

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA – 2025

pp. 73-94, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152006

ENHANCING SOFTWARE PRODUCT LINES

WITH MACHINE LEARNING COMPONENTS

Luz-Viviana Cobaleda 1, Julián Carvajal 1, Paola Vallejo 2,

Andrés López 1,3 and Raúl Mazo 3

1 Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia.
2 Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín,

Colombia.
3 Lab-STICC, ENSTA, Brest, Francia.

ABSTRACT

Modern software systems increasingly integrate machine learning (ML) due to its

advancements and ability to enhance data-driven decision-making. However, this

integration introduces significant challenges for software engineering, especially in

software product lines (SPLs), where managing variability and reuse becomes more

complex with the inclusion of ML components. Although existing approaches have

addressed variability management in SPLs and the integration of ML components in

isolated systems, few have explored the intersection of both domains. Specifically, there is

limited support for modeling and managing variability in SPLs that incorporate ML

components. To bridge this gap, this article proposes a structured framework designed to

extend Software Product Line engineering, facilitating the integration of ML components.

It facilitates the design of SPLs with ML capabilities by enabling systematic modeling of

variability and reuse. The proposal has been partially implemented with the VariaMos tool.

KEYWORDS

Machine Learning (ML), Software Product Lines (SPL), ML-based systems, variability

modeling.

1. INTRODUCTION

The rapid evolution of artificial intelligence (AI) over the last decade can be attributed to a

convergence of key factors: enhanced computational power, the widespread availability of

massive datasets, and the creation of more sophisticated algorithms. Consequently, AI has

emerged as a transformative technological force, empowering software-intensive systems with

novel capabilities in a wide range of domains [1], [2], [3], [4]. AI-based systems are essentially

software systems whose functionalities are enabled by at least one AI component (e.g., for image

and speech recognition or autonomous driving) [4]. However, incorporating AI components into

software products introduces new software engineering challenges and amplifies existing ones.

The situation becomes even more critical when these components are integrated not only into a

single product but into a family of software products or a Software Product Line (SPL). Thus, the

integration of Machine Learning (ML) components into SPLs introduces new dimensions of

variability that traditional modeling techniques are not prepared to handle. This raises

fundamental questions: How can an AI/ML component be modeled within an SPL? How can

architects effectively integrate ML components into their SPLs? What information about the

model is necessary to enable a successful SPL configuration process? The inability of current

modeling approaches to address these questions reveals a significant research gap. Additionally,

the integration of ML components into software systems introduces unique challenges that have

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152006
https://www.zotero.org/google-docs/?8W6TQo
https://www.zotero.org/google-docs/?QbmH0l

74 Computer Science & Information Technology (CS & IT)

given rise to the field of Software Engineering for AI (SE4AI). Recent literature has

systematically identified the issues that emerge across the software lifecycle, impacting areas

such as requirements engineering, architecture, testing, deployment, and maintenance [3], [4],

[5], [6]. While these challenges are broad, this article focuses on those most relevant to the design

of SPL.

Most research in SE4AI has focused, to date, on the challenges of integrating ML components

into individual software systems. In the context of SPLs, where systematic reuse is the primary

goal, these challenges not only persist but are magnified and transformed into variability

management problems. For example, defining performance metrics for a product is an

engineering challenge, but managing a catalog of components with different performance profiles

to configure multiple products becomes a challenge in variability management. The literature that

explicitly addresses this transformation of ML challenges in the SPL domain is notably scarce,

representing a significant research gap. One of the main challenges documented for individual

systems lies in requirements engineering, particularly in managing expectations. It has been

reported that both customers [3] and development teams [6] often have limited knowledge of the

actual capabilities and limitations of ML, leading to the establishment of unattainable

requirements, such as requests for systems with no false positives or 100% accuracy [4]. This

problem extends to the difficulty of translating business objectives into appropriate technical

specifications, as the quantitative metrics used to characterize an ML model are often unintuitive

to non-technical stakeholders [3]. Beyond the requirements, the dynamic nature of ML

components introduces complex operational challenges. The literature highlights the emergence

of new quality attributes, such as freshness and robustness, whose understanding is still

fragmented [3], [4]. For instance, the freshness requirement addresses the performance

degradation caused by phenomena like “concept drift” through continuous monitoring, which in

turn necessitates defining both the tolerance for such degradation and the specific triggers for a

model update [3]. Additionally, the management of these new attributes is complicated by the

existence of inherent trade-offs, such as that between fairness and accuracy in a model [3], [4].

Although the challenges discussed are significant for individual software systems, their impact is

amplified in the context of SPLs, where systematic reuse and variability management are

paramount. The incorporation of ML components introduces additional variability issues, such as

defining performance metrics at the product line level, aligning stakeholder understanding across

multiple products, and specifying monitoring policies, that must be addressed not only for

individual products but for product lines. Despite extensive research on AI-related software

components, the current literature lacks approaches that explicitly consider the distinctive

characteristics of these components within the context of SPLs [3], [4].

In this paper, we propose a framework for enhancing SPLs by enabling the seamless integration

of ML components. Our main contribution is a specification-oriented approach that guides the

integration of ML-based functionalities into SPLs. This approach addresses key aspects,

including variability management, probabilistic feature modeling, ML component

characterization, systematic ML component monitoring, systematic component replacement

strategy, and derivation products with ML components. This strategy enables more systematic

reuse, customization, and traceability of ML components across product configurations in the

SPL context.

The remainder of the paper is structured as follows: Section 2 provides background on SPL

engineering and ML components documentation. Section 3 details the proposed framework for

designing SPLs with ML components and discusses the implications of this approach. Section 4

presents related work. Finally, Section 5 concludes the article and outlines directions for future

work.

https://www.zotero.org/google-docs/?MRsch7
https://www.zotero.org/google-docs/?MRsch7
https://www.zotero.org/google-docs/?6UJz5O
https://www.zotero.org/google-docs/?HCinZi
https://www.zotero.org/google-docs/?UG0Cyk
https://www.zotero.org/google-docs/?4Loxiz
https://www.zotero.org/google-docs/?5gYHRD
https://www.zotero.org/google-docs/?isHDdO
https://www.zotero.org/google-docs/?7vhxgR
https://www.zotero.org/google-docs/?XXUdDn

Computer Science & Information Technology (CS & IT) 75

2. BACKGROUND

The design and development of SPLs rely on systematic approaches to manage variability and

promote reuse across families of related software systems. To provide the necessary foundation

for the proposed framework, this section outlines the core concepts of SPL engineering and the

integration of ML components.

2.1. SPL and Variability Management

A SPL represents a systematic approach to developing families of related applications within a

specific domain through strategic reuse of common assets [7]. This paradigm leverages shared

components and systematic variability management to achieve significant reductions in

development time and costs while improving product quality through the incorporation of proven,

reusable artifacts.

Software Product Line Engineering (SPLE) operationalizes this approach through two

fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes

reusable assets and variability models, and (2) Application engineering, which derives specific

products from these shared resources [7]. Variability—the capacity of a system to be adapted or

configured for specific contexts—serves as the core mechanism enabling this systematic reuse

across diverse product requirements.

1) Domain engineering establishes the foundation of reusable assets through two sequential

phases. A) Domain analysis identifies and specifies SPL variability using formal models such as

feature models [8], which define variation points, available alternatives, and constraint

relationships. This phase encompasses: domain requirements definition to capture stakeholder

needs and scope constraints, reference architecture specification aligned with domain

requirements, and variability model quality assurance through systematic verification, diagnosis,

and validation activities. B) Domain implementation transforms abstract specifications into

concrete, reusable components. Key activities include requirements engineering for domain

components, architectural design specification, domain component implementation,

comprehensive unit testing, and explicit linkage between components and variability model

elements. This phase produces the core asset base comprising domain components, architectural

models, and associated test suites.

2) Application engineering derives specific products through the systematic configuration and

instantiation of domain assets across two phases. A) Configuration and customization

management captures customer-specific requirements and configures variability models

accordingly, encompassing application requirements engineering, variability model

configuration, application architecture definition, and component customization to meet specific

product needs. B) Derivation constructs final products from configured domain assets through

requirements engineering for the derivation process, assembly architecture definition, systematic

product implementation from domain components, and comprehensive system integrity testing,

including performance, validation, and audit verification.

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary

to address diverse product requirements within the target domain. The SPLE framework applies

to various domains, including but not limited to education [9], agricultural systems [10], smart

building [11], e-commerce [12], automotive manufacturing [13], and information systems [14].

https://www.zotero.org/google-docs/?RsdLki
https://www.zotero.org/google-docs/?h54iId
https://www.zotero.org/google-docs/?aWThnY
https://www.zotero.org/google-docs/?qaMiXW
https://www.zotero.org/google-docs/?0LYiJw
https://www.zotero.org/google-docs/?1DUBEx
https://www.zotero.org/google-docs/?BTzBcc
https://www.zotero.org/google-docs/?O6ECTf
https://www.zotero.org/google-docs/?5tPqFf

76 Computer Science & Information Technology (CS & IT)

As a representative example of an SPL, the virtual store SPL models a family of e-commerce

platforms designed to support the online exchange of goods and services across diverse markets

such as fashion, electronics, and digital content, this SPL captures a set of core functionalities

common to most product instances, including a product catalog, shopping cart, payment module,

and delivery system. These shared components are complemented by a range of variability points

that allow customization according to specific business needs, such as authentication

mechanisms, catalog presentation styles, supported payment gateways, search engines, content

moderation tools, and user interface configurations. The SPL is designed to promote systematic

reuse while enabling flexibility to address the functional and non-functional requirements of

different virtual store deployments.

Figure 1. SPLE framework implemented in the VariaMos web tool, from [7]

2.2. ML Components

An ML component is a special type of software component that encapsulates ML models along

with their associated data processing, inference logic, and system integration capabilities [6],

[15]. These components constitute the main means of integrating ML capabilities into complex

software systems, acting as a bridge between the underlying ML models and the overall system

architecture. Component reuse is a foundational principle that enables the efficient development

of multiple products from a shared, common core.

ML components can be deployed across various operational contexts depending on system

requirements and architectural constraints. Common deployment patterns include: (1) embedded

software libraries integrated directly within applications for low-latency scenarios; (2) standalone

services accessible through REST or gRPC APIs for service-oriented architectures; and (3)

containerized microservices within distributed cloud-native environments. The execution

environment may range from local computational resources and edge devices to cloud-based

infrastructures, each presenting distinct trade-offs in terms of latency, scalability, resource

consumption, and operational complexity. The selection of an appropriate deployment strategy

https://www.zotero.org/google-docs/?mYQaIY
https://www.zotero.org/google-docs/?jap6ob
https://www.zotero.org/google-docs/?jap6ob

Computer Science & Information Technology (CS & IT) 77

requires systematic evaluation of quality attributes, including performance characteristics,

scalability requirements, maintainability constraints, and security considerations. These decisions

must align with both functional requirements and non-functional system objectives, as the

deployment choice significantly impacts the overall system behavior and operational

characteristics. Given the critical role of ML models within these components, establishing a

clear understanding of their behavior, limitations, and applicability conditions is essential for

responsible reuse in systems.

In our representative example, the SPL for the virtual store also incorporates ML components,

introducing a new dimension of intelligent behavior and adaptive functionality. These ML-based

components include a semantic search engine that interprets the context of user queries, a

sentiment analysis module applied to customer reviews, a content moderation module that

filters out inappropriate content, and a fraud detection module to prevent and detect fraudulent

activity. Each of these components can be configured in multiple ways depending on

performance requirements, latency constraints, and human-in-the-loop considerations. For

instance, the content moderation module may operate in a human-assisted mode or as a fully

automated system, depending on the confidence thresholds applied to the underlying ML model.

These components are encapsulated as reusable assets within the SPL, enabling developers to

integrate advanced ML capabilities without retraining models from scratch for each product

variant.

The selected components in the previous example are notable for both their practical applicability

and their capacity to introduce significant variability dimensions—including model selection,

performance thresholds, and human-in-the-loop configurations—that require explicit

management within an SPL. However, in other domains, the set of selected components may

differ. For instance, in the agricultural AI domain, relevant ML components for predictive

modeling could include capabilities for carbon sequestration [16] or for emissions forecasting

[17].

3. PROPOSAL

The integration of ML components into SPL represents a fundamental paradigm shift that

challenges the traditional assumptions underlying systematic software reuse. While conventional

SPL approaches have proven effective for deterministic software components with predictable

behavior and stable interfaces [18], [19], ML components introduce unprecedented complexity

through their inherent stochasticity, data dependency, continuous evolution requirements, and

non-functional characteristics that defy traditional software engineering practices [3], [4].

This proposal presents a comprehensive framework that extends the foundational principles of

product line engineering to accommodate the unique properties of ML components while

preserving the economic and technical benefits that have made SPL a cornerstone of systematic

software development. Our approach recognizes that ML components cannot be treated as “black

boxes” within existing SPL methodologies; rather, they require a fundamental

reconceptualization of domain modeling, component characterization, architectural design, and

product derivation processes.

The framework proposed in this paper is currently being implemented in the VariaMos web tool

(www.variamos.com) as part of an ongoing effort to operationalize and validate its practical

applicability. It is organized around five interconnected phases that collectively address the

complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture

design, ML-aware domainimplementation, Dynamic product configuration, and Product

derivation and validation of its resulting products. Each phase builds upon established SPL

https://www.zotero.org/google-docs/?zjTPME
https://www.zotero.org/google-docs/?nKBplF
https://www.zotero.org/google-docs/?qpM278
https://www.zotero.org/google-docs/?yTgQ5i

78 Computer Science & Information Technology (CS & IT)

theory while introducing novel concepts and recommended practices specifically designed to

handle the probabilistic nature, performance variability, and operational complexity inherent in

ML systems. While VariaMos is a versatile, generic tool that accepts different domains, our

examples pertain to the e-commerce domain.

3.1. ML-Aware Domain Analysis

The domain analysis phase requires significant adaptations when ML components are involved,

particularly in feature modeling and architectural decision-making [7]. Traditional Boolean

feature satisfaction proves inadequate for ML components whose capabilities vary across

contexts and exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in

their inherent reliance on training data properties. The performance and functional capabilities

of these features are susceptible to the characteristics of the training data, including its quality,

representativeness, and intrinsic attributes. Additionally, implementing ML-based features can

introduce risks associated with sensitive data, particularly regarding privacy, security, and

information governance, due to the implications of data use and storage for model training and

inference.

Recommendation 1: Implement Probabilistic Feature Modeling.

SPL engineers should extend conventional feature models to capture the uncertainty inherent in

ML component capabilities[8]. Rather than relying on binary feature satisfaction, engineers

should model features with quality distributions that reflect the variability in ML component

performance.

Practical Implementation: For each feature that will be satisfied by an ML component, SPL

engineers should identify it as an “ML-based feature” and define the following Feature Quality

Profile:

FeatureQualityProfile = {
feature_id: String,
feature_type: type,
ml_component_id: String,
quality_distribution: {

accuracy_range: [min_accuracy, max_accuracy],
context_sensitivity: Map[Context, AccuracyLevel],
confidence_intervals: Map[Scenario, ConfidenceRange]

}}

E-commerce Example: For a fraud detection feature in an online retail SPL, implementing

recommendation 1, its Feature Quality Profile should look as follows:

FeatureQualityProfile = {
feature_id: “fraud_detection”,
feature_type:ML-based,
ml_component_id: “fraud_detection_V1.0”,
quality_distribution: {

accuracy_range: [0.88, 0.95],
context_sensitivity:{

domestic_transactions_during_week:0.95,
international_transactions_during_week: 0.88,
domestic_transactions_during_weekend: 0.90,
international_transactions_during_weekend: 0.75,

https://www.zotero.org/google-docs/?iaQha8
https://www.zotero.org/google-docs/?wKLKV1
https://www.zotero.org/google-docs/?s1mqUr

Computer Science & Information Technology (CS & IT) 79

transactions_from_suspicious_IP: 0.98,
transactions_less_than_10_USD: 0.70},

 confidence_intervals: {
high_confidence: [0.85, 1.0],
medium_confidence: [0.70, 0.84],
low_confidence: [0.0, 0.69]}}

}}

3.2. Adaptive Architecture Design

The reference architecture must explicitly address the dynamic and context-sensitive nature of

ML components. ML models often evolve over time, depend on external data sources, and

exhibit probabilistic behavior that affects system reliability and performance. Therefore,

architectural decisions must incorporate design strategies that manage adaptability and

traceability, ensure periodic updates, and maintain the long-term stability and performance of

integrated ML functionalities. These strategies should align feature variability, model

capabilities, and operational constraints, which is paramount for ensuring the robustness,

adaptability, scalability, and maintainability of the ML-based SPL.

Recommendation 2: Design ML-Aware Reference Architecture.

The reference architecture must account for several key aspects.

● It must provide for a clear separation of concerns between the core SPL framework, the

ML model development cycle, the deployment pipeline, and model monitoring.

● It must support various deployment strategies, including on-device (edge computing), on-

premises, or cloud-based, depending on the specific product requirements and

constraints.

● It must ensure data privacy, security, and compliance, while facilitating seamless

integration with robust ML engineering practices, such as MLOps.

Practical Implementation: SPL engineers should be able to:

● Use microservice-based architecture, where ML components are deployed as decoupled

services accessible through well-defined APIs.

● Use of containerization (e.g., Docker) to package models and their dependencies,

ensuring environmental consistency and portability.

3.3. ML-Aware Domain Implementation

The domain implementation phase requires a structured approach to documenting, versioning,

and managing ML components. This approach should be complemented by a formal monitoring

process that can detect performance degradation and automatically trigger component

replacement procedures. Effectively characterizing and selecting suitable ML components is

essential to understanding their capabilities, limitations, and performance profiles. This enables

successful integration and reduces associated risks. The monitoring system is designed to address

the dynamic and non-deterministic nature of ML components by identifying potential degradation

in the production environment and issuing alerts. Additionally, careful consideration is required

for some aspects. For example, orchestrating ML components across products involves managing

dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML

components systematically requires mechanisms to evaluate, decouple, and reintegrate new

versions with minimal disruption.

80 Computer Science & Information Technology (CS & IT)

Recommendation 3: Adopt Intelligent Component Characterization.

To ensure the precise and systematic characterization of pre-trained ML components, it is

proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [20]

and further extended by Toma [21], provide a standardized framework for documenting ML

models in a transparent and structured manner. This approach recommends customizing specific

sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability

Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards

are tailored for domain experts who, while not data scientists, are responsible for selecting and

integrating third-party components.

Practical Implementation: For each ML component in the SPL, a standardized model card is

proposed, capturing the following essential information:

ModelCard= {
model_details: {
 model_id: String,
 version: ModelVersion,

developed_by: String,
model_type: MLModelType,
license: LicenseSpecification

}, intended_use: {
primary_use: String,
out-of-scope_use: String

}, spl_reusability_profile: {
supported_domains: Set[Domain],
integration_complexity: String, (ej. “Low”)

}, model_usage: {
api_endpoint: String,
deployment_guidance: String

}, performance_metrics: Map[clave, valor],
 operational_requirements: {

cpu: CPUSpecification, ram: RAMSize,
gpu: String, notes: String

 },
 caveats: [String]
}

The SPL-aware Model Card specification defines the essential attributes for characterizing an

ML component. The purpose and content of each key attribute are detailed below:

● model_details: Provides technical specifications—covering developer information, version

control, model architecture, training methodology, and licensing terms that define commercial

use rights, current license type, and redistribution permissions.

○ model_id: A unique identifier for the model, such as its name in a public repository.

○ version: The specific version of the model, following semantic versioning where

possible, to track changes and dependencies.

○ developed_by: The organization, team, or individual responsible for the model's

development.

○ model_type: Specifies the model's task category (e.g., Text Classification, Object

Detection), informing its functional role.

○ license: The legal specification governing the use, modification, and distribution of

the model, crucial for commercial product derivation.

https://www.zotero.org/google-docs/?rhKQid
https://www.zotero.org/google-docs/?jt5WBR

Computer Science & Information Technology (CS & IT) 81

● intended_use: Defines appropriate use cases, target applications, and intended user

populations by outlining usage scenarios, specifying primary and out-of-scope applications,

detailing the model’s adaptability, and highlighting its limitations and potential biases.

○ primary_use: A concise description of the model's main purpose and the scenarios

where it is designed to be applied (e.g., real-time fraud detection).

○ out-of-scope_use: Explicitly states the limitations and use cases for which the model

has not been designed or validated, preventing misuse.

● spl_reusability_profile: A section dedicated to evaluating the ML component's fitness as a

reusable asset within the SPL context. This is a key input for variability modeling.

○ supported_domains: A set of application domains where the model has

demonstrated reliable performance, highlighting potential domain biases.

○ integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that

estimates the engineering effort needed to integrate the component, based on its

dependencies and API.

● Model_usage: Offers guidance on model consumption through various interfaces (e.g., UI,

API) and outlines its compatibility with different deployment platforms and operating

systems.It also provides guidance on optimizing performance and outlines deployment

strategies for different environments, including local setups and cloud platforms.

○ api_endpoint: The URL or interface for sending inference requests.

○ deployment_guidance: A summary of instructions and best practices for deploying

the model in different environments (e.g., cloud, edge).

● performance_metrics: Comprehensive performance evaluation including accuracy measures,

uncertainty quantification, and decision thresholds.

● operational_requirements: Provides system requirements and hardware recommendations to

help users prepare for deploying or fine-tuning the model in their computing environment.

○ cpu: The recommended minimum specification for the CPU. This is critical for

overall system performance and serves as the primary compute resource when no

GPU is used.

○ ram: The recommended minimum system RAM. This memory is required to hold

the operating system, host application, model dependencies, and the model itself

before being loaded into specialized hardware.

○ gpu: Specify whether a GPU is required, as well as its minimum specifications.

○ notes: Provides additional qualitative context or performance tips.

● caveats and recommendations: Presents caveats and recommendations by assessing

potential societal impacts, fairness considerations, and bias mitigation strategies, while also

outlining behavioral limitations related to “Not Safe For Work” (NSFW) content such as

explicit material, violence, or hate speech.

E-commerce Example: The Model Card of the ML component of sentiment analysis would be:

ModelCard= {
model_details: {

82 Computer Science & Information Technology (CS & IT)

 model_id: “tc_001”,
 version: 2,

developed_by: “Hugging Face”,
model_type: Text Classification,
license: Apache-2.0,

},
intended_use: {

primary_use: “The model can be used for topic classification”,
out-of-scope_use: “The model was not trained to be factual or true
representations of people"

},
model_usage: {

api_endpoint: https://plapplication.com/sentimentAnalisys1/predict,
deployment_guidance: http://huggingface.co/distilbert/distilbert-base-
uncased

},
spl_reusability_profile: {

supported_domains: [“Movies”, “Series”, “Music”, “Products”],
integration_complexity: “Low”

},
performance_metrics: [“Accuracy”: 91.3],
operational_requirements: {

cpu: 2+ CPU Cores, ram: 4GB, gpu: “Optional”,
notes: “Although the GPU is optional, its inclusion can significantly
improve performance for some scenarios”

},
caveats_recommendations: [“The model is vulnerable to producing biased
predictions affecting underrepresented groups. For instance, when evaluating
sentences such as “This film was filmed in COUNTRY,” the model assigns
drastically different probabilities to the positive label based on the country
mentioned (e.g., a 0.89 probability for France versus 0.08 for Afghanistan).”]
}

This information empowers the SPL architect to make a reasoned configuration decision: either

accept a component with known limitations and plan for specific monitoring, or select an

alternative component whose characteristics are better aligned with the product being built. In

addition, the systematic adoption of Model Cards represents a crucial step toward responsible ML

deployment by enhancing transparency around model behavior and operational boundaries. By

standardizing both technical and ethical documentation practices, Model Cards enable

stakeholders to evaluate and compare models using multidimensional criteria that extend beyond

traditional performance metrics to encompass fairness, inclusivity, and equity considerations.

Recommendation 4: Implement Systematic ML Component Monitoring.

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL

engineers must design robust monitoring mechanisms capable of detecting performance

degradation [22]. Operating at runtime, these mechanisms should continuously observe both

model performance and business-critical signals, while being seamlessly integrated with drift

detection and alerting processes to ensure resilient and self-adaptive system behavior.

Practical Implementation: To effectively implement this recommendation, SPL engineers

should define a dedicated ML monitoring component for each domain component that

incorporates ML capabilities. This component must specify the following attributes:

https://www.zotero.org/google-docs/?CPhGiK

Computer Science & Information Technology (CS & IT) 83

MLComponentMonitor: {
 component_id: String,
 monitoring_configuration: {
 metrics: Set[MonitoringMetric],
 frequency: TemporalSpecification,
 data_collection_strategy: DataCollectionApproach,
 baseline_establishment: BaselineDefinition
 },
 threshold_definitions: {
 performance_thresholds: Map[Metric, ThresholdSpec],
 drift_detection_thresholds: Map[DriftType, ThresholdSpec],
 business_impact_thresholds: Map[BusinessMetric, ThresholdSpec]
 },
 intervention_strategies: {
 alert_procedures: AlertSpecification
 }
}

The specification defines the structural requirements needed to establish consistent, interpretable,

and actionable monitoring configurations. The key attributes of the monitoring specification are

detailed below:

● component_id: Unique identifier of the monitored ML component. Used to record events,

logs, and monitoring metrics.

● monitoring_configuration: Parameters that define what, how, and when monitoring is

performed.

○ metrics: Set of key metrics for monitoring model performance. These metrics

depend on the type of ML model (e.g., classification [F1Score, AUC, Accuracy],

regression [RMSE, MAE], recommendation [Precision, Recall]).

○ frequency: Frequency at which the model's status is evaluated. It may depend on the

traffic rate or importance of the model (e.g., Hourly: useful for high-volume

production; Daily: balanced for general use; EveryBatch: suitable for batch systems;

RealTime: when online processing is used).

○ data_collection_strategy: Method for collecting input data (for comparison and

evaluation), predictions, and actual labels (if available) (e.g., StreamingLogs:

continuous online capture. (e.g., BatchLogs: data collected in intervals;

ShadowDeployment: evaluates without exposing to the user; MiddlewareCapture:

collects from a proxy or wrapper).

○ baseline_establishment: Reference against which current metrics are compared. It

can be a previous version or a historical average. (e.g., StaticThresholds: defined by

experts; PrelaunchModelBaseline: based on offline evaluation;

Rolling7DayAverage: adaptive and dynamic).

● threshold_definitions: Set of thresholds that trigger alerts.

○ performance_thresholds: Thresholds over key model quality metrics.

○ drift_detection_thresholds: Statistical thresholds for detecting changes in the

distribution (data drift, concept drift, prediction drift, etc).

○ business_impact_thresholds: Business metrics that may be impacted by the model,

such as CTR, revenue, and churn.

84 Computer Science & Information Technology (CS & IT)

● intervention_strategies: Defines actions to take if an anomaly or system degradation is

detected.

○ alert_procedures: Specification of the channel and form of alert to the responsible

team (e.g., SendMailToMLTeam, PushToPagerDuty).

E-commerce Example: In an online retail SPL, the sentiment analysis component can be

continuously monitored to detect potential performance degradation, drift, or business impact

issues. The following configuration illustrates how a monitoring component can be defined to

track relevant metrics and trigger intervention strategies when necessary.

MLComponentMonitor: {
 component_id: “tc_001”,
 monitoring_configuration: {
 metrics: [“Precision”, “Recall”],
 frequency: “Daily”,
 data_collection_strategy: “StreamingLogs”,
 baseline_establishment: “Rolling7DayAverage”
 },
 threshold_definitions: {
 performance_thresholds: {
 Precision: {min: 0.94, critical: 0.89, window: “24h”},
 Recall: {min: 0.87, critical: 0.82, window: “24h”}
 },
 drift_detection_thresholds: {
 DataDrift: {
 metric: “KL-Divergence”, warning: 0.04, critical: 0.08, window: “7d”
 },
 ConceptDrift: {
 metric: “JS-Divergence”, warning: 0.03, critical: 0.07, window: “7d”
 }
 },
 business_impact_thresholds: {

 misclassified_negative_reviews: {
 warning: 200, critical: 400, window: “24h”}

 }
 },
 intervention_strategies: {
 alert_procedures: {
 warning_level: “SendMailToMLTeam”, critical_level: “PushToPagerDuty”
 }
 }
}

Recommendation 5: Implement ML Component Orchestration.

Effective orchestration—the coordinated management and execution of ML components—in

dynamic product configurations requires an infrastructure that enables flexible model

composition, state management between runs, and contextual integration. For this, we

recommend:

● Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML

components in distributed environments.

Computer Science & Information Technology (CS & IT) 85

● Intelligent orchestrators that dynamically adjust component activation according to

contextual signals, business rules, or environmental conditions. Techniques such as

context-aware scheduling can be applied.

● Functional decoupling of components, promoting a microservices-based architecture to

facilitate model replacement, enhancement, or re-trainability without altering the overall

configuration.

● Instrumentation for traceability and versioning: employ systems that record training data,

parameters, results, and decisions made by each component to facilitate audits and

optimization.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a

dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML

components. This orchestration must support declarative workflows, dynamic adaptation policies,

and seamless integration with monitoring systems. The following schema defines a formal

representation of such an orchestration-aware product configuration:

ProductConfiguration = {
 configuration_id: String,
 feature_binding: Map[Feature, ComponentBinding],
 workflow_specification: {
 component_graph: DirectedAcyclicGraph[Component, DataFlow],
 execution_constraints: Set[Constraint],
 quality_objectives: Map[QualityAttribute, Objective],
 resource_allocations: Map[Component, ResourceAllocation]
 }, adaptation_policies: {
 monitoring_configuration: MonitoringPolicy,
 replacement_triggers: Set[ReplacementTrigger],
 quality_negotiation: QualityNegotiationStrategy,
 performance_optimization: OptimizationPolicy
 }, validation_requirements: {
 functional_tests: Set[TestSpecification],
 performance_benchmarks: Set[BenchmarkTest],
 quality_assertions: Set[QualityAssertion],
 compliance_checks: Set[ComplianceCheck]
 }
}

This schema defines the structural and behavioral dimensions of a configurable product instance.

Its modular design supports precise, verifiable, and adaptive configuration management across a

wide range of variability. The key components are described below:

● configuration_id: A unique identifier assigned to the product configuration instance.

● feature_binding: A mapping between product features and their corresponding component

implementations. This allows resolution of variability by specifying which components realize

which features in a given configuration.

● workflow_specification: Captures the operational logic of the product.

○ component_graph: A directed acyclic graph (DAG) that defines the data flow and

execution dependencies among software and ML components.

○ execution_constraints: A set of logical or resource-based constraints that govern

component execution (e.g., timing, sequencing).

86 Computer Science & Information Technology (CS & IT)

○ quality_objectives: Specifies target values for quality attributes, such as accuracy,

latency, and energy consumption.

○ resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU)

to each component to ensure operational feasibility.

● adaptation_policies: Define the runtime behavior of the product under varying operational

conditions:

○ monitoring_configuration: Indicates how system performance is monitored during

execution.

○ replacement_triggers: Defines conditions under which components should be

replaced.

○ quality_negotiation: Specifies strategies for balancing competing quality attributes

under constraints.

○ performance_optimization: Policies for dynamically optimizing performance

based on monitored feedback.

● validation_requirements: Ensures that configured products meet their intended goals and

regulatory requirements:

○ functional_tests: Set of specifications for functional correctness.

○ performance_benchmarks: Benchmark tests that measure system performance

under predefined workloads.

○ quality_assertions: Verifiable and testable statements specifying the quality

attributes that a configured product is required to meet.

○ compliance_checks: Formal checks to ensure adherence to standards, certifications,

or domain-specific regulations.

E-commerce Example: In an online retail SPL, a dynamic product configuration may include

ML components for personalized recommendations, fraud detection, and sentiment analysis. The

component bindings for each product instance can vary significantly based on factors such as the

target audience, expected transaction volume, and specific regional compliance mandates.

Recommendation 6: Implement Systematic ML Component Replacement Strategy.

During product configuration, an automated strategy should be established to update or replace

ML components when performance degradation is detected. This requires the definition of an

intervention mechanism that is triggered when the performance metrics of an ML component fall

below predefined thresholds. The mechanism must support replacing the underperforming

component with one of several alternatives: another ML model, a traditional software component,

or, if appropriate, the temporary exclusion of the affected functionality from the system's

execution flow.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a

replacement strategy component associated with each ML-enabled domain component. This

component is responsible for responding to degradation alerts issued by the monitoring system

and executing the actions defined in the replacement policy. The structure of the replacement

strategy component can be formally specified as follows:

MLComponentReplacementStrategy = {
 component_id: String,
 replacement_hierarchy: {

Computer Science & Information Technology (CS & IT) 87

 primary_alternative: ComponentReference,
 secondary_alternatives: List[ComponentReference],
 fallback_strategy: FallbackApproach
 }
}

This specification defines the structure required to enable resilient and automated replacement

mechanisms for ML components. The attributes are described below:

● component_id: Unique identifier of the ML component.

● replacement_hierarchy: Hierarchy of alternatives in case of model degradation.

○ primary_alternative: Component directly prepared to take over the current ML

model.

○ secondary_alternatives: List of additional (less optimal) alternatives.

○ fallback_strategy: Emergency strategy to continue providing service with reduced

capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking,

ManualReview, GracefulShutdown).

E-commerce Example: In an online retail SPL, a replacement strategy can be defined for the

sentiment analysis component using both traditional and ML-based alternative models. To ensure

system resilience, if no alternative component meets the required quality thresholds, a predefined

fallback strategy is triggered, such as temporarily deactivating the sentiment analysis feature from

the process flow.

MLComponentReplacementStrategy: {
 component_id: “tc_001”,
 replacement_hierarchy: {
 primary_alternative: {
 id: “cardiffnlp/twitter-roberta-base-sentiment-latest”,
 type: “ml_model”, reason: “Most compatible fine-tuned model”
 },
 secondary_alternatives: [{
 id: “distilbert-base-uncased-sentiment”,
 type: “ml_model”,
 reason: “Lightweight model for fallback”
 }, {
 id: “rule_based_sentiment_classifier_v1”,
 type: “software_component”,
 reason: “Legacy rules-based classifier for conservative estimation”
 }],
 fallback_strategy: {type: “RuleBasedBlocking” }
 }}

3.4. Dynamic Product Configuration

Incorporating ML components during product configuration adds substantial depth to the

variability and intelligence of SPL. However, configuration decisions must balance multiple

competing objectives, such as performance, cost, and reliability, often under shifting operational

conditions.

88 Computer Science & Information Technology (CS & IT)

Recommendation 7: Establish Multi-Objective Configuration Optimization.

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish

multi-objective configuration optimization mechanisms. This approach enables organizations to

simultaneously evaluate and balance competing concerns, including accuracy, latency, resource

consumption, interpretability, and ethical constraints. By leveraging advanced optimization

techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration

sets that meet diverse stakeholder requirements without compromising system integrity.

Implementing multi-objective optimization also promotes continuous improvement, enabling

dynamic reconfiguration as environments evolve or model behaviors drift over time.

Practical Implementation: To operationalize multi-objective configuration optimization, it is

first necessary to formalize a set of competing objectives, such as model accuracy, latency,

resource utilization, interpretability, and compliance with ethical standards, into quantifiable

metrics. The configuration space should encompass both system-level parameters and ML-

specific settings, including hyperparameters and pipeline structures. The exploration of trade-offs

across this space can be conducted using optimization techniques such as evolutionary algorithms

(e.g., NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are

evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced

solutions. These sets can be visualized or presented through decision-support interfaces to

facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating

the optimization process within CI/CD pipelines ensures continuous reconfiguration in response

to model drift or changing operational constraints.

3.5. Product Derivation and Validation

This phase considers the methodology for deriving specific products from a configurable

architecture, detailing how optimization criteria and stakeholder requirements guide the selection

process. It also describes the validation mechanisms employed to ensure that the resulting

products meet expected standards of functionality, performance, and reliability prior to

deployment.

Recommendation 8: Implement validation and testing strategies specifically designed for

ML-enhanced products.

Validation and testing strategies should incorporate both functional and non-functional

assessments, including unit and integration testing, model performance evaluation across diverse

datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies

should extend to include ML-specific validation approaches, such as statistical performance

validation, bias detection testing, adversarial robustness assessment, and long-term stability

verification. It must also support automated validation pipelines integrated into CI/CD

workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or

compliance violations.

Practical Implementation: To implement this recommendation, the first step is to configure the

derivation. This involves selecting binary features and determining the quality distributions for

ML components. It is essential to establish optimization criteria and stakeholder requirements to

guide the automated selection of ML components. This ensures that each product is customized

to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and

non-functional requirement tests must be executed. The process is further enhanced with ML-

specific validations such as bias detection, adversarial robustness assessments, and long-term

stability verification to address the unique vulnerabilities of machine learning models. The

Computer Science & Information Technology (CS & IT) 89

overall goal is to ensure that the derived products meet all expected standards of functionality,

performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of

these validation strategies are integrated into automated CI/CD pipelines.

To conclude, the proposed framework's recommendations, which encompass the entire lifecycle

of ML-enhanced SPLs, have been partially implemented within the VariaMos web tool. An

excerpt from this implementation is illustrated in Figure 2. These recommendations are currently

being applied to the development of two proof-of-concept SPL—an e-commerce SPL and a text

editor SPLs—enabling us to validate the framework's practical effectiveness empirically.

Figure 2. Partial implementation of ML-enhanced SPL Framework in VariaMos Tool

4. RELATED WORK

The intersection of SPL engineering and ML represents an emerging research area that builds

upon established foundations in both domains. Traditional SPL engineering, formalized through

seminal work by Clements, Mazo, and Pohl, respectively [7], [18], [19], has established

comprehensive methodologies for systematic software reuse through domain engineering and

application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach

introduced by Kang [8] and subsequent advances in variability management [7], [23] provide

robust frameworks for managing product family complexity. However, these approaches

fundamentally assume component determinism and behavioral predictability, creating significant

gaps when dealing with probabilistic ML components.

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled

systems through comprehensive frameworks for technical debt management [22], engineering

practices [24], and quality assurance approaches [25]. The emergence of systematic

documentation practices, as exemplified by Model Cards [20] and behavioral testing frameworks

https://www.zotero.org/google-docs/?AOcDKh
https://www.zotero.org/google-docs/?rGSotw
https://www.zotero.org/google-docs/?SkkSTg
https://www.zotero.org/google-docs/?byWC86
https://www.zotero.org/google-docs/?ZGlkep
https://www.zotero.org/google-docs/?JypEQ2
https://www.zotero.org/google-docs/?5LboIR

90 Computer Science & Information Technology (CS & IT)

[26], represents substantial progress in ML system engineering. Recent systematic reviews by

Martínez-Fernández [4] and empirical studies by Nahar and Ribeiro, respectively [5], [26] have

documented collaboration challenges and the complexity of requirements engineering specific to

ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems

or monolithic application contexts, with limited consideration of systematic reuse frameworks.

Architectural approaches for ML integration have evolved toward microservices-based patterns

[27] and adaptive system frameworks [28], [29], while dynamic SPL research [7], [30], [31] has

explored evolution and adaptation in product line contexts. However, existing approaches have

not systematically addressed the unique requirements of ML components within SPL

environments, including cross-product consistency management, shared component instance

coordination, and the specific adaptation patterns required for probabilistic components subject to

performance degradation and concept drift.

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts.

Traditional SPL methodologies assume behavioral predictability, which is incompatible with the

probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic

frameworks for ensuring cross-product consistency and shared component management. Existing

documentation frameworks do not provide reusability assessment mechanisms required for SPL

component selection, and current adaptive system approaches do not address ML-specific

degradation patterns and monitoring requirements.

This work addresses these fundamental gaps by providing the first comprehensive framework

specifically designed to integrate ML components within SPLs, while preserving the benefits of

systematic reuse. Unlike existing approaches that treat ML components as standalone services or

apply ad-hoc integration patterns, our framework systematically extends established SPL

methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-

aware component characterization, adaptive architectural patterns, and dynamic configuration

optimization. The framework proposed in this paper provides concrete specifications, including

formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-

objective optimization approaches, enabling practitioners to maintain an engineering discipline

and leverage systematic reuse advantages while effectively utilizing ML capabilities across

products derived from product lines.

5. CONCLUSIONS AND FUTURE WORK

The integration of ML components into SPLs presents new challenges that traditional modeling

techniques are not equipped to address. By addressing the variability and uncertainty inherent in

ML components, this approach lays the groundwork for bridging the gap between SPLE and AI-

based software development.

In this paper, we propose a framework that supports the inclusion of ML components in SPLs,

facilitating systematic reuse, customization, and evolution. Our contribution consists of a

specification-oriented approach that guides the integration of ML-based functionalities into SPLs,

along with a set of recommendations and practical implementations. The framework is structured

around five interconnected phases that encompass the entire lifecycle of ML-enhanced SPLs:

ML-aware domain analysis, Adaptive architecture design, ML-aware domain implementation,

Dynamic product configuration, and Product derivation and validation of its resulting products.

The proposed framework has been partially implemented in the VariaMos tool

(https://variamos.com/). This web-based tool utilizes microservices to enable the specification of

product lines through a multi-language modeling approach and the reasoning on these products

https://www.zotero.org/google-docs/?k5ARxi
https://www.zotero.org/google-docs/?j0Bq52
https://www.zotero.org/google-docs/?NU9seB
https://www.zotero.org/google-docs/?zhistl
https://www.zotero.org/google-docs/?VujQy3
https://www.zotero.org/google-docs/?lMoBrQ

Computer Science & Information Technology (CS & IT) 91

and product lines. Initial empirical findings, obtained by applying these recommendations to two

distinct SPL—an e-commerce SPL and a text editor SPL—suggest that this comprehensive

documentation approach facilitates informed decision-making across the entire ML component

lifecycle. This process spans from initial model selection to deployment and ongoing monitoring.

Furthermore, Model Cards support regulatory compliance and risk management by providing

auditable documentation of model characteristics and decision rationale, which contributes to the

development of more accountable and trustworthy ML systems. Although these preliminary

results are promising, further experimentation and implementation improvements are needed to

fully assess the actual value and impact of this proposal in production environments. Future work

involves evaluating the proposed strategy in real-world industrial domains, including a detailed

cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its

applicability to AI components beyond ML. Furthermore, in the educational context, we plan to

move beyond the individual courses on “Software Engineering for ML-enabled Systems” and

“Software Product Line Engineering” currently offered at each institution by developing a joint

course in which students collaboratively design SPLs to address real-world problems.

ACKNOWLEDGMENTS

This research was supported by the University of Antioquia, Colombia, through the Committee

for the development of research – CODI (PRV2022-52951), and the ENSTA, France.

REFERENCES

[1] N. Ahmed y N. Shakoor, «Advancing agriculture through IoT, Big Data, and AI: A review of smart

technologies enabling sustainability», Smart Agricultural Technology, vol. 10, p. 100848, mar.

2025, doi: 10.1016/j.atech.2025.100848.

[2] G. Anthes, «Artificial intelligence poised to ride a new wave», Commun. ACM, vol. 60, n.o 7, pp.

19-21, jun. 2017, doi: 10.1145/3088342.

[3] G. Giray, «A software engineering perspective on engineering machine learning systems: State of

the art and challenges», Journal of Systems and Software, vol. 180, p. 111031, oct. 2021, doi:

10.1016/j.jss.2021.111031.

[4] S. Martínez-Fernández et al., «Software Engineering for AI-Based Systems: A Survey», ACM

Trans. Softw. Eng. Methodol., vol. 31, n.o 2, pp. 1-59, abr. 2022, doi: 10.1145/3487043.

[5] N. Nahar, S. Zhou, G. Lewis, y C. Kästner, «Collaboration Challenges in Building ML-Enabled

Systems: Communication, Documentation, Engineering, and Process», en 2022 IEEE/ACM 44th

International Conference on Software Engineering (ICSE), may 2022, pp. 413-425. doi:

10.1145/3510003.3510209.

[6] N. Nahar, H. Zhang, G. Lewis, S. Zhou, y C. Kästner, «A Meta-Summary of Challenges in Building

Products with ML Components – Collecting Experiences from 4758+ Practitioners», en 2023

IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI

(CAIN), may 2023, pp. 171-183. doi: 10.1109/CAIN58948.2023.00034.

[7] R. Mazo, Guía para la adopción industrial de líneas de productos de software. 2018. Accedido: 19

de marzo de 2024. [En línea]. Disponible en: https://www.digitaliapublishing.com/a/67651/guia-

para-la-adopcion-industrial-de-lineas-de-productos-de-software

[8] K. Kang, «Feature-Oriented Domain Analysis (FODA) Feasibility Study». Accedido: 4 de mayo de

2024. [En línea]. Disponible en: https://insights.sei.cmu.edu/library/feature-oriented-domain-

analysis-foda-feasibility-study/

[9] L. Dounas, R. Mazo, C. Salinesi, y O. El Beqqali, «Continuous monitoring of adaptive e-learning

systems requirements», en 2015 IEEE/ACS 12th International Conference of Computer Systems

and Applications (AICCSA), nov. 2015, pp. 1-8. doi: 10.1109/AICCSA.2015.7507210.

[10] A. Achtaich, N. Souissi, C. Salinesi, R. Mazo, y O. Roudies, «A Constraint-based Approach to Deal

with Self-Adaptation: The Case of Smart Irrigation Systems», IJACSA, vol. 10, n.o 7, 2019, doi:

10.14569/IJACSA.2019.0100727.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

92 Computer Science & Information Technology (CS & IT)

[11] A. Achtaich, N. Souissi, R. Mazo, O. Roudies, y C. Salinesi, «A DSPL Design Framework for

SASs: A Smart Building Example», EAI Endorsed Transactions on Smart Cities, vol. 3, n.o 8, jun.

2018, Accedido: 18 de agosto de 2025. [En línea]. Disponible en: https://eudl.eu/doi/10.4108/eai.26-

6-2018.154829

[12] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, y D. Diaz, «Dynamic adaptation of service

compositions with variability models», Journal of Systems and Software, vol. 91, pp. 24-47, may

2014, doi: 10.1016/j.jss.2013.06.034.

[13] C. Dumitrescu, R. Mazo, C. Salinesi, y A. Dauron, «Bridging the gap between product lines and

systems engineering: an experience in variability management for automotive model based systems

engineering», en Proceedings of the 17th International Software Product Line Conference, en SPLC

’13. New York, NY, USA: Association for Computing Machinery, ago. 2013, pp. 254-263. doi:

10.1145/2491627.2491655.

[14] R. Mazo, S. Assar, C. Salinesi, y N. Ben Hassen, «Using software product line to improve ERP

engineering : literature review and analysis», Latin-American Journal of Computing, vol. 1, n.o 1, p.

., oct. 2014.

[15] V. Indykov, «Component-based Approach to Software Engineering of Machine Learning-enabled

Systems», en Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering -

Software Engineering for AI, en CAIN ’24. New York, NY, USA: Association for Computing

Machinery, jun. 2024, pp. 250-252. doi: 10.1145/3644815.3644976.

[16] Y. Shyamkumar Khatri, «Estimation Of Carbon Sequestration Yerla Project - a Hugging Face Space

by Yasssh». Accedido: 18 de agosto de 2025. [En línea]. Disponible en:

https://huggingface.co/spaces/Yasssh/Estimation_of_Carbon_Sequestration_Yerla_Project_Nagpur

[17] Dandge, «Forcasting - a Hugging Face Space by Prathmesh16». Accedido: 18 de agosto de 2025.

[En línea]. Disponible en: https://huggingface.co/spaces/Prathmesh16/forcasting

[18] P. Clements y L. M. Northrop, Software Product Lines: Practices and Patterns. Boston, 2001.

[19] K. Pohl, G. Böckle, y F. Van Der Linden, Software Product Line Engineering. Berlin, Heidelberg:

Springer, 2005. doi: 10.1007/3-540-28901-1.

[20] M. Mitchell et al., «Model Cards for Model Reporting», en Proceedings of the Conference on

Fairness, Accountability, and Transparency, en FAT* ’19. New York, NY, USA: Association for

Computing Machinery, ene. 2019, pp. 220-229. doi: 10.1145/3287560.3287596.

[21] T. R. Toma, B. Grewal, y C.-P. Bezemer, «Answering User Questions About Machine Learning

Models Through Standardized Model Cards», en 2025 IEEE/ACM 47th International Conference on

Software Engineering (ICSE), 2025, pp. 1488-1500. doi: 10.1109/ICSE55347.2025.00066.

[22] D. Sculley et al., «Hidden Technical Debt in Machine Learning Systems», en Advances in Neural

Information Processing Systems, Curran Associates, Inc., 2015. doi/10.5555/2969442.2969519

[23] C. Kästner, S. Apel, y M. Kuhlemann, «Granularity in software product lines», en Proceedings of

the 30th international conference on Software engineering, en ICSE ’08. New York, NY, USA:

Association for Computing Machinery, may 2008, pp. 311-320. doi: 10.1145/1368088.1368131.

[24] S. Amershi et al., «Software Engineering for Machine Learning: A Case Study», en 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP), Montreal, QC, Canada: IEEE, may 2019, pp. 291-300. doi: 10.1109/ICSE-

SEIP.2019.00042.

[25] E. Breck, S. Cai, E. Nielsen, M. Salib, y D. Sculley, «The ML test score: A rubric for ML

production readiness and technical debt reduction», en 2017 IEEE International Conference on Big

Data (Big Data), dic. 2017, pp. 1123-1132. doi: 10.1109/BigData.2017.8258038.

[26] M. T. Ribeiro, T. Wu, C. Guestrin, y S. Singh, «Beyond Accuracy: Behavioral Testing of NLP

Models with CheckList», en Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, y J. Tetreault, Eds., Online:

Association for Computational Linguistics, jul. 2020, pp. 4902-4912. doi: 10.18653/v1/2020.acl-

main.442.

[27] S. Newman, «Building Microservices», O’Reilly Online Learning. Accedido: 2 de agosto de 2025.

Disponible en: https://www.oreilly.com/library/view/building-microservices/9781491950340/

[28] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, y D. Diaz, «Dynamic adaptation of service

compositions with variability models», Journal of Systems and Software, vol. 91, pp. 24-47, may

2014, doi: 10.1016/j.jss.2013.06.034.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

Computer Science & Information Technology (CS & IT) 93

[29] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, y P. Steenkiste, «Rainbow: architecture-based

self-adaptation with reusable infrastructure», Computer, vol. 37, n.o 10, pp. 46-54, oct. 2004, doi:

10.1109/MC.2004.175.

[30] S. Hallsteinsen, M. Hinchey, S. Park, y K. Schmid, «Dynamic Software Product Lines», Computer,

vol. 41, n.o 4, pp. 93-95, abr. 2008, doi: 10.1109/MC.2008.123.

[31] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, y D. Hughes, «Constraint Programming as a Means to

Manage Configurations in Self-Adaptive Systems», Special Issue in IEEE Computer Dynamic

Software Product Lines, pp. 1-12, dic. 2012.

AUTHORS

Luz-Viviana Cobaleda is an Associate Professor at the University of Antioquia,

Colombia. She received her Ph.D. in Electronic Engineering with an emphasis on

Software Engineering, her Master’s degree in Engineering, and her B.Sc. in Systems

Engineering, all from the University of Antioquia, as well as a Specialization in

Software Engineering from EAFIT University, Colombia.Her research interests

include software engineering for AI/ML-enabled systems (SE4AI), as well as

software engineering methods and techniques—such as model-driven development,

software design and specification, and adaptive and personalized systems—and requirements engineering.

She has published papers in international conferences and journals and actively participates in collaborative

research projects in software engineering, including adaptive and personalized software systems, at the

University of Antioquia.

Julian Carvajal is a Colombian software engineer in training and a Systems

Engineering student at the University of Antioquia (Colombia). He has professional

experience as a software developer, with a particular focus on building educational

video games for preschool children and contributing to research-driven software

projects. He has also collaborated in the VariaMos project, developing a tool to help

users define the graphical representation of modeling languages. He is currently

working on SignAl UdeA, an initiative that leverages artificial intelligence to facilitate

communication between deaf and hearing people through the recognition of

Colombian Sign Language (LSC). His research interests include software engineering for artificial

intelligence (SE4AI), particularly the integration of AI components into software systems.

Paola Vallejo is a Systems Engineer graduated from Universidad EAFIT in 2012. She

got her Master degree (Human Computer Centered Systems) at École Nationale

d’Ingénieurs de Brest - France in 2012. She received the Ph. D. degree in Computer

Science from Université de Bretagne Occidentale - France in 2015. She is currently a

full professor at Universidad EAFIT. She has also collaborated in the VariaMos

working group. Her research interests include the reuse of software components,

model-driven engineering, requirements engineering, software architecture, and

human–computer interactions.

Andrés Orlando López Henao is a Colombian systems engineer. He graduated in

2013 with a degree in Systems Engineering from the University of Antioquia

(Colombia) and in 2018 obtained a Master’s in Engineering from EAFIT University

(Colombia). He is currently pursuing a joint Ph.D. in Sciences pour l’ingénieur et le

numérique at the École Nationale Supérieure de Techniques Avancées – ENSTA

(France) and in Electronic and Computer Engineering at the University of Antioquia

(Colombia). His research interests focus on software product lines, artificial

intelligence, and software engineering.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

94 Computer Science & Information Technology (CS & IT)

Raúl Mazo is a Franco-Colombian engineer who received his Engineering degree in

Informatics from the University of Antioquia (Colombia) in 2005, and later earned an

M.S. in Information Systems, a Ph.D. in Computer Science, and the Habilitation à

Diriger des Recherches (HDR) from the University Panthéon-Sorbonne (France) in

2008, 2011, and 2018, respectively.He is currently a Full Professor at the École

Nationale Supérieure de Techniques Avancées (ENSTA). Prior to this, he served as an

Associate Professor at Panthéon-Sorbonne University and worked as a software

developer and telecommunications engineer in small and medium-sized enterprises.

His research and teaching interests include model-driven engineering, requirements engineering, variability

management, software & systems architecture, and artificial reasoning. He leads the VariaMos working

group and tool, through which he has contributed to numerous national, European, and intercontinental

research initiatives.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

