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ABSTRACT 
 
Within a work environment, the cleanliness and organization of tools contribute greatly to 

the workers’ mental state and psychological well-being, allowing for more creativity and 

productivity in the workplace [1]. This is largely an issue within the industrial industry, 

where machines need to be built, maintained, and repaired. While being automated in 

larger factories, the tedious task of sorting hardware, such as screws, nuts, and bolts, is 

often performed manually in the context of smaller-scale factories and repair centers. 

However, the tediousness of this task often undermines the importance of the task and is 

often neglected or performed poorly. Existing industrial solutions to this issue are 

expensive and inflexible. This paper presents a low-cost, autonomous hardware sorting 

system that uses a custom-built Convolutional Neural Network (CNN) object detection 

model trained using TensorFlow and Keras. The system runs entirely on a Raspberry Pi 5 

and uses a Microsoft Lifecam Studio webcam together with an H-bot gantry for mechanical 

sorting. The primary focus of research is on the optimization of the CNN for real-time 

deployment on resource-constrained hardware. Multiple lightweight architectures such as 

YOLOv8-Nano and MobileNetV2-SSD are proposed for examination and evaluated. A 

custom dataset was created and labeled using Roboflow, with images consisting of three 

hardware classes: screws, nuts, and standoffs. The trained model reached a mean average 

precision (mAP) of 91.5%, with ∼125 ms for each inference while on the Raspberry Pi. 

When integrated with the mechanical system, the full pipeline sorted hardware at an 

average rate of 18.6 parts per minute with an accuracy of 90.0%. As the project is built 

with a budget of $300, this project demonstrates the feasibility of deploying lightweight 

deep learning models for automation tasks on embedded systems. 
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1. INTRODUCTION 
 

In industrial settings, productivity depends not only on efficient workflows, but also on the 

organization of tools and hardware. While organization in traditional companies with office jobs 

is simpler and cheaper to perform, organization in industrial facilities can be much more costly. 

Within these companies, the cost can be largely attributed to the organization of various tools and 

hardware used to manufacture and repair. After usage, tools and hardware are often scattered 
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about, and misplaced tools cangreatly reduce the efficiency of workers who have subsequent 

shifts. One of the reasons that this issue is commonly neglected is its tediousness. When tasked to 

sort hardware, a worker is given a pile of mixed-up pieces of hardware of all different shapes and 

sizes and is required to examine the pieces of hardware one-by-one and place them into 

respective containers. Depending on the size of the company and the scale of the product that is 

being worked with, the number of different varieties of fasteners and sizes of hardware can range 

on a large scale. McMasterCarr’s catalog, commonly used by both hobbyists and industries, 

consists of over 200,000 items [2]. This complexity combined with tediousness is why the task is 

often neglected or performed poorly. In addition, this is also one of the main reasons why the 

sorting is difficult to automate. Existing solutions are either extremely expensive or inflexible. 

While larger companies may be able to afford a custom-built sorting system or hire specialized 

manual sorters, the problem is exacerbated in smaller businesses. Many smaller businesses end 

up with inefficient manual sorting processes, leading to a cycle of decreased productivity, lower 

worker morale, and reduced operation output. 

 

Recent advancements in computer vision and machine learning have made it increasingly 

possible to automate complex visual detection tasks using affordable systems. However, doing so 

on resource-constrained hardware has significant challenges such as limited processing power 

and memory. Most popular object classification and detection models such as YOLO are not 

directly suited for such environments without significant optimization or third-party hardware 

acceleration. To address these issues, this paper presents a low-cost hardware sorting system built 

around an optimized custom-trained CNN using TensorFlow and Keras. The model is designed to 

perform on a Raspberry Pi 5 without external hardware support and uses live video input from a 

Microsoft Lifecam Studio webcam. Detected items are then sorted with a two-axis H-bot gantry 

system to bins corresponding to each hardware class. The key contribution of this research is in 

the development and optimization of the CNN model. Several lightweight architectures including 

YOLOv8-Nano, Ultralytics’ YOLOv11-Nano, EfficientDet-D0, and MobileNetV2-SSD were 

evaluated based on inference latency, power usage, and detection accuracy. With the focus on 

model architecture and deployment-specific constraints, this project demonstrates the feasibility 

of building low-cost and scalable vision systems for automation in constrained environments. The 

complete system was built for under $300 USD, offering a scalable solution where industrial 

alternatives are either unaffordable or impractical. 

 

While prior work has already demonstrated CNN deployment on embedded platforms such as the 

Raspberry Pi, most studies rely on external accelerators or present isolated inference performance 

without system-level integration. As a result, there remains limited understanding of how 

different lightweight detection architectures and optimization strategies behave under the strict 

latency and resource constraints of unassisted Raspberry Pi hardware. This work addresses that 

gap by systematically evaluating four representative lightweight object detection modelstrained 

on a custom dataset of industrial hardware components. Each model was benchmarked under 

multiple quantization strategies and evaluated not only for detection accuracy but also for 

inference latency, memory usage, and real-time viability when integrated into a robotic sorting 

pipeline. By quantifying these trade-offs, this study contributes new empirical evidence for 

deploying CNN-based object detection systems on resource-constrained devices, while 

demonstrating their feasibility for low-cost industrial automation tasks. 
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Figure 1. Overall architecture of the hardware sorting system, including camera input, Raspberry Pi 

inference, and Firebase Database. Pi Image [3]. 

 

2. LITERATURE REVIEW 
 

2.1. Sorting Systems 
 

Mechanical sorting has long been employed in industrial settings, particularly for homogeneous 

or size-based classification tasks. Well-made mechanical systems are extremely efficient and do 

their designated task exceptionally well with little to no errors. Superior mechanical systems must 

be created rigorously and tuned for tolerance toward issues such as jams and processing of 

foreign materials. These systems often use vibratory feeders, gravity chutes, and mechanical 

sieves to sort parts by diameter, weight, or shape. An example of this is BubsBuilds’ sieve 

design, which relies on the different sizes of screw heads (Fig. 3). 

 

However, due to increasingly large amounts of specialization needed for each new classification 

of hardware added to a factory’s catalog, the systems can get extremely expensive and bulky at 

large scales. As such, mechanical sorting systems that appear in factories are considerably more 

complex and expensive. An example is Feiyu Machinery’s industrial level hardware sorting line 

(Fig. 4). 

 

Larger-scale sorting may rely on techniques such as industrial optical inspection combined with 

robotic pick-and-place, such as those made by Key Technology or Buhler. These systems are 

effective as they use computer vision and mechanical movement to sort the hardware efficiently, 

yet they generally cost tens of thousands of dollars and are designed for fixed, repetitive tasks. 

An example of a successful pick-and-place style system is that of Apera AI’s robotic arm 

showcased at Automate 2023 [7]. Due to the large costs, these systems typically cannot be used 

by small workshops or educational institutions. Several hobbyist projects have explored sorting 

as well, using Arduino-based mechanical sorters and OpenCV-based color thresholding, but these 

lack the consistency and flexibility required for deployment in dynamic environments [8]. These 

approaches often perform poorly in cases where objects overlap or with when there is a larger 

variety of hardware [9]. 
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Figure 2. The completed system, including the Raspberry Pi 5, webcam, and H-bot gantry used for sorting 

 
 

Figure 3. A section analysis of BubsBuilds’ 3D printable sieve CAD model [4]. 

 

 
 

Figure 4. A photo looking across Feiyu Machinery’s hardware sorting and packaging line [5]. 
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2.2. Deep Learning for Object Classification 
 

Traditional computer vision methods, such as edge detection, Hough transforms, and template 

matching, used to be standard for image processing. However, these methods are not 

generalizable and perform poorly in real-world scenarios where lighting varies or objects are 

rotated [9, 10, 11, 12]. 

 

Since the introduction of AlexNet, Convolutional Neural Networks (CNNs) have revolutionized 

object image processing tasks. Other architectures that built offAlexNet such as VGGNet, 

ResNet, and DenseNet improved accuracy by increasing depth [13, 14, 15, 16]. These models, 

however, require significant processing resources, making them difficult to work with on devices 

with limited processing power. 

 

In object detection specifically, two-stage models like Faster R-CNN have higher accuracy but 

slower inferences, making them unsuitable for real-time applications on devices with limitations 

[17]. Single-shot detectors like YOLO, SSD, and RetinaNet have faster performance by 

combining region proposal and classification in one pass, however running stock models in real 

time still require dedicated GPUs or TPUs [18, 19, 20]. The YOLO models have improved 

greatly over time, and as such, YOLOv5 and YOLOv8 are quite widely used. However, they still 

require optimization for use on hardware like the Raspberry Pi. 

 

Other methods such as feature extraction algorithms (SIFT, SURF, or HOG) are rarely used in 

real-time sorting applications due to slow processing times and lighting variations [22, 23, 24]. 

 

2.3. Lightweight CNN Architectures 
 

Deploying deep learning models on constrained devices requires both architectural efficiency and 

post-training optimization. Lightweight models such as MobileNet and EfficientNet-Lite are 

designed for mobile use, using methods like depthwise separable convolutions and inverted 

residual blocks [25, 26, 27, 28]. 

 

 
 

Figure 5. Latency vs Accuracy comparisons of MobileNet v2, ResNet 50, Inception v4, and EfficientNet-

lite models (integer-only quantized models running on Pixel 4 CPU with 4 threads) [29]. 

 

Model compression techniques are often used in reducing size and inference time of models, 

optimizing them for limited hardware. Some commonly used are pruning, quantization, and 

knowledge distillation. Network pruning works by removing redundant connections specific 

weights from the model post-training [30, 31, 32]. Quantization converts model weights to lower 

precision, reducing memory usage [33]. Knowledge distillation trains a smaller model to mimic a 

larger network’s outputs [34]. 
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Figure 6. Illustration of pruning and quantization optimization methods [35]. 

 

Frameworks like TensorFlow Lite and ONNX Runtime have pipelines using such optimizations, 

but tradeoffs in performance and accuracy must be considered. 

 

2.4. Vision-Based Sorting on Raspberry Pi 
 

The Raspberry Pi has been extremely popular in medium size hobby projects due to its 

affordability and user-friendliness. The newer Raspberry Pi 5 model with 8GB RAM has a price-

point of $80 and may be lower when bought second-hand or when buying an older version such 

as the 4B or Pico [36]. The newer model is beginning to be used more for AI due to its new 

additions of increased CPU performance and GPU acceleration, allowing for real-time inferences 

using smaller CNNs without external hardware accelerators like the Google Coral TPU or Nvidia 

Jetson Nano (Fig. 7). 

 

 
 

Figure 7. Comparison of MobileNetv3, ResNet50, MobileNet SSD, and YOLOv4-Tiny AI models on 

Raspberry Pi 4 vs 5 [37]. 

 

Previous successful work includes real-time traffic sign recognition and face 

detection/recognition [38, 39]. For this project, latency is a clear bottleneck, especially with 

larger models, as camera input, image preprocessing, model inference, and mechanical actuation 

must all occur in sequence within time limits. This means that model optimization is crucial. 
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3. SYSTEM DESIGN AND METHODOLOGY 
 

The complete system consists of several main subsystems: the vision module, classification 

module, actuation module, and mobile application. All used codes can be found in appendix A, 

CAD files in appendix B, and the bill of materials in appendix C. 

 

3.1. Vision Module 
 

The vision module captures and preprocesses images for classification. The system is 

implemented with a Microsoft Lifecam Studio webcam. The camera runs with a max of 30 fps at 

1080p (1920x1080 pixels) without any other loads on the Raspberry Pi. It is mounted vertically, 

facing the sorting area attached to the main gantry frame with 2 1/2”OD PVC pipes and 3D 

printed adapters (Figure 8). The camera connects to the Raspberry Pi5 via USB 2.0. For 

consistency in lighting reflections and to help with edge detection, 2 12’x 24’’ black ABS sheets 

are placed underneath the gantry. Using the Python OpenCV library, several optimizations can be 

applied to the images captured from the webcam before processing. First, each image is cropped 

to a set region of interest (ROI). The images are in RGB captured with a resolution of 1080p, 

which OpenCV converts to a 3D NumPy array of size: 1920 ×1080×3. To reduce the amount of 

unnecessary information processed, it is cropped to size, centered around the work area (Figure. 

9): 420×420×3. This reduces the number of values being fed into the AI model each frame from 

6220800 to 529200, a nearly 12 times reduction in data processed per frame. 

 

 
 

Figure 8. Microsoft Lifecam Studio webcam setup 
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Figure 9. Comparison of before and after cropping images (Left: Uncropped [1920 × 1080]; Right: 

Cropped [420 × 420]). 

 

Gaussian blurring is then applied to the image with a 3 × 3 kernel size to reduce sensor noise and 

increase consistency of the model [40, 41]. The kernel size used is 3 × 3 with k = 1, and standard 

deviation σ = 1. The cv.filter2D() functionfrom OpenCV does this [42]. 

 

 
 

Figure 10.Image before and after gaussian blurring [43]. 

 

The image is then processed through Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) to enhance local contrasts [44]. Unlike global histogram equalization, which enhances 

contrast uniformly accross the entire image, CLAHE enhances on smaller regions of the image 

while avoiding overamplification of noise. This helps especially when lighting scenarios vary. 

Images are then resized to 256 x 256 for compatibility with the neural network and then 

normalized by scaling pixel intensities of each channel from 0 to 1. 

 

 
 

Figure 11. Image before and after CLAHE [45]. 
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As the camera is mounted at a fixed position above the sorting bed, every image has a consistent 

perspective distortion. Instead of detecting a planar reference marker such as an ArUco tag, the 

camera’s pose is assumed to be constant. So, a one-time calibration is needed to compute the 

homography matrix Hϵ𝑅3𝑥3 that maps points from the perspective view to that of an orthographic 

view [46]. OpenCV’s ”warpPerspective” function converts the images once the homography 

matrix is found. 

 

3.1. Actuation Module 
 

The actuation module is the subsystem that performs the physical sorting of the hardware. It is 

based on an H-bot gantry mechanism controlled through the Raspberry Pi with the 

”DigitalOutputDevice” class in the ”gpiozero” Python library. Two pancake NEMA 17 stepper 

motors drive the X-Y planar motion using GT2 belts. 8mm OD steel rods act as rails for the end 

effector. The frame is 3D printed out of Tough PLA, being relatively inexpensive yet reliable. 

The end effector is mounted on a rack-and-pinion (Z-axis), also controlled by a NEMA 17 

stepper motor. The end effector itself is a 3D printed claw shaped specifically to pick up different 

types of hardware. The actuation module also includes five limit switches, to prevent unexpected 

breakages. 

 

 
 

Figure 12. The H-Bot gantry of the system, with the end effector removed. 

 

To move the end effector accurately, a virtual grid of size 64x64 is used. The center of a tensor 

taken after model inference is taken by: 

 

Table 1: Gantry Performance Metrics 

 

 
 

to that position based on the coordinates of the tensor’s center, lowers the end effector, and brings 

the piece of hardware to the bin it corresponds to. 

 

3.2. User Mobile Application 
 

To provide user interaction and accessibility, a mobile application was developed using Flutter 

and Android Studio. The application communicates to the Pi through Firebase’s realtime 

database, allowing communication over long-distance. The application has an account system to 
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link the raspberry pi to the user’s mobile device. The app has several features, the first being the z 

axis calibration. As the actuation module does not have a limit switch on the z-axis, the user 

needs to manually calibrate the z axis by setting the zero with the app when the end effector is 

touching the sorting bed. Another feature is that the user starts the sorting by sending a start 

signal from the app. When sorting, the app retrieves images from the real-time firebase database, 

producing a live feed of the sorting for the user. Errors are also shown to the user through the 

application. 

 

 
 

Figure 13. Screenshot of the Application 

 

3.3. Training and Methodology 
 

To evaluate detection across different CNN models, various models with different settings were 

trained on the same dataset. The core objective was to find a model + settings that allowed for 

both accurate segmentation and computational efficiency. All training was done on a workstation 

using an AMD Radeon Pro W7500 GPU and all models were evaluated on a Raspberry Pi 5 with 

8 GB RAM. 

 

A custom dataset was made by manually labeling 505 frames collected from the vision module 

described in section A. Each frame was annotated in Roboflow with 200 frames of screws, 100 of 

nuts, and 100 standoffs. The dataset was split 70% training, 20% testing, and 10% validation. The 

following data augmentations were applied to reduce  

 
where x1, x2, y1, y2 are the corners of the bounding box. The Raspberry Pi then sends the signals 

to move the end effect or overfitting: 15◦ rotations and contrast adjustment, with the total dataset 

consisting of 656 images (which is sufficient due to controlled lighting, camera position, and 

webcam conditions). All images were sized to 256 × 256 before training. 

 

Several CNN-based object detection models were trained using Tensorflow and Keras: YOLOv8-

Nano, MobileNetV2-SSD, EfficientDet-D0, Yolov11-Nano with Ultralytics [47]. All models 

predict bounding box coordinates with class probabilities. 
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Models were trained with the Adaptive Moment Estimation (ADAM) optimizer [48]. The models 

were trained for 80 epochs each and batch size 16. After training, models were converted to the 

PyTorch .pt format and quantized (float16 and int8) using the TensorFlow Lite  Post-Training 

Quantization toolkit.The models are then downloaded onto the Raspberry Pi, and each tested with 

20 images each where mAP, precision, and inference times were recorded. 

 

4. RESULTS 
 

Performance was averaged over 20 randomized test images, each containing multiple hardware 

components under controlled lighting and over the same background. Models trained with the 

Adam optimizer consistently outperformed those using RMSProp in accuracy across training 

epochs.The quantization reduced the sizes of the models by ~60% and run ~15 ms faster per 

inference with <1% accuracy losses. 

 
Table 2: Quantitative evaluation of the tested models. 

 

 
 

YOLOv11-Nano is the most favorable for embedded real-time use, as it performed the best 

across all categories. YOLOv8-Nano performed slightly worse than YOLOv11 mainly in mAP, 

power draw, and inference time. EfficientDetD0 had the second highest mAP but had 

significantly higher latency. MobileNetV2-SSD lacked in both inference time and accuracy 

compared to the other three. All models were evaluated on live feed images. All models also had 

trouble and occasionally had false negatives when pieces of hardware were overlapped. This is 

likely due to lighting conditions and the reflectivity of some pieces of hardware causing stacked 

hardware to no longer appear to be a type of hardware the CNN recognizes. 

 

5. DISCUSSION 
 

This evaluation of various lightweight models on the Raspberry Pi indicates the need of balance 

between accuracy and speed of models. YOLOv11-Nano was chosen as the final model due to its 

fast inference times (125ms) and detection accuracy. EfficientDet-D0, while being the second 

most accurate of the models tested (mAP@0.5  0.902), had a significantly higher inference time 

(325ms), almost double that of YOLOv8-Nano. In larger or more constrained systems, this small 

difference in inference time decides which model is used in a specific application. This shows a 

big challenge in AI models on resource-constrained devices: larger models with higher accuracies 

designed for desktop or cloud environments often fail to meet the latency or processor 

requirements of that of embedded systems. Also, MobileNetV2-SSD although lightweight and 

with acceptable inference times, was less reliable than YOLO models. 

 

An additional consideration is robustness under deployment variability. Although the dataset and 

testing pipeline controlled for lighting, camera pose, and perspective distortion, reflections on 

metallic hardware or shadows introduced by environmental changes may impair detection. This 

points to a broader question of how embedded vision systems generalize when removed from 
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laboratory settings. Domain adaptation, active learning pipelines, or real-time recalibration could 

strengthen resilience in uncontrolled factories or workshops. 

 

From a systems integration perspective, the results illustrate the critical role of inference speed as 

a bottleneck in robotic manipulation loops. A detector operating at 8 fps versus 3 fps both alters 

output speeds but also shifts the design requirements of the actuation system. As a result, model 

selection for embedded deployments must be evaluated within an end-to-end framework rather 

than in isolation. 

 

Beyond the hardware-sorting task, the methodology has implications for scalable automation in 

small- to medium-sized enterprises (SMEs). Many SMEs lack the capital to invest in industrial-

grade vision systems costing tens of thousands of dollars. Showing that reliable detection and 

sorting can be achieved for under $300 suggests automation for workshops, maker spaces, and 

prototyping environments. Additionally, the modular design of the H-bot gantry and mobile 

application interface makes the system extensible: the same platform could be adapted to sort 

electronic components, agricultural products, or recyclables with minimal dataset retraining. 

 

Future research should explore hybrid approaches. Techniques such as knowledge distillation 

could compress accurate but heavy detectors into lightweight student networks, while neural 

architecture search (NAS) could automate the exploration of architectures tuned to Raspberry Pi-

class devices. Leveraging temporal information across video frames, rather than treating each 

frame independently, could reduce single-frame errors and improve reliability in cluttered scenes 

[49, 50]. 

 

6. CONCLUSIONS 
 

This paper presented the design, training, optimization, and deployment of a low-cost hardware 

sorting system powered by a Raspberry Pi 5. By evaluating and comparing multiple lightweight 

CNN-based object detection architectures, this work identified the optimal trade-offs between 

detection accuracy, inference latency, and resource consumption necessary for practical 

embedded deployment 

 

The YOLOv11-Nano model achieved a mAP of 91.5% using inferences of around 125 ms on the 

Raspberry Pi. This speed and precision allow real-time robotic sorting of screws, nuts, and 

standoffs with high reliability. The system has a low hardware cost (under $300 USD) and a 3D 

printable modular design to emphasize its accessibility for small workshops and prototyping 

scenarios.  

 

The broader implication is that affordable and modularautomation can extend beyond large 

enterprises into small workshops, prototyping labs, and educational environments. With minor 

dataset retraining, the system could scale to diverse fields, from electronic component sorting to 

agricultural packaging. As embedded AI hardware continues to evolve, integrating accelerators 

such as Google Coral TPU or NVIDIA Jetson modules could further expand system capacity 

while staying affordable. 

 

This research demonstrates that embedded AI is not limited to isolated inferences but can support 

complete systems with real industrial relevance. The project provides a blueprint for future 

research into low-cost, scalable, and resilient automation systems, addressing the gap between AI 

models and practical deployment in resource-constrained environments. 
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APPENDIX A: SUPPLEMENTARY MATERIAL 
 

A. Actuation Module Code 

 

 
 

B. Training Dataset 
 

The dataset used for training the models of this project can be found with this link: 

https://universe.roboflow.com/ sortingpi/hardwaredetection-ag0gc 
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Appendix B: Project CAD Files 

CAD files for the project can be downloaded with this link: 

https://www.dropbox.com/scl/fi/e5hl25m6b0duf7nwmouhi/ 

SortingPiCADFiles.zip?rlkey=ju0mcuhwfijsk8vxekox0os0k&st=jox8arrj&dl=1 

 

Appendix C: Bill of Materials 

 
Table 3: Bill of Materials. 
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