OPTIMIZING CNN MODELS FOR REAL-
TIME HARDWARE CLASSIFICATION ON
RESOURCE CONSTRAINED HARDWARE: A
RASPBERRY PI 5 POWERED HARDWARE
SORTING SYSTEM

Jeremy Wang !, Jonathan Sahagun 2

! Lexington High School, Lexington, MA, United States
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

Within a work environment, the cleanliness and organization of tools contribute greatly to
the workers’ mental state and psychological well-being, allowing for more creativity and
productivity in the workplace [1]. This is largely an issue within the industrial industry,
where machines need to be built, maintained, and repaired. While being automated in
larger factories, the tedious task of sorting hardware, such as screws, nuts, and bolts, is
often performed manually in the context of smaller-scale factories and repair centers.
However, the tediousness of this task often undermines the importance of the task and is
often neglected or performed poorly. Existing industrial solutions to this issue are
expensive and inflexible. This paper presents a low-cost, autonomous hardware sorting
system that uses a custom-built Convolutional Neural Network (CNN) object detection
model trained using TensorFlow and Keras. The system runs entirely on a Raspberry Pi 5
and uses a Microsoft Lifecam Studio webcam together with an H-bot gantry for mechanical
sorting. The primary focus of research is on the optimization of the CNN for real-time
deployment on resource-constrained hardware. Multiple lightweight architectures such as
YOLOv8-Nano and MobileNetV2-SSD are proposed for examination and evaluated. A
custom dataset was created and labeled using Roboflow, with images consisting of three
hardware classes: screws, nuts, and standoffs. The trained model reached a mean average
precision (mAP) of 91.5%, with ~125 ms for each inference while on the Raspberry Pi.
When integrated with the mechanical system, the full pipeline sorted hardware at an
average rate of 18.6 parts per minute with an accuracy of 90.0%. As the project is built
with a budget of $300, this project demonstrates the feasibility of deploying lightweight
deep learning models for automation tasks on embedded systems.

KEYWORDS

Convolutional Neural Network, Keras, Tensorflow, Edge AI, Model Optimization

1. INTRODUCTION

In industrial settings, productivity depends not only on efficient workflows, but also on the
organization of tools and hardware. While organization in traditional companies with office jobs
is simpler and cheaper to perform, organization in industrial facilities can be much more costly.
Within these companies, the cost can be largely attributed to the organization of various tools and
hardware used to manufacture and repair. After usage, tools and hardware are often scattered

David C. Wyld et al. (Eds): SIGI, CSTY, AL, NMOCT, BIOS, AIMLNET, MaVa$, BINLP — 2025
pp. 327-342, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.151926

https://airccse.org/
https://airccse.org/csit/V15N19.html
https://doi.org/10.5121/csit.2025.151926

328 Computer Science & Information Technology (CS & IT)

about, and misplaced tools cangreatly reduce the efficiency of workers who have subsequent
shifts. One of the reasons that this issue is commonly neglected is its tediousness. When tasked to
sort hardware, a worker is given a pile of mixed-up pieces of hardware of all different shapes and
sizes and is required to examine the pieces of hardware one-by-one and place them into
respective containers. Depending on the size of the company and the scale of the product that is
being worked with, the number of different varieties of fasteners and sizes of hardware can range
on a large scale. McMasterCarr’s catalog, commonly used by both hobbyists and industries,
consists of over 200,000 items [2]. This complexity combined with tediousness is why the task is
often neglected or performed poorly. In addition, this is also one of the main reasons why the
sorting is difficult to automate. Existing solutions are either extremely expensive or inflexible.
While larger companies may be able to afford a custom-built sorting system or hire specialized
manual sorters, the problem is exacerbated in smaller businesses. Many smaller businesses end
up with inefficient manual sorting processes, leading to a cycle of decreased productivity, lower
worker morale, and reduced operation output.

Recent advancements in computer vision and machine learning have made it increasingly
possible to automate complex visual detection tasks using affordable systems. However, doing so
on resource-constrained hardware has significant challenges such as limited processing power
and memory. Most popular object classification and detection models such as YOLO are not
directly suited for such environments without significant optimization or third-party hardware
acceleration. To address these issues, this paper presents a low-cost hardware sorting system built
around an optimized custom-trained CNN using TensorFlow and Keras. The model is designed to
perform on a Raspberry Pi 5 without external hardware support and uses live video input from a
Microsoft Lifecam Studio webcam. Detected items are then sorted with a two-axis H-bot gantry
system to bins corresponding to each hardware class. The key contribution of this research is in
the development and optimization of the CNN model. Several lightweight architectures including
YOLOvVS8-Nano, Ultralytics’ YOLOv11-Nano, EfficientDet-D0, and MobileNetV2-SSD were
evaluated based on inference latency, power usage, and detection accuracy. With the focus on
model architecture and deployment-specific constraints, this project demonstrates the feasibility
of building low-cost and scalable vision systems for automation in constrained environments. The
complete system was built for under $300 USD, offering a scalable solution where industrial
alternatives are either unaffordable or impractical.

While prior work has already demonstrated CNN deployment on embedded platforms such as the
Raspberry Pi, most studies rely on external accelerators or present isolated inference performance
without system-level integration. As a result, there remains limited understanding of how
different lightweight detection architectures and optimization strategies behave under the strict
latency and resource constraints of unassisted Raspberry Pi hardware. This work addresses that
gap by systematically evaluating four representative lightweight object detection modelstrained
on a custom dataset of industrial hardware components. Each model was benchmarked under
multiple quantization strategies and evaluated not only for detection accuracy but also for
inference latency, memory usage, and real-time viability when integrated into a robotic sorting
pipeline. By quantifying these trade-offs, this study contributes new empirical evidence for
deploying CNN-based object detection systems on resource-constrained devices, while
demonstrating their feasibility for low-cost industrial automation tasks.

Computer Science & Information Technology (CS & IT) 329

Coordinates
& Motor

Signals

Start
Signal

—v——
D . com
-
Annotated

Mobile App Images

Annotated
Images

Firebase Server

Figure 1. Overall architecture of the hardware sorting system, including camera input, Raspberry Pi
inference, and Firebase Database. Pi Image [3].

2. LITERATURE REVIEW
2.1. Sorting Systems

Mechanical sorting has long been employed in industrial settings, particularly for homogeneous
or size-based classification tasks. Well-made mechanical systems are extremely efficient and do
their designated task exceptionally well with little to no errors. Superior mechanical systems must
be created rigorously and tuned for tolerance toward issues such as jams and processing of
foreign materials. These systems often use vibratory feeders, gravity chutes, and mechanical
sieves to sort parts by diameter, weight, or shape. An example of this is BubsBuilds’ sieve
design, which relies on the different sizes of screw heads (Fig. 3).

However, due to increasingly large amounts of specialization needed for each new classification
of hardware added to a factory’s catalog, the systems can get extremely expensive and bulky at
large scales. As such, mechanical sorting systems that appear in factories are considerably more
complex and expensive. An example is Feiyu Machinery’s industrial level hardware sorting line
(Fig. 4).

Larger-scale sorting may rely on techniques such as industrial optical inspection combined with
robotic pick-and-place, such as those made by Key Technology or Buhler. These systems are
effective as they use computer vision and mechanical movement to sort the hardware efficiently,
yet they generally cost tens of thousands of dollars and are designed for fixed, repetitive tasks.
An example of a successful pick-and-place style system is that of Apera AI’s robotic arm
showcased at Automate 2023 [7]. Due to the large costs, these systems typically cannot be used
by small workshops or educational institutions. Several hobbyist projects have explored sorting
as well, using Arduino-based mechanical sorters and OpenCV-based color thresholding, but these
lack the consistency and flexibility required for deployment in dynamic environments [8]. These
approaches often perform poorly in cases where objects overlap or with when there is a larger
variety of hardware [9].

330 Computer Science & Information Technology (CS & IT)

‘k\\\\\\\\\\\\'\,{lllllllllllll [d

SRRRRNY

e

“\W\\\\\\\‘:W[IIIIIII;\ “‘W
W

\ =
LR

:7// /[IIIIIII
&

A

-
™

0
\

Figure 3. A section analysis of BubsBuilds’ 3D printable sieve CAD model [4].

Figure 4. A photo looking across Feiyu Machinery’s hardware sorting and packaging line [5].

Computer Science & Information Technology (CS & IT) 331
2.2. Deep Learning for Object Classification

Traditional computer vision methods, such as edge detection, Hough transforms, and template
matching, used to be standard for image processing. However, these methods are not
generalizable and perform poorly in real-world scenarios where lighting varies or objects are
rotated [9, 10, 11, 12].

Since the introduction of AlexNet, Convolutional Neural Networks (CNNs) have revolutionized
object image processing tasks. Other architectures that built offAlexNet such as VGGNet,
ResNet, and DenseNet improved accuracy by increasing depth [13, 14, 15, 16]. These models,
however, require significant processing resources, making them difficult to work with on devices
with limited processing power.

In object detection specifically, two-stage models like Faster R-CNN have higher accuracy but
slower inferences, making them unsuitable for real-time applications on devices with limitations
[17]. Single-shot detectors like YOLO, SSD, and RetinaNet have faster performance by
combining region proposal and classification in one pass, however running stock models in real
time still require dedicated GPUs or TPUs [18, 19, 20]. The YOLO models have improved
greatly over time, and as such, YOLOVS and YOLOVS are quite widely used. However, they still
require optimization for use on hardware like the Raspberry Pi.

Other methods such as feature extraction algorithms (SIFT, SURF, or HOG) are rarely used in
real-time sorting applications due to slow processing times and lighting variations [22, 23, 24].

2.3. Lightweight CNN Architectures

Deploying deep learning models on constrained devices requires both architectural efficiency and
post-training optimization. Lightweight models such as MobileNet and EfficientNet-Lite are
designed for mobile use, using methods like depthwise separable convolutions and inverted
residual blocks [25, 26, 27, 28].

Latency (ms) vs. Accuracy (Top 1

Accuracy (Top 1)
3
e

° ® @ ® o

Latency (ms)

Figure 5. Latency vs Accuracy comparisons of MobileNet v2, ResNet 50, Inception v4, and EfficientNet-
lite models (integer-only quantized models running on Pixel 4 CPU with 4 threads) [29].

Model compression techniques are often used in reducing size and inference time of models,
optimizing them for limited hardware. Some commonly used are pruning, quantization, and
knowledge distillation. Network pruning works by removing redundant connections specific
weights from the model post-training [30, 31, 32]. Quantization converts model weights to lower
precision, reducing memory usage [33]. Knowledge distillation trains a smaller model to mimic a
larger network’s outputs [34].

332 Computer Science & Information Technology (CS & IT)

Q (@ o

aLe e e e e |
o0 o/y ® oLy ®
| & o ¢ |

Figure 6. Illustration of pruning and quantization optimization methods [35].

Frameworks like TensorFlow Lite and ONNX Runtime have pipelines using such optimizations,
but tradeoffs in performance and accuracy must be considered.

2.4. Vision-Based Sorting on Raspberry Pi

The Raspberry Pi has been extremely popular in medium size hobby projects due to its
affordability and user-friendliness. The newer Raspberry Pi 5 model with 8GB RAM has a price-
point of $80 and may be lower when bought second-hand or when buying an older version such
as the 4B or Pico [36]. The newer model is beginning to be used more for Al due to its new
additions of increased CPU performance and GPU acceleration, allowing for real-time inferences
using smaller CNNs without external hardware accelerators like the Google Coral TPU or Nvidia
Jetson Nano (Fig. 7).

Benchmark on Raspberry Pi 4 8GB and Raspberry Pi 5 8GB

. Pi4@

thread
Bl Pi4@4
thread
Pi5 @1
thread
H Pi5@4

thread

mobilenet v3 1

resnet50 2

models

mobilenet ssd 3

yolov4-tiny 4

0 200 400 600

avyg inference time, ms

Figure 7. Comparison of MobileNetv3, ResNet50, MobileNet SSD, and YOLOv4-Tiny Al models on
Raspberry Pi 4 vs 5 [37].

Previous successful work includes real-time traffic sign recognition and face
detection/recognition [38, 39]. For this project, latency is a clear bottleneck, especially with
larger models, as camera input, image preprocessing, model inference, and mechanical actuation
must all occur in sequence within time limits. This means that model optimization is crucial.

Computer Science & Information Technology (CS & IT) 333
3. SYSTEM DESIGN AND METHODOLOGY

The complete system consists of several main subsystems: the vision module, classification
module, actuation module, and mobile application. All used codes can be found in appendix A,
CAD files in appendix B, and the bill of materials in appendix C.

3.1. Vision Module

The vision module captures and preprocesses images for classification. The system is
implemented with a Microsoft Lifecam Studio webcam. The camera runs with a max of 30 fps at
1080p (1920x1080 pixels) without any other loads on the Raspberry Pi. It is mounted vertically,
facing the sorting area attached to the main gantry frame with 2 1/2”0OD PVC pipes and 3D
printed adapters (Figure 8). The camera connects to the Raspberry Pi5 via USB 2.0. For
consistency in lighting reflections and to help with edge detection, 2 12°x 24’ black ABS sheets
are placed underneath the gantry. Using the Python OpenCV library, several optimizations can be
applied to the images captured from the webcam before processing. First, each image is cropped
to a set region of interest (ROI). The images are in RGB captured with a resolution of 1080p,
which OpenCV converts to a 3D NumPy array of size: 1920 x1080%3. To reduce the amount of
unnecessary information processed, it is cropped to size, centered around the work area (Figure.
9): 420x420x3. This reduces the number of values being fed into the Al model each frame from
6220800 to 529200, a nearly 12 times reduction in data processed per frame.

b

Figure 8. Microsoft Lifecam Studio webcam setup

334 Computer Science & Information Technology (CS & IT)

Figure 9. Comparison of before and after cropping images (Left: Uncropped [1920 x 1080]; Right:
Cropped [420 x 420]).

Gaussian blurring is then applied to the image with a 3 x 3 kernel size to reduce sensor noise and
increase consistency of the model [40, 41]. The kernel size used is 3 x 3 with k = 1, and standard
deviation ¢ = 1. The cv.filter2D() functionfrom OpenCV does this [42].

Figure 10.Image before and after gaussian blurring [43].

The image is then processed through Contrast-Limited Adaptive Histogram Equalization
(CLAHE) to enhance local contrasts [44]. Unlike global histogram equalization, which enhances
contrast uniformly accross the entire image, CLAHE enhances on smaller regions of the image
while avoiding overamplification of noise. This helps especially when lighting scenarios vary.
Images are then resized to 256 x 256 for compatibility with the neural network and then
normalized by scaling pixel intensities of each channel from 0 to 1.

Original image CLAHE processed image

Figure 11. Image before and after CLAHE [45].

Computer Science & Information Technology (CS & IT) 335

As the camera is mounted at a fixed position above the sorting bed, every image has a consistent
perspective distortion. Instead of detecting a planar reference marker such as an ArUco tag, the
camera’s pose is assumed to be constant. So, a one-time calibration is needed to compute the
homography matrix HeR3*3 that maps points from the perspective view to that of an orthographic
view [46]. OpenCV’s “warpPerspective” function converts the images once the homography
matrix is found.

3.1. Actuation Module

The actuation module is the subsystem that performs the physical sorting of the hardware. It is
based on an H-bot gantry mechanism controlled through the Raspberry Pi with the
”DigitalOutputDevice” class in the ”gpiozero” Python library. Two pancake NEMA 17 stepper
motors drive the X-Y planar motion using GT2 belts. 8mm OD steel rods act as rails for the end
effector. The frame is 3D printed out of Tough PLA, being relatively inexpensive yet reliable.
The end effector is mounted on a rack-and-pinion (Z-axis), also controlled by a NEMA 17
stepper motor. The end effector itself is a 3D printed claw shaped specifically to pick up different
types of hardware. The actuation module also includes five limit switches, to prevent unexpected
breakages.

Figure 12. The H-Bot gantry of the system, with the end effector removed.

To move the end effector accurately, a virtual grid of size 64x64 is used. The center of a tensor
taken after model inference is taken by:

Table 1: Gantry Performance Metrics

Metric Value
Max XY deviation 4.4 mm
Standard deviation 2.5 mm
Maximum travel speed 150 mm/s
Avg object placement time 3.2s

to that position based on the coordinates of the tensor’s center, lowers the end effector, and brings
the piece of hardware to the bin it corresponds to.

3.2. User Mobile Application
To provide user interaction and accessibility, a mobile application was developed using Flutter

and Android Studio. The application communicates to the Pi through Firebase’s realtime
database, allowing communication over long-distance. The application has an account system to

336 Computer Science & Information Technology (CS & IT)

link the raspberry pi to the user’s mobile device. The app has several features, the first being the z
axis calibration. As the actuation module does not have a limit switch on the z-axis, the user
needs to manually calibrate the z axis by setting the zero with the app when the end effector is
touching the sorting bed. Another feature is that the user starts the sorting by sending a start
signal from the app. When sorting, the app retrieves images from the real-time firebase database,
producing a live feed of the sorting for the user. Errors are also shown to the user through the
application.

SortingPi

DevicelD: SortingPi

This Device is OFFLINE

Figure 13. Screenshot of the Application
3.3. Training and Methodology

To evaluate detection across different CNN models, various models with different settings were
trained on the same dataset. The core objective was to find a model + settings that allowed for
both accurate segmentation and computational efficiency. All training was done on a workstation
using an AMD Radeon Pro W7500 GPU and all models were evaluated on a Raspberry Pi 5 with
8 GB RAM.

A custom dataset was made by manually labeling 505 frames collected from the vision module
described in section A. Each frame was annotated in Roboflow with 200 frames of screws, 100 of
nuts, and 100 standoffs. The dataset was split 70% training, 20% testing, and 10% validation. The
following data augmentations were applied to reduce

X1+ X2 n+yp
(xcenter: ycenter) = o 4 o

where x1, x2, y1, y2 are the corners of the bounding box. The Raspberry Pi then sends the signals
to move the end effect or overfitting: 15¢ rotations and contrast adjustment, with the total dataset
consisting of 656 images (which is sufficient due to controlled lighting, camera position, and
webcam conditions). All images were sized to 256 x 256 before training.

Several CNN-based object detection models were trained using Tensorflow and Keras: YOLOv8-
Nano, MobileNetV2-SSD, EfficientDet-D0, Yolovl1-Nano with Ultralytics [47]. All models
predict bounding box coordinates with class probabilities.

Computer Science & Information Technology (CS & IT) 337

Models were trained with the Adaptive Moment Estimation (ADAM) optimizer [48]. The models
were trained for 80 epochs each and batch size 16. After training, models were converted to the
PyTorch .pt format and quantized (floatl6 and int8) using the TensorFlow Lite Post-Training
Quantization toolkit. The models are then downloaded onto the Raspberry Pi, and each tested with
20 images each where mAP, precision, and inference times were recorded.

4. RESULTS

Performance was averaged over 20 randomized test images, each containing multiple hardware
components under controlled lighting and over the same background. Models trained with the
Adam optimizer consistently outperformed those using RMSProp in accuracy across training
epochs.The quantization reduced the sizes of the models by ~60% and run ~15 ms faster per
inference with <1% accuracy losses.

Table 2: Quantitative evaluation of the tested models.

Model mAP 05 | Inference Model Quant. Power
Time Size Draw
(ms) (MB) W)
YOLOvS- 0.887 145 54 int8 5.1
Nano
YOLOv11- 0.915 125 50 int8 50
Nano
Mobile- 0.829 190 13 float16 54
NetV2-
SSD
Efficient- 0.902 325 15.8 floatl6 6.0
Det-DO

YOLOvI11-Nano is the most favorable for embedded real-time use, as it performed the best
across all categories. YOLOv8-Nano performed slightly worse than YOLOv11 mainly in mAP,
power draw, and inference time. EfficientDetD0 had the second highest mAP but had
significantly higher latency. MobileNetV2-SSD lacked in both inference time and accuracy
compared to the other three. All models were evaluated on live feed images. All models also had
trouble and occasionally had false negatives when pieces of hardware were overlapped. This is
likely due to lighting conditions and the reflectivity of some pieces of hardware causing stacked
hardware to no longer appear to be a type of hardware the CNN recognizes.

5. DISCUSSION

This evaluation of various lightweight models on the Raspberry Pi indicates the need of balance
between accuracy and speed of models. YOLOv11-Nano was chosen as the final model due to its
fast inference times (125ms) and detection accuracy. EfficientDet-D0, while being the second
most accurate of the models tested (mMAP@0.5 0.902), had a significantly higher inference time
(325ms), almost double that of YOLOv8-Nano. In larger or more constrained systems, this small
difference in inference time decides which model is used in a specific application. This shows a
big challenge in Al models on resource-constrained devices: larger models with higher accuracies
designed for desktop or cloud environments often fail to meet the latency or processor
requirements of that of embedded systems. Also, MobileNetV2-SSD although lightweight and
with acceptable inference times, was less reliable than YOLO models.

An additional consideration is robustness under deployment variability. Although the dataset and
testing pipeline controlled for lighting, camera pose, and perspective distortion, reflections on
metallic hardware or shadows introduced by environmental changes may impair detection. This
points to a broader question of how embedded vision systems generalize when removed from

338 Computer Science & Information Technology (CS & IT)

laboratory settings. Domain adaptation, active learning pipelines, or real-time recalibration could
strengthen resilience in uncontrolled factories or workshops.

From a systems integration perspective, the results illustrate the critical role of inference speed as
a bottleneck in robotic manipulation loops. A detector operating at 8 fps versus 3 fps both alters
output speeds but also shifts the design requirements of the actuation system. As a result, model
selection for embedded deployments must be evaluated within an end-to-end framework rather
than in isolation.

Beyond the hardware-sorting task, the methodology has implications for scalable automation in
small- to medium-sized enterprises (SMEs). Many SMEs lack the capital to invest in industrial-
grade vision systems costing tens of thousands of dollars. Showing that reliable detection and
sorting can be achieved for under $300 suggests automation for workshops, maker spaces, and
prototyping environments. Additionally, the modular design of the H-bot gantry and mobile
application interface makes the system extensible: the same platform could be adapted to sort
electronic components, agricultural products, or recyclables with minimal dataset retraining.

Future research should explore hybrid approaches. Techniques such as knowledge distillation
could compress accurate but heavy detectors into lightweight student networks, while neural
architecture search (NAS) could automate the exploration of architectures tuned to Raspberry Pi-
class devices. Leveraging temporal information across video frames, rather than treating each
frame independently, could reduce single-frame errors and improve reliability in cluttered scenes
[49, 50].

6. CONCLUSIONS

This paper presented the design, training, optimization, and deployment of a low-cost hardware
sorting system powered by a Raspberry Pi 5. By evaluating and comparing multiple lightweight
CNN-based object detection architectures, this work identified the optimal trade-offs between
detection accuracy, inference latency, and resource consumption necessary for practical
embedded deployment

The YOLOvVI11-Nano model achieved a mAP of 91.5% using inferences of around 125 ms on the
Raspberry Pi. This speed and precision allow real-time robotic sorting of screws, nuts, and
standoffs with high reliability. The system has a low hardware cost (under $300 USD) and a 3D
printable modular design to emphasize its accessibility for small workshops and prototyping
scenarios.

The broader implication is that affordable and modularautomation can extend beyond large
enterprises into small workshops, prototyping labs, and educational environments. With minor
dataset retraining, the system could scale to diverse fields, from electronic component sorting to
agricultural packaging. As embedded Al hardware continues to evolve, integrating accelerators
such as Google Coral TPU or NVIDIA Jetson modules could further expand system capacity
while staying affordable.

This research demonstrates that embedded Al is not limited to isolated inferences but can support
complete systems with real industrial relevance. The project provides a blueprint for future
research into low-cost, scalable, and resilient automation systems, addressing the gap between Al
models and practical deployment in resource-constrained environments.

Computer Science & Information Technology (CS & IT) 339

REFERENCES

(1]

(2]
(3]
(4]

(3]

(6]
[7]
(8]
(9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

Horgan, Terrence G., Noelle K. Herzog, and Sarah M. Dyszlewski. "Does your messy office make
your mind look cluttered? Office appearance and perceivers' judgments about the owner's
personality.” Personality and Individual Differences 138 (2019): 370-379.

Ely, Robert, and Anne E. Adams. "Unknown, placeholder, or variable: what is x?." Mathematics
Education Research Journal 24.1 (2012): 19-38.

Jolles, Jolle W. "Broad-scale applications of the Raspberry Pi: A review and guide for biologists."
Methods in Ecology and Evolution 12.9 (2021): 1562-1579.

Hoelz, Kevin, Lukas Kleinhans, and Sven Matthiesen. "Wood screw design: influence of thread
parameters on the withdrawal capacity." European Journal of Wood and Wood Products 79.4
(2021): 773-784.

Jia, Feiyu, Yongsheng Ma, and Rafiq Ahmad. "Review of current vision-based robotic machine-
tending applications." The International Journal of Advanced Manufacturing Technology 131.3
(2024): 1039-1057.

Ibrahim, Isa Ali, and Muhammad Ahmad Baballe. "The Ups and Downs of Robotic Arms:
Navigating the Challenges." Journal homepage: https://gjrpublication. com/gjrecs 4.05 (2024).
Snelson, Chareen. "YouTube across the disciplines: A review of the literature." MERLOT Journal
of Online learning and teaching (2011).

Sebell, Rasmus, and George Wahlberg. "Skittles and M&M's sorting machine: Design and
development of a color sorting machine." (2024).

Lin, Chao-wen, et al. "The effects of reflected glare and visual field lighting on computer vision
syndrome." Clinical and Experimental Optometry 102.5 (2019): 513-520.

Zangana, Hewa Majeed, Ayaz Khalid Mohammed, and Firas Mahmood Mustafa. "Advancements in
edge detection techniques for image enhancement: A comprehensive review." International Journal
of Artificial Intelligence & Robotics (IJAIR) 6.1 (2024): 29-39.

Hassanein, Allam Shehata, et al. "A survey on Hough transform, theory, techniques and
applications." arXiv preprint arXiv:1502.02160 (2015).

Hashemi, Nazanin Sadat, et al. "Template matching advances and applications in image analysis."
arXiv preprint arXiv:1610.07231 (2016).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems 25 (2012).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556 (2014).

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017.

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal
networks." Advances in neural information processing systems 28 (2015).

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016.

Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision.
Cham: Springer International Publishing, 2016.

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international
conference on computer vision. 2017.

Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017.

Cruz-Mota, Javier, et al. "Scale invariant feature transform on the sphere: Theory and applications."
International journal of computer vision 98.2 (2012): 217-241.

Bay, Herbert, et al. "Speeded-up robust features (SURF)." Computer vision and image
understanding 110.3 (2008): 346-359.

Kitayama, Masaki, and Hitoshi Kiya. "HOG feature extraction from encrypted images for privacy-
preserving machine learning." 2019 IEEE international conference on consumer electronics-Asia
(ICCE-Asia). IEEE, 2019.

Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision
applications." arXiv preprint arXiv:1704.04861 (2017).

340
[26]

[27]
(28]

[29]

[30]
[31]

[32]

[33]
[34]
[35]
[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Computer Science & Information Technology (CS & IT)

Tan, Mingxing, and Q. V. Le. "EfficientNet: rethinking model scaling for convolutional neural
networks. CoRRabs/1905.11946 (2019)." arXiv preprint arXiv:1905.11946 (1905).

Chollet, Frangois. "Xception: Deep learning with depthwise separable convolutions." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2017.

Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018.

Sangar, Gopal, and Velswamy Rajasekar. "Optimized classification of potato leaf disease using
EfficientNet-LITE and KE-SVM in diverse environments." Frontiers in Plant Science 16 (2025):
1499909.

LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural
computation 1.4 (1989): 541-551.

Hassibi, Babak, David G. Stork, and Gregory J. Wolff. "Optimal brain surgeon and general network
pruning." IEEE international conference on neural networks. IEEE, 1993.

Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding." arXiv preprint arXiv:1510.00149
(2015).

Banner, Ron, Yury Nahshan, and Daniel Soudry. "Post training 4-bit quantization of convolutional
networks for rapid-deployment." Advances in neural information processing systems 32 (2019).
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network."
arXiv preprint arXiv:1503.02531 (2015).

Gupta, Manish, and Puneet Agrawal. "Compression of deep learning models for text: A survey."
ACM Transactions on Knowledge Discovery from Data (TKDD) 16.4 (2022): 1-55.

Johnston, Steven J., and Simon J. Cox. "The raspberry Pi: A technology disrupter, and the enabler
of dreams." Electronics 6.3 (2017): 51.

Minott, David, Salman Siddiqui, and Rami J. Haddad. "Benchmarking Edge AI Platforms:
Performance Analysis of NVIDIA Jetson and Raspberry Pi 5 with Coral TPU." SoutheastCon 2025.
IEEE, 2025.

Isa, Ida Syafiza Binti Md, Ja Yeong Choy, and Nur Latif Azyze Bin Mohd Shaari. "Real-time traffic
sign detection and recognition using Raspberry Pi." International Journal of Electrical and Computer
Engineering 12.1 (2022): 331.

Zamir, Muhammad, et al. "Face detection & recognition from images & videos based on CNN &
Raspberry Pi." Computation 10.9 (2022): 148.

Gedraite, Estevédo S., and Murielle Hadad. "Investigation on the effect of a Gaussian Blur in image
filtering and segmentation." Proceedings ELMAR-2011. IEEE, 2011.

Haddad, Richard A., and Ali N. Akansu. "A class of fast Gaussian binomial filters for speech and
image processing." IEEE Transactions on Signal Processing 39.3 (1991): 723-727.

Gangal, Ayushe, Peeyush Kumar, and Sunita Kumari. "Complete scanning application using
OpenCv." arXiv preprint arXiv:2107.03700 (2021).

Dobusch, Leonhard, and Gordon Mueller-Seitz. "Strategy as a practice of thousands: the case of
Wikimedia." Academy of Management Proceedings. Vol. 1. Briarcliff Manor, NY 10510: Academy
of Management, 2012.

Pizer, Stephen M., R. Eugene Johnston, James P. Ericksen, Bonnie C. Yankaskas, Keith E. Muller
Medical Image Display Research Group. "Contrast-limited adaptive histogram equalization: Speed
and effectiveness.”Proceedings of the first conference on visualization in biomedical computing,
Atlanta, Georgia. Vol. 337. 1990.

Reza, Ali M. "Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-
time image enhancement." Journal of VLSI signal processing systems for signal, image and video
technology 38.1 (2004): 35-44.

Hamey, Leonard GC, Jon A. Webb, and I-Chen Wu. "Low-level vision on Warp and the Apply
programming model." Parallel computation and computers for artificial intelligence. Boston, MA:
Springer US, 1988. 185-199.

Glenn Jocher et al., “UltralyticsGithub Repository”. https://github.com/ultralytics/ultralytics
Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint
arXiv:1412.6980 (2014).

Scheffel, Jan, and Kristoffer Lindvall. "Temporal smoothing-A step forward for time-spectral
methods." Computer Physics Communications 270 (2022): 108173.

Computer Science & Information Technology (CS & IT)

341

[50] Liu, Jiaming, et al. "M3SOT: Multi-frame, multi-field, multi-space 3D single object tracking."

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 4. 2024.

APPENDIX A: SUPPLEMENTARY MATERIAL

A. Actuation Module Code

directionLeft = DigitalOutputDevice(21)

stepLeft = DigitalOQutputDevice(20)

directionRight = DigitalOutputDevice (8)

stepRight = DigitalOutputDevice (7)

directionClaw = DigitalOutputDevice (10)

stepClaw = DigitalOutputDevice (9)
directionZ = DigitalOutputDevice (3)
stepZ = DigitalOutputDevice(2)
global Xcoord

global Ycoord

Xcoord = 0 # temp

Ycoord = 0 # temp

def move _up ():
global Ycoord
Ycoord += 1
directionLeft.value = False
directionRight.value = True
move ()

def move_left():
glob al Xcoord
Xcoord —= 1
directionLeft . value
directionRight . value
move ()

= True
= True

def move_down ():
global Ycoord
Ycoord+=1
directionLeft. value = True
directionRight.value = False
move ()

def move_right():
glob al Xcoord
Xcoord+=1

directionLeft.value = False
directionRight.value = False
move ()

def move():

for i in range (get steps()):
stepRight .on()
stepLeft .on()
sleep (0.00005)
stepRight. off ()
stepLeft. off()
sleep (0.00005)

def goto(X, Y):
global Xcoord
global Ycoord
move Zup ()
while Xcoord != X
if Xcoord > X:
move _lett()
elif Xcoord < X:
move_right ()
while Ycoord != Y:
if Ycoord > Y:
move _down ()
elif Ycoord <Y:
move _up ()
move _Zdown ()

B. Training Dataset

The dataset used for training the models of this project can be found with this

https://universe.roboflow.com/ sortingpi/hardwaredetection-agOgc

link:

342 Computer Science & Information Technology (CS & IT)

Appendix B: Project CAD Files

CAD files for the project can be downloaded with this link:
https://www.dropbox.com/scl/fi/e5h125m6b0duf7nwmouhi/
SortingPiCADFiles.zip?rlkey=ju0mcuhwfijsk8vxekox0osOk&st=jox8arrj&dl=1

Appendix C: Bill of Materials

Table 3: Bill of Materials.

Part Name | Description Quantity Unit Cost Total Cost
®) 8)
Raspberry 8 GB RAM 1 80.00 80.00
Pi5
Raspberry 5.1V 2TW 1 12.59 12.59
Pi 5 Power
Supply
16 GB SD Any size 1 12.99 12.99
Card >8GB
Usongshine 5t 1 30.99 30.99
Nema 17
Stepper
Motor
BTT 4 ct 1 2299 22.99
TMC2209
V13
Stepper
Motor
Driver
Timing Amazon I 16.99 16.99
Belt and Kit,
Pulley Kit includes
pulleys
Microsoft Most 1 60.00 60.00
Lifecam webcams
Studio will work
Linear 2ct 3 11.99 35.97
Motion
Rod 8mm
OD
Total 272.52

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

