned for tolerance toward issues such as jams and processing of

foreign materials. These systems often use vibratory feeders, gravity chutes, and mechanical

sieves to sort parts by diameter, weight, or shape. An example of this is BubsBuilds’ sieve

design, which relies on the different sizes of screw heads (Fig. 3).

However, due to increasingly large amounts of specialization needed for each new classification

of hardware added to a factory’s catalog, the systems can get extremely expensive and bulky at

large scales. As such, mechanical sorting systems that appear in factories are considerably more

complex and expensive. An example is Feiyu Machinery’s industrial level hardware sorting line

(Fig. 4).

Larger-scale sorting may rely on techniques such as industrial optical inspection combined with

robotic pick-and-place, such as those made by Key Technology or Buhler. These systems are

effective as they use computer vision and mechanical movement to sort the hardware efficiently,

yet they generally cost tens of thousands of dollars and are designed for fixed, repetitive tasks.

An example of a successful pick-and-place style system is that of Apera AI’s robotic arm

showcased at Automate 2023 [7]. Due to the large costs, these systems typically cannot be used

by small workshops or educational institutions. Several hobbyist projects have explored sorting

as well, using Arduino-based mechanical sorters and OpenCV-based color thresholding, but these

lack the consistency and flexibility required for deployment in dynamic environments [8]. These

approaches often perform poorly in cases where objects overlap or with when there is a larger

variety of hardware [9].

330 Computer Science & Information Technology (CS & IT)

Figure 2. The completed system, including the Raspberry Pi 5, webcam, and H-bot gantry used for sorting

Figure 3. A section analysis of BubsBuilds’ 3D printable sieve CAD model [4].

Figure 4. A photo looking across Feiyu Machinery’s hardware sorting and packaging line [5].

Computer Science & Information Technology (CS & IT) 331

2.2. Deep Learning for Object Classification

Traditional computer vision methods, such as edge detection, Hough transforms, and template

matching, used to be standard for image processing. However, these methods are not

generalizable and perform poorly in real-world scenarios where lighting varies or objects are

rotated [9, 10, 11, 12].

Since the introduction of AlexNet, Convolutional Neural Networks (CNNs) have revolutionized

object image processing tasks. Other architectures that built offAlexNet such as VGGNet,

ResNet, and DenseNet improved accuracy by increasing depth [13, 14, 15, 16]. These models,

however, require significant processing resources, making them difficult to work with on devices

with limited processing power.

In object detection specifically, two-stage models like Faster R-CNN have higher accuracy but

slower inferences, making them unsuitable for real-time applications on devices with limitations

[17]. Single-shot detectors like YOLO, SSD, and RetinaNet have faster performance by

combining region proposal and classification in one pass, however running stock models in real

time still require dedicated GPUs or TPUs [18, 19, 20]. The YOLO models have improved

greatly over time, and as such, YOLOv5 and YOLOv8 are quite widely used. However, they still

require optimization for use on hardware like the Raspberry Pi.

Other methods such as feature extraction algorithms (SIFT, SURF, or HOG) are rarely used in

real-time sorting applications due to slow processing times and lighting variations [22, 23, 24].

2.3. Lightweight CNN Architectures

Deploying deep learning models on constrained devices requires both architectural efficiency and

post-training optimization. Lightweight models such as MobileNet and EfficientNet-Lite are

designed for mobile use, using methods like depthwise separable convolutions and inverted

residual blocks [25, 26, 27, 28].

Figure 5. Latency vs Accuracy comparisons of MobileNet v2, ResNet 50, Inception v4, and EfficientNet-

lite models (integer-only quantized models running on Pixel 4 CPU with 4 threads) [29].

Model compression techniques are often used in reducing size and inference time of models,

optimizing them for limited hardware. Some commonly used are pruning, quantization, and

knowledge distillation. Network pruning works by removing redundant connections specific

weights from the model post-training [30, 31, 32]. Quantization converts model weights to lower

precision, reducing memory usage [33]. Knowledge distillation trains a smaller model to mimic a

larger network’s outputs [34].

332 Computer Science & Information Technology (CS & IT)

Figure 6. Illustration of pruning and quantization optimization methods [35].

Frameworks like TensorFlow Lite and ONNX Runtime have pipelines using such optimizations,

but tradeoffs in performance and accuracy must be considered.

2.4. Vision-Based Sorting on Raspberry Pi

The Raspberry Pi has been extremely popular in medium size hobby projects due to its

affordability and user-friendliness. The newer Raspberry Pi 5 model with 8GB RAM has a price-

point of $80 and may be lower when bought second-hand or when buying an older version such

as the 4B or Pico [36]. The newer model is beginning to be used more for AI due to its new

additions of increased CPU performance and GPU acceleration, allowing for real-time inferences

using smaller CNNs without external hardware accelerators like the Google Coral TPU or Nvidia

Jetson Nano (Fig. 7).

Figure 7. Comparison of MobileNetv3, ResNet50, MobileNet SSD, and YOLOv4-Tiny AI models on

Raspberry Pi 4 vs 5 [37].

Previous successful work includes real-time traffic sign recognition and face

detection/recognition [38, 39]. For this project, latency is a clear bottleneck, especially with

larger models, as camera input, image preprocessing, model inference, and mechanical actuation

must all occur in sequence within time limits. This means that model optimization is crucial.

Computer Science & Information Technology (CS & IT) 333

3. SYSTEM DESIGN AND METHODOLOGY

The complete system consists of several main subsystems: the vision module, classification

module, actuation module, and mobile application. All used codes can be found in appendix A,

CAD files in appendix B, and the bill of materials in appendix C.

3.1. Vision Module

The vision module captures and preprocesses images for classification. The system is

implemented with a Microsoft Lifecam Studio webcam. The camera runs with a max of 30 fps at

1080p (1920x1080 pixels) without any other loads on the Raspberry Pi. It is mounted vertically,

facing the sorting area attached to the main gantry frame with 2 1/2”OD PVC pipes and 3D

printed adapters (Figure 8). The camera connects to the Raspberry Pi5 via USB 2.0. For

consistency in lighting reflections and to help with edge detection, 2 12’x 24’’ black ABS sheets

are placed underneath the gantry. Using the Python OpenCV library, several optimizations can be

applied to the images captured from the webcam before processing. First, each image is cropped

to a set region of interest (ROI). The images are in RGB captured with a resolution of 1080p,

which OpenCV converts to a 3D NumPy array of size: 1920 ×1080×3. To reduce the amount of

unnecessary information processed, it is cropped to size, centered around the work area (Figure.

9): 420×420×3. This reduces the number of values being fed into the AI model each frame from

6220800 to 529200, a nearly 12 times reduction in data processed per frame.

Figure 8. Microsoft Lifecam Studio webcam setup

334 Computer Science & Information Technology (CS & IT)

Figure 9. Comparison of before and after cropping images (Left: Uncropped [1920 × 1080]; Right:

Cropped [420 × 420]).

Gaussian blurring is then applied to the image with a 3 × 3 kernel size to reduce sensor noise and

increase consistency of the model [40, 41]. The kernel size used is 3 × 3 with k = 1, and standard

deviation σ = 1. The cv.filter2D() functionfrom OpenCV does this [42].

Figure 10.Image before and after gaussian blurring [43].

The image is then processed through Contrast-Limited Adaptive Histogram Equalization

(CLAHE) to enhance local contrasts [44]. Unlike global histogram equalization, which enhances

contrast uniformly accross the entire image, CLAHE enhances on smaller regions of the image

while avoiding overamplification of noise. This helps especially when lighting scenarios vary.

Images are then resized to 256 x 256 for compatibility with the neural network and then

normalized by scaling pixel intensities of each channel from 0 to 1.

Figure 11. Image before and after CLAHE [45].

Computer Science & Information Technology (CS & IT) 335

As the camera is mounted at a fixed position above the sorting bed, every image has a consistent

perspective distortion. Instead of detecting a planar reference marker such as an ArUco tag, the

camera’s pose is assumed to be constant. So, a one-time calibration is needed to compute the

homography matrix Hϵ𝑅3𝑥3 that maps points from the perspective view to that of an orthographic

view [46]. OpenCV’s ”warpPerspective” function converts the images once the homography

matrix is found.

3.1. Actuation Module

The actuation module is the subsystem that performs the physical sorting of the hardware. It is

based on an H-bot gantry mechanism controlled through the Raspberry Pi with the

”DigitalOutputDevice” class in the ”gpiozero” Python library. Two pancake NEMA 17 stepper

motors drive the X-Y planar motion using GT2 belts. 8mm OD steel rods act as rails for the end

effector. The frame is 3D printed out of Tough PLA, being relatively inexpensive yet reliable.

The end effector is mounted on a rack-and-pinion (Z-axis), also controlled by a NEMA 17

stepper motor. The end effector itself is a 3D printed claw shaped specifically to pick up different

types of hardware. The actuation module also includes five limit switches, to prevent unexpected

breakages.

Figure 12. The H-Bot gantry of the system, with the end effector removed.

To move the end effector accurately, a virtual grid of size 64x64 is used. The center of a tensor

taken after model inference is taken by:

Table 1: Gantry Performance Metrics

to that position based on the coordinates of the tensor’s center, lowers the end effector, and brings

the piece of hardware to the bin it corresponds to.

3.2. User Mobile Application

To provide user interaction and accessibility, a mobile application was developed using Flutter

and Android Studio. The application communicates to the Pi through Firebase’s realtime

database, allowing communication over long-distance. The application has an account system to

336 Computer Science & Information Technology (CS & IT)

link the raspberry pi to the user’s mobile device. The app has several features, the first being the z

axis calibration. As the actuation module does not have a limit switch on the z-axis, the user

needs to manually calibrate the z axis by setting the zero with the app when the end effector is

touching the sorting bed. Another feature is that the user starts the sorting by sending a start

signal from the app. When sorting, the app retrieves images from the real-time firebase database,

producing a live feed of the sorting for the user. Errors are also shown to the user through the

application.

Figure 13. Screenshot of the Application

3.3. Training and Methodology

To evaluate detection across different CNN models, various models with different settings were

trained on the same dataset. The core objective was to find a model + settings that allowed for

both accurate segmentation and computational efficiency. All training was done on a workstation

using an AMD Radeon Pro W7500 GPU and all models were evaluated on a Raspberry Pi 5 with

8 GB RAM.

A custom dataset was made by manually labeling 505 frames collected from the vision module

described in section A. Each frame was annotated in Roboflow with 200 frames of screws, 100 of

nuts, and 100 standoffs. The dataset was split 70% training, 20% testing, and 10% validation. The

following data augmentations were applied to reduce

where x1, x2, y1, y2 are the corners of the bounding box. The Raspberry Pi then sends the signals

to move the end effect or overfitting: 15◦ rotations and contrast adjustment, with the total dataset

consisting of 656 images (which is sufficient due to controlled lighting, camera position, and

webcam conditions). All images were sized to 256 × 256 before training.

Several CNN-based object detection models were trained using Tensorflow and Keras: YOLOv8-

Nano, MobileNetV2-SSD, EfficientDet-D0, Yolov11-Nano with Ultralytics [47]. All models

predict bounding box coordinates with class probabilities.

Computer Science & Information Technology (CS & IT) 337

Models were trained with the Adaptive Moment Estimation (ADAM) optimizer [48]. The models

were trained for 80 epochs each and batch size 16. After training, models were converted to the

PyTorch .pt format and quantized (float16 and int8) using the TensorFlow Lite Post-Training

Quantization toolkit.The models are then downloaded onto the Raspberry Pi, and each tested with

20 images each where mAP, precision, and inference times were recorded.

4. RESULTS

Performance was averaged over 20 randomized test images, each containing multiple hardware

components under controlled lighting and over the same background. Models trained with the

Adam optimizer consistently outperformed those using RMSProp in accuracy across training

epochs.The quantization reduced the sizes of the models by ~60% and run ~15 ms faster per

inference with <1% accuracy losses.

Table 2: Quantitative evaluation of the tested models.

YOLOv11-Nano is the most favorable for embedded real-time use, as it performed the best

across all categories. YOLOv8-Nano performed slightly worse than YOLOv11 mainly in mAP,

power draw, and inference time. EfficientDetD0 had the second highest mAP but had

significantly higher latency. MobileNetV2-SSD lacked in both inference time and accuracy

compared to the other three. All models were evaluated on live feed images. All models also had

trouble and occasionally had false negatives when pieces of hardware were overlapped. This is

likely due to lighting conditions and the reflectivity of some pieces of hardware causing stacked

hardware to no longer appear to be a type of hardware the CNN recognizes.

5. DISCUSSION

This evaluation of various lightweight models on the Raspberry Pi indicates the need of balance

between accuracy and speed of models. YOLOv11-Nano was chosen as the final model due to its

fast inference times (125ms) and detection accuracy. EfficientDet-D0, while being the second

most accurate of the models tested (mAP@0.5 0.902), had a significantly higher inference time

(325ms), almost double that of YOLOv8-Nano. In larger or more constrained systems, this small

difference in inference time decides which model is used in a specific application. This shows a

big challenge in AI models on resource-constrained devices: larger models with higher accuracies

designed for desktop or cloud environments often fail to meet the latency or processor

requirements of that of embedded systems. Also, MobileNetV2-SSD although lightweight and

with acceptable inference times, was less reliable than YOLO models.

An additional consideration is robustness under deployment variability. Although the dataset and

testing pipeline controlled for lighting, camera pose, and perspective distortion, reflections on

metallic hardware or shadows introduced by environmental changes may impair detection. This

points to a broader question of how embedded vision systems generalize when removed from

338 Computer Science & Information Technology (CS & IT)

laboratory settings. Domain adaptation, active learning pipelines, or real-time recalibration could

strengthen resilience in uncontrolled factories or workshops.

From a systems integration perspective, the results illustrate the critical role of inference speed as

a bottleneck in robotic manipulation loops. A detector operating at 8 fps versus 3 fps both alters

output speeds but also shifts the design requirements of the actuation system. As a result, model

selection for embedded deployments must be evaluated within an end-to-end framework rather

than in isolation.

Beyond the hardware-sorting task, the methodology has implications for scalable automation in

small- to medium-sized enterprises (SMEs). Many SMEs lack the capital to invest in industrial-

grade vision systems costing tens of thousands of dollars. Showing that reliable detection and

sorting can be achieved for under $300 suggests automation for workshops, maker spaces, and

prototyping environments. Additionally, the modular design of the H-bot gantry and mobile

application interface makes the system extensible: the same platform could be adapted to sort

electronic components, agricultural products, or recyclables with minimal dataset retraining.

Future research should explore hybrid approaches. Techniques such as knowledge distillation

could compress accurate but heavy detectors into lightweight student networks, while neural

architecture search (NAS) could automate the exploration of architectures tuned to Raspberry Pi-

class devices. Leveraging temporal information across video frames, rather than treating each

frame independently, could reduce single-frame errors and improve reliability in cluttered scenes

[49, 50].

6. CONCLUSIONS

This paper presented the design, training, optimization, and deployment of a low-cost hardware

sorting system powered by a Raspberry Pi 5. By evaluating and comparing multiple lightweight

CNN-based object detection architectures, this work identified the optimal trade-offs between

detection accuracy, inference latency, and resource consumption necessary for practical

embedded deployment

The YOLOv11-Nano model achieved a mAP of 91.5% using inferences of around 125 ms on the

Raspberry Pi. This speed and precision allow real-time robotic sorting of screws, nuts, and

standoffs with high reliability. The system has a low hardware cost (under $300 USD) and a 3D

printable modular design to emphasize its accessibility for small workshops and prototyping

scenarios.

The broader implication is that affordable and modularautomation can extend beyond large

enterprises into small workshops, prototyping labs, and educational environments. With minor

dataset retraining, the system could scale to diverse fields, from electronic component sorting to

agricultural packaging. As embedded AI hardware continues to evolve, integrating accelerators

such as Google Coral TPU or NVIDIA Jetson modules could further expand system capacity

while staying affordable.

This research demonstrates that embedded AI is not limited to isolated inferences but can support

complete systems with real industrial relevance. The project provides a blueprint for future

research into low-cost, scalable, and resilient automation systems, addressing the gap between AI

models and practical deployment in resource-constrained environments.

Computer Science & Information Technology (CS & IT) 339

REFERENCES

[1] Horgan, Terrence G., Noelle K. Herzog, and Sarah M. Dyszlewski. "Does your messy office make

your mind look cluttered? Office appearance and perceivers' judgments about the owner's

personality." Personality and Individual Differences 138 (2019): 370-379.

[2] Ely, Robert, and Anne E. Adams. "Unknown, placeholder, or variable: what is x?." Mathematics

Education Research Journal 24.1 (2012): 19-38.

[3] Jolles, Jolle W. "Broad‐scale applications of the Raspberry Pi: A review and guide for biologists."

Methods in Ecology and Evolution 12.9 (2021): 1562-1579.

[4] Hoelz, Kevin, Lukas Kleinhans, and Sven Matthiesen. "Wood screw design: influence of thread

parameters on the withdrawal capacity." European Journal of Wood and Wood Products 79.4

(2021): 773-784.

[5] Jia, Feiyu, Yongsheng Ma, and Rafiq Ahmad. "Review of current vision-based robotic machine-

tending applications." The International Journal of Advanced Manufacturing Technology 131.3

(2024): 1039-1057.

[6] Ibrahim, Isa Ali, and Muhammad Ahmad Baballe. "The Ups and Downs of Robotic Arms:

Navigating the Challenges." Journal homepage: https://gjrpublication. com/gjrecs 4.05 (2024).

[7] Snelson, Chareen. "YouTube across the disciplines: A review of the literature." MERLOT Journal

of Online learning and teaching (2011).

[8] Sebell, Rasmus, and George Wahlberg. "Skittles and M&M's sorting machine: Design and

development of a color sorting machine." (2024).

[9] Lin, Chao‐wen, et al. "The effects of reflected glare and visual field lighting on computer vision

syndrome." Clinical and Experimental Optometry 102.5 (2019): 513-520.

[10] Zangana, Hewa Majeed, Ayaz Khalid Mohammed, and Firas Mahmood Mustafa. "Advancements in

edge detection techniques for image enhancement: A comprehensive review." International Journal

of Artificial Intelligence & Robotics (IJAIR) 6.1 (2024): 29-39.

[11] Hassanein, Allam Shehata, et al. "A survey on Hough transform, theory, techniques and

applications." arXiv preprint arXiv:1502.02160 (2015).

[12] Hashemi, Nazanin Sadat, et al. "Template matching advances and applications in image analysis."

arXiv preprint arXiv:1610.07231 (2016).

[13] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep

convolutional neural networks." Advances in neural information processing systems 25 (2012).

[14] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image

recognition." arXiv preprint arXiv:1409.1556 (2014).

[15] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016.

[16] Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017.

[17] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal

networks." Advances in neural information processing systems 28 (2015).

[18] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016.

[19] Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision.

Cham: Springer International Publishing, 2016.

[20] Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international

conference on computer vision. 2017.

[21] Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017.

[22] Cruz-Mota, Javier, et al. "Scale invariant feature transform on the sphere: Theory and applications."

International journal of computer vision 98.2 (2012): 217-241.

[23] Bay, Herbert, et al. "Speeded-up robust features (SURF)." Computer vision and image

understanding 110.3 (2008): 346-359.

[24] Kitayama, Masaki, and Hitoshi Kiya. "HOG feature extraction from encrypted images for privacy-

preserving machine learning." 2019 IEEE international conference on consumer electronics-Asia

(ICCE-Asia). IEEE, 2019.

[25] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision

applications." arXiv preprint arXiv:1704.04861 (2017).

340 Computer Science & Information Technology (CS & IT)

[26] Tan, Mingxing, and Q. V. Le. "EfficientNet: rethinking model scaling for convolutional neural

networks. CoRRabs/1905.11946 (2019)." arXiv preprint arXiv:1905.11946 (1905).

[27] Chollet, François. "Xception: Deep learning with depthwise separable convolutions." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2017.

[28] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2018.

[29] Sangar, Gopal, and Velswamy Rajasekar. "Optimized classification of potato leaf disease using

EfficientNet-LITE and KE-SVM in diverse environments." Frontiers in Plant Science 16 (2025):

1499909.

[30] LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural

computation 1.4 (1989): 541-551.

[31] Hassibi, Babak, David G. Stork, and Gregory J. Wolff. "Optimal brain surgeon and general network

pruning." IEEE international conference on neural networks. IEEE, 1993.

[32] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149

(2015).

[33] Banner, Ron, Yury Nahshan, and Daniel Soudry. "Post training 4-bit quantization of convolutional

networks for rapid-deployment." Advances in neural information processing systems 32 (2019).

[34] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network."

arXiv preprint arXiv:1503.02531 (2015).

[35] Gupta, Manish, and Puneet Agrawal. "Compression of deep learning models for text: A survey."

ACM Transactions on Knowledge Discovery from Data (TKDD) 16.4 (2022): 1-55.

[36] Johnston, Steven J., and Simon J. Cox. "The raspberry Pi: A technology disrupter, and the enabler

of dreams." Electronics 6.3 (2017): 51.

[37] Minott, David, Salman Siddiqui, and Rami J. Haddad. "Benchmarking Edge AI Platforms:

Performance Analysis of NVIDIA Jetson and Raspberry Pi 5 with Coral TPU." SoutheastCon 2025.

IEEE, 2025.

[38] Isa, Ida Syafiza Binti Md, Ja Yeong Choy, and Nur Latif Azyze Bin Mohd Shaari. "Real-time traffic

sign detection and recognition using Raspberry Pi." International Journal of Electrical and Computer

Engineering 12.1 (2022): 331.

[39] Zamir, Muhammad, et al. "Face detection & recognition from images & videos based on CNN &

Raspberry Pi." Computation 10.9 (2022): 148.

[40] Gedraite, Estevão S., and Murielle Hadad. "Investigation on the effect of a Gaussian Blur in image

filtering and segmentation." Proceedings ELMAR-2011. IEEE, 2011.

[41] Haddad, Richard A., and Ali N. Akansu. "A class of fast Gaussian binomial filters for speech and

image processing." IEEE Transactions on Signal Processing 39.3 (1991): 723-727.

[42] Gangal, Ayushe, Peeyush Kumar, and Sunita Kumari. "Complete scanning application using

OpenCv." arXiv preprint arXiv:2107.03700 (2021).

[43] Dobusch, Leonhard, and Gordon Mueller-Seitz. "Strategy as a practice of thousands: the case of

Wikimedia." Academy of Management Proceedings. Vol. 1. Briarcliff Manor, NY 10510: Academy

of Management, 2012.

[44] Pizer, Stephen M., R. Eugene Johnston, James P. Ericksen, Bonnie C. Yankaskas, Keith E. Muller

Medical Image Display Research Group. "Contrast-limited adaptive histogram equalization: Speed

and effectiveness.”Proceedings of the first conference on visualization in biomedical computing,

Atlanta, Georgia. Vol. 337. 1990.

[45] Reza, Ali M. "Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-

time image enhancement." Journal of VLSI signal processing systems for signal, image and video

technology 38.1 (2004): 35-44.

[46] Hamey, Leonard GC, Jon A. Webb, and I-Chen Wu. "Low-level vision on Warp and the Apply

programming model." Parallel computation and computers for artificial intelligence. Boston, MA:

Springer US, 1988. 185-199.

[47] Glenn Jocher et al., “UltralyticsGithub Repository”. https://github.com/ultralytics/ultralytics

[48] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint

arXiv:1412.6980 (2014).

[49] Scheffel, Jan, and Kristoffer Lindvall. "Temporal smoothing-A step forward for time-spectral

methods." Computer Physics Communications 270 (2022): 108173.

Computer Science & Information Technology (CS & IT) 341

[50] Liu, Jiaming, et al. "M3SOT: Multi-frame, multi-field, multi-space 3D single object tracking."

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 4. 2024.

APPENDIX A: SUPPLEMENTARY MATERIAL

A. Actuation Module Code

B. Training Dataset

The dataset used for training the models of this project can be found with this link:

https://universe.roboflow.com/ sortingpi/hardwaredetection-ag0gc

342 Computer Science & Information Technology (CS & IT)

Appendix B: Project CAD Files

CAD files for the project can be downloaded with this link:

https://www.dropbox.com/scl/fi/e5hl25m6b0duf7nwmouhi/

SortingPiCADFiles.zip?rlkey=ju0mcuhwfijsk8vxekox0os0k&st=jox8arrj&dl=1

Appendix C: Bill of Materials

Table 3: Bill of Materials.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

