AN ADAPTIVE MOBILE GUITAR
APPLICATION TO ASSIST IN LEARNING
GUITAR AND MUSIC CREATION USING

MACHINE LEARNING AND
MEMBRANE BUTTON MATRIX

Jiale Zhao !, Soroush Mirzaee 2

!'Portola High School, 1001 Cadence, Irvine, CA 92618
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

This paper addresses the challenge of creating an affordable and effective guitar learning
system. Traditional guitar learning methods rely heavily on teacher-student interaction,
which can be limited in terms of feedback and accessibility [10]. To solve this problem, we
propose a system that uses membrane buttons on the guitar fretboard to detect user input,
combined with machine learning to provide real-time feedback and corrections. The system
converts raw guitar signals into a readable format and integrates with an application to
enhance the learning experience. Key technologies include RP2040 for signal conversion
and machine learning for input analysis. Challenges such as signal accuracy and real-time
feedback were addressed by using membrane buttons, which are more accurate and cost-
effective compared to other methods like video detection or audio analysis. The system was
tested in various scenarios, demonstrating its potential to provide an interactive, accessible,
and personalized guitar learning experience that can improve how students learn the
instrument.

KEYWORDS

Adaptive, Assist, Guitar Learning, Music Creation, Machine Learning

1. INTRODUCTION

How can we create an affordable and accurate system for guitar learning? This project seeks to
design a method to detect user input on a guitar fretboard digitally and create a teaching system
built upon it. The solution also aims to enhance the guitar's functionality as a practice and
teaching tool while allowing seamless signal conversion into MIDI or other formats to support
music production. Currently, there’s no effective way to export the guitar signal digitally by notes,
which makes it difficult to identify how the user inputs the signal and therefore cannot create a
teaching system for guitar learners. In other words, the guitar learners nowadays still need to
follow instructions from a teacher in a traditional teacher—student model [2]. Guitar is used in a
wide variety of musical styles, making it one of the arguably most widely used instruments.
However, structural inconsistencies (differences in guitar sizes or string spacing) or the notational
system used for this instrument versus other instruments (notes are written graphically for
interpretation) can produce problems that make reading music and tuning the instrument
particularly difficult for students trying to learn this instrument. It is challenging for pupils to

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA - 2025
pp. 61-71,2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152005

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152005

62 Computer Science & Information Technology (CS & IT)

create their own musical style because of these problems [4]. Therefore, an affordable and
convenient learning solution for guitar learners is crucial in the long run.

Some other methods, including the traditional teacher-student model, augmented reality (AR)
systems, and AR-based apps, are also aimed at solving this problem. Although it provides
individualized instruction, the teacher-student approach is constrained by the student's capacity to
take in criticism and the teacher's availability. Because AR systems overlay audio-visual
information to assist users practice methods, they offer immersive learning experience. However,
the quality and expense of AR technology limits how successful these systems can be. Similar to
this, augmented reality (AR)-based guitar learning applications employ 3D models to walk users
through finger positions and methods; but, because they do not provide real-time feedback,
learners find it challenging to fix errors immediately. By including membrane buttons for precise
input detection and machine learning for real-time feedback, my proposal expands on previous
approaches, resolving their shortcomings and offering a more accessible, engaging, and
reasonably priced guitar learning solution.

I decided to use membrane buttons on the fretboard to detect user input, along with machine
learning to help analyze the user input and learning results. The membrane button can capture the
signal and transport it to a pre-coded RP2040 to convert the raw signal to a readable keyboard for
devices. Then, the application comes in and creates an all-in-one solution for guitar teaching and
signal conversion. This solution is effective because the detection method using membrane
buttons is cheap and far more accurate and time sensitive than other raw digital signal conversion
methods, including video detection with object detection and audio analysing using machine
learning. In addition, once they are installed on the guitar, it is carried with the guitar, which
makes it capable of carrying it all around. Finally, the application is integrated and powered by
machine learning, which is better in identifying and recognizing user input and auto-corrects or
auto-warns the user when detecting some specific inputs. Some other instrument teaching
solutions that could be referenced here include Learning Guitar with Augmented Reality and
Piano tutoring project by Carnegie Mellon University [5][6].

The experiments in this study tested two critical aspects of the guitar learning system: note
classification accuracy and input-to-feedback latency. The first experiment examined how well
the program differentiated between Perfect, Great, Good, and Miss note classifications based on
timing thresholds. Controlled note sequences were played with known timing offsets, and results
revealed that thresholds were sometimes too lenient or broad, leading to misclassifications.
Adjustments were recommended to refine the timing windows and improve fairness for learners.

The second experiment focused on measuring system latency under varying load conditions.
Trials under light, medium, and heavy processing loads showed that latency increased
consistently with system demand. Light loads-maintained responsiveness within acceptable
ranges, while heavy loads exceeded 80 ms and disrupted real-time playability. Together, these
experiments highlighted the importance of balancing system thresholds and optimizing
processing efficiency to ensure the program provides accurate and responsive feedback during
guitar practice.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

Computer Science & Information Technology (CS & IT) 63

2.1. Real-Time Guitar Note Visualization

One component of the program is the visualization of the notes on the guitar fretboard. As
playing a pre-made sheet, the component needs to visualize notes at the right time on the right
fret in order to highlight the place where the player needs to press on. It could also respond to the
player's input, providing feedback to the accuracy of the player playing each note. We could
utilize the prefab instantiation to represent the coming notes generated at calculated position and
time. Then, as the note receives input signals, the instances would respond to each of the inputs.

2.2. Interactive Guitar Tab Scrolling Visualization

Another component in the program is the visualization of the sheet and the scrolling effect of it.
As the sheet is played and shown to the player, the visualization of the notes on a guitar tab is
scrolled down horizontally for the player. Similar to the visualization of the fretboard, this
component could also respond to the player input in a similar way to the fretboard. We could
implement this by using a text displayer to scroll horizontally representing each note instead of
making a moving sheet. The response of the note is similar to the responding method of the
fretboard.

2.3. Fretboard Keyboard Hardware Design Challenges

Hardware challenges come with the design of the enclosure and parts. We need to lay out the
keyboard on a fretboard that can be read by the computer. It should also respond to multiple keys
being pressed at the same time. We could use membrane buttons to build the main parts of the
keyboard, connected with resistances to prevent ghost signals. Then, a RP2040 can be used to
process the signal from the buttons and send it to the device.

3. SOLUTION

The program consists of three main components: a 3D-printed housing for the hardware and
controllers, the game itself, and an Al module. It begins with the hardware setup, where a 3D-
printed fretboard enclosure houses a button matrix and an RP2040 microcontroller. The button
matrix detects user inputs, such as pressing frets and strings, and the RP2040 processes these
signals to send them to a KMK keyboard controller. This controller translates the inputs into
readable commands for the game software. The game starts at the Main Menu, where users can
choose the song, they wish to practice. Once a song is selected, the program transitions into the
Game Scene, where players interact with two visualizations: a fretboard visualization, showing a
virtual representation of the physical fretboard, and a sheet visualization, displaying sheet music
or note timing for the chosen song. During gameplay, the player's performance is continuously
tracked by the Sheet Data Collector, which evaluates accuracy and timing. This data is sent to the
GPT API, which generates detailed feedback on the user’s progression and provides projections
for future improvements [11]. These insights are then displayed in the Main Menu to help the
player refine their skills. The program integrates various technologies, including the RP2040
microcontroller for hardware processing, a game engine such as Unity for the game and
visualizations, and the GPT API for performance analysis and feedback generation. Together,
these components create a seamless and interactive guitar practice experience.

64 Computer Science & Information Technology (CS & IT)

Controller -

Game
Li L | Displaying users
progression details and
RP2040 Main Menu |« projection

Choosing the song they
want to practice

Button Matrix

v T

3D Printed
Fretboard
enclosure

Fretboard
viusalization

Sheet

~ Visualization

Game Scene -

‘ Player's performance

KMK
Keyboard Generate Projections

Controller based on the users
Sheet Data performance
Collector = GPTAPI

Figure 1. Overview of the solution

The 3D-printed housing serves as the physical interface between users and the virtual game,
securely holding the button matrix and RP2040 microcontroller. Designed for ergonomic realism,
it mimics a guitar fretboard, capturing and processing user inputs for in-game interaction. This
component ensures seamless hardware-to-software integration for an immersive practice
experience.

Figure 2. Screenshot of the component

Computer Science & Information Technology (CS & IT) 65

Figure 3. Screenshot of code 1

This code converts the signal from the guitar fretboard, which is essentially a membrane
keyboard matrix, into a keyboard that can be identified by most devices. It runs when the user
presses the membrane button of the fretboard on the RP2040 mechanic embedded in the fretboard.
The board import variable, as shown in the screenshot, is the membrane signal collected from the
membrane button matrix. Then, the program uses KMK, an open-source firmware for computer
keyboards, to convert the signal into a keyboard to be identified by the main program.
Specifically, the col pins and row_pins are signal collections from the membrane button matrix,
and the key map shows how each membrane button is remapped into a key on the virtual
keyboard. In the end, the method returns the keyboard status if called by the program.

The guitar game is the core interactive component, enabling users to practice and improve their
guitar skills through gamified learning. Built using Unity, it combines fretboard and sheet music
visualizations with real-time feedback to enhance learning. This component bridges physical
inputs and Al-based progress tracking for seamless interaction.

Figure 4. Screenshot of guitar game

66 Computer Science & Information Technology (CS & IT)

Figure 5. Screenshot of code 2

The GenerateNoteOnSheet() method initializes and positions the notes on the virtual guitar
fretboard when the game begins. It iterates through a list of notes (_sheet) and skips any marked
"resting." For each note, it creates a visual representation on the fretboard (visualNotePrefab) at
the correct string and fret positions, derived from the note.stringNum and note.fretNum. The
position of the note is calculated using its startingBeat and a time offset (readyTime), ensuring
synchronization with the song's tempo. The BPMController converts the beat timing into seconds
and adjusts the note's horizontal position based on the note speed. Once the visual and actual note
objects are instantiated, the method initializes the NoteBehaviour component with properties such
as string number, fret number, and timing. The generated notes are later detected by the system
during gameplay, awaiting user input from the guitar to be rated based on accuracy. This code
runs during the setup phase of the game, preparing the visual and functional elements of the
gameplay. It integrates with prefabs that represent the notes, which serve as targets for user
interactions during the game.

The Al analysis module evaluates the player’s performance by analyzing timing, accuracy, and
gameplay metrics, providing detailed feedback and skill progression projections [12]. It uses a
GPT-based API for machine learning and feedback generation, supported by backend services for
data transfer [13]. Integrated with the Sheet Data Collector, it enhances the user’s practice
experience with advanced insights.

Computer Science & Information Technology (CS & IT) 67

Congratulations!

Missing on mostly chord
Improvement: More Accurate on Singal Notes
he song in the settings and follow

Figure 6. Screenshot of analysis

Figure 7. Screenshot of code 3

The LoadResult method initiates the process by receiving a Results object, which stores all user
performance data including timing, accuracy and more, after a song is finished, storing it in
TheResults, and then generating a JSON report on the user performance of the current song via
GenerateJsonReport(). Subsequently, SendRequest() asynchronously sends this JSON report as a
user prompt to OpenAl's GPT-3.5-turbo model. It constructs a CreateChatCompletionRequest
with the report as the message content. Upon receiving the API's response, it extracts the
generated text from res.Choices[0].Message.Content and shows it on the user interface.

4. EXPERIMENT

4.1. Experiment 1

The accuracy of thresholds set for the notes to be considered Perfect play, great, good, or a miss
can go wrong and be inaccurate depending on how it is set up.

To test the accuracy of note timing thresholds, we will compare detected note classifications
(Perfect, Great, Good, Miss) against actual timing deviations. The experiment involves running
the game with a controlled sequence of notes played at known offsets from the target beat. The

68 Computer Science & Information Technology (CS & IT)

CurrentBeat system logs each note’s actual timing and how it is classified by the game logic. By
adjusting missTime, goodTime, and greatTime thresholds, we analyze how well the system
differentiates between near-perfect and mistimed inputs. The collected data is compared to
expected classifications to determine if the thresholds are appropriately set or if adjustments are
needed for better accuracy.

The graph below represents the percentage of notes classified as Perfect, Great, Good, or Miss at
different timing deviations from the target beat.

Distribution of Note Clas!?d'fications Based on Timing Deviation
501

N w B
Q =] o

Number of Notes Classified

=
o

0 Perfect (<5ms) Great (6-20ms)Good (21-40ms) Miss (>40ms)
Timing Deviation Category

Figure 8. Figure of experiment 1

The data highlights how timing thresholds affect note classification. The mean timing deviation
recorded for Perfect plays was within 5Sms, while Great ranged from 6-20ms, Good extended up
to 40ms, and Misses exceeded this range. The lowest timing deviation classified as a Miss was
42ms, while some Great classifications were given to notes slightly beyond their expected range,
indicating possible threshold misalignment.

Unexpectedly, some "Perfect" notes were recorded at deviations exceeding their expected limit,
suggesting that the window for Perfect classification may be too lenient. Additionally, many
near-miss notes fell into the Good range, meaning the Good threshold may be too broad.

The biggest influence on the results is the threshold balance between Good and Miss
classifications. If set incorrectly, players may feel that timing precision is inconsistent or unfair.
Adjusting these thresholds and retesting would improve the accuracy of note-timing feedback.

4.2. Experiment 2

Another blind spot in the program is the latency between user input on the fretboard and the
visual or auditory feedback provided. High latency could negatively affect the learning
experience.

To measure latency, we conducted trials under three system load conditions: light (minimal
background processes), medium (moderate background processes), and heavy (multiple tasks
running simultaneously). A sequence of notes was played on the fretboard, and the delay between
pressing the button and receiving on-screen feedback was logged in milliseconds using the
RP2040 timer system. Each condition was tested over three trials to ensure consistency. This
experiment was designed to reveal how system performance impacts feedback speed, which is
critical for maintaining immersion and accuracy in a music learning environment.

Computer Science & Information Technology (CS & IT) 69

Input-to-Feedback Latency under Different System Loads

i
80 '
70
g
— 60
>
0
=
&
a
40
30 —_
Heavy Light Medium

System Load

Figure 9. Figure of experiment 2

The data shows a clear trend: latency increases significantly as system load rises. Under light
load, the mean latency was 32.3 ms with a median of 32 ms, comfortably below the perceptual
threshold where delays become noticeable. Medium load increased the mean latency to 50 ms,
with a minimum of 48 ms and maximum of 52 ms. While still usable, this delay begins to feel
less responsive for fast-paced songs. Under heavy load, latency values rose to an average of 81.7
ms, with a maximum of 85 ms. This exceeded the ideal threshold for real-time feedback and
would likely disrupt a learner’s rhythm.

The most surprising finding was the consistency across trials within each load condition,
suggesting predictable performance under given conditions. The primary factor influencing
results is processing demand on the RP2040 and connected system. Reducing background tasks
or optimizing code efficiency would mitigate latency spikes.

5. RELATED WORK

In the paper Guitar Learning, Pedagogy, and Technology: A Historical Outline, the authors
discussed the traditional teacher-student learning and self-guided learning through books,
magazines, DVDs, and online resources of guitar learning. It emphasizes the impact of traditional
media, including online archives, social media, and apps. These technologies have made guitar
learning more accessible and flexible, allowing learners to access a wealth of resources and learn
at their own pace [7]. However, the effectiveness of these technologies depends on the learner's
motivation and ability to navigate and utilize the resources effectively. Additionally, the lack of
personalized feedback from a teacher can hinder progress. Therefore, this project aims to provide
real-time feedback and correction through the use of membrane buttons and machine learning,
allowing the learning process to be more interactive and effective.

The paper Augmented Reality Scenarios for Guitar Learning, on the other hand, presents an
augmented reality (AR) system that superimposes audio-visual information to support guitar
learning. Learners can interact with the audio-visual information in a natural way, and the system
provides different learning scenarios based on the learner's experience level. The AR system
provides an engaging and immersive learning experience, making it easier for learners to
understand and practice guitar techniques [8]. However, the effectiveness of this method is
severely limited by the quality of the AR hardware and software. This project improves on this by
incorporating signal conversion capabilities, enhancing its functionality as a practice and teaching
tool and decreasing its dependency on hardwares.

70 Computer Science & Information Technology (CS & IT)

In the paper Augmented Reality to Facilitate Learning of the Acoustic Guitar, an AR-based
application is presented to teach guitar chords and short melodies [9]. The app uses high-quality
3D models of an acoustic guitar and animated hand to indicate correct finger positions and
movements, which provides a fascinating visual and interactive learning experience, allowing the
learners to understand and practice guitar techniques at ease. Similarly, the effectiveness of the
AR application is limited by the quality of the AR hardware and software. Additionally, the
system may not provide real-time feedback and correction. This project improves this by
incorporating signal conversion capabilities and providing real-time feedback and correction
through the use of membrane buttons and machine learning.

6. CONCLUSIONS

This project's dependence on membrane buttons, which could not offer the subtle touch
sensitivity needed to identify changes in playing styles like bends, slides, or vibrato, is one of its
limitations. Furthermore, structural variations may make it difficult to attach membrane buttons
on different guitar models. The use of a RP2040 for processing is another problem; although
efficient, it may have computing constraints or cause delay when handling real-time input
analysis [14].

A more sophisticated sensor system, such pressure-sensitive fret detection or capacitive touch
sensors, might be used to alleviate these issues and increase accuracy. Furthermore, detecting
more intricate playing skills may be made easier by combining the membrane buttons with an Al-
driven sound analysis system. Given more time, optimizing the hardware-software interaction to
reduce latency and refining the machine learning model for better real-time feedback would be
key improvements.

In conclusion, this project presents a cost-effective and innovative solution for digital guitar
learning by integrating membrane buttons and machine learning [15]. While limitations exist in
detecting complex playing techniques, it effectively addresses the challenges of traditional guitar
teaching methods, providing a practical, portable, and accurate system that enhances the learning
experience, making guitar education more accessible and engaging for students.

REFERENCES

[1] Del Rio-Guerra, Marta Sylvia, et al. "AR graphic representation of musical notes for self-learning
on guitar." Applied Sciences 9.21 (2019): 4527.

[2] Ramirez, Rafael, et al. "Enhancing music learning with smart technologies." Proceedings of the 5th
International Conference on Movement and Computing. 2018.

[3] Alonso Jartin, Ruth, and Rocio Chao-Ferndndez. "Creatividadenelaprendizaje instrumental:
lenguajemetaférico, velocidad del procesamientocognitivo y cinestesia." (2018).

[4] Harrison, Eli. "Challenges facing guitar education." Music educators journal 97.1 (2010): 50-55.

[5] Keebler, Joseph R., et al. "Shifting the paradigm of music instruction: implications of embodiment
stemming from an augmented reality guitar learning system." Frontiers in psychology 5 (2014): 471.

[6] Dannenberg, Roger B., et al. "Results from the piano tutor project." Proceedings of the fourth
biennial arts and technology symposium. 1993.

[71 Rodriguez, Ruben C., and Vittorio Marone. "Guitar learning, pedagogy, and technology: A
historical outline." Social Sciences and Education Research Review 8.2 (2021): 9-27.

[8] Liarokapis, Fotis. "Augmented Reality Scenarios for Guitar Learning." TPCG. 2005.

[91 Martin-Gutierrez, Jorge, et al. "Augmented reality to facilitate learning of the acoustic guitar."
Applied Sciences 10.7 (2020): 2425.

[10] Englehart, Joshua M. "Teacher - student interaction." International handbook of research on
teachers and teaching. Boston, MA: Springer US, 2009. 711-722.

[11]
[12]

[13]

[14]

[15]

Computer Science & Information Technology (CS & IT) 71

Kublik, Sandra, and Shubham Saboo. GPT-3: The ultimate guide to building NLP products with
OpenAl API. Packt Publishing Ltd, 2023.

Levchenko, Irina V., and Polina A. Merenkova. "Formation of content modules for teaching
artificial intelligence in the basic school." RUDN Journal of Informatization in Education 18.3
(2021): 227-237.

Jordan, Michael 1., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects."
Science 349.6245 (2015): 255-260.

Jevti¢, Aleksandar, and Goran Risti¢. "Utilisation of Raspberry Pi 4 and RP2040 microcontroller for
PID measurement and control." 2023 IEEE 33rd International Conference on Microelectronics
(MIEL). IEEE, 2023.

Talmor, Daniel, et al. "When is critical care medicine cost-effective? A systematic review of the
cost-effectiveness literature." Critical care medicine 34.11 (2006): 2738-2747.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

