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ABSTRACT 
 
Modern software systems increasingly integrate machine learning (ML) due to its 

advancements and ability to enhance data-driven decision-making. However, this 

integration introduces significant challenges for software engineering, especially in 

software product lines (SPLs), where managing variability and reuse becomes more 

complex with the inclusion of ML components. Although existing approaches have 

addressed variability management in SPLs and the integration of ML components in 

isolated systems, few have explored the intersection of both domains. Specifically, there is 

limited support for modeling and managing variability in SPLs that incorporate ML 

components. To bridge this gap, this article proposes a structured framework designed to 

extend Software Product Line engineering, facilitating the integration of ML components.  

It facilitates the design of SPLs with ML capabilities by enabling systematic modeling of 

variability and reuse. The proposal has been partially implemented with the VariaMos tool. 

 

KEYWORDS 
 
Machine Learning (ML), Software Product Lines (SPL), ML-based systems, variability 

modeling. 

 

1. INTRODUCTION 
 

The rapid evolution of artificial intelligence (AI) over the last decade can be attributed to a 

convergence of key factors: enhanced computational power, the widespread availability of 

massive datasets, and the creation of more sophisticated algorithms. Consequently, AI has 

emerged as a transformative technological force, empowering software-intensive systems with 

novel capabilities in a wide range of domains [1], [2], [3], [4]. AI-based systems are essentially 

software systems whose functionalities are enabled by at least one AI component (e.g., for image 

and speech recognition or autonomous driving) [4]. However, incorporating AI components into 

software products introduces new software engineering challenges and amplifies existing ones. 

The situation becomes even more critical when these components are integrated not only into a 

single product but into a family of software products or a Software Product Line (SPL). Thus, the 

integration of Machine Learning (ML) components into SPLs introduces new dimensions of 

variability that traditional modeling techniques are not prepared to handle. This raises 

fundamental questions: How can an AI/ML component be modeled within an SPL? How can 

architects effectively integrate ML components into their SPLs? What information about the 

model is necessary to enable a successful SPL configuration process? The inability of current 

modeling approaches to address these questions reveals a significant research gap. Additionally, 

the integration of ML components into software systems introduces unique challenges that have 
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given rise to the field of Software Engineering for AI (SE4AI). Recent literature has 

systematically identified the issues that emerge across the software lifecycle, impacting areas 

such as requirements engineering, architecture, testing, deployment, and maintenance [3], [4], 

[5], [6]. While these challenges are broad, this article focuses on those most relevant to the design 

of SPL. 

 

Most research in SE4AI has focused, to date, on the challenges of integrating ML components 

into individual software systems. In the context of SPLs, where systematic reuse is the primary 

goal, these challenges not only persist but are magnified and transformed into variability 

management problems. For example, defining performance metrics for a product is an 

engineering challenge, but managing a catalog of components with different performance profiles 

to configure multiple products becomes a challenge in variability management. The literature that 

explicitly addresses this transformation of ML challenges in the SPL domain is notably scarce, 

representing a significant research gap. One of the main challenges documented for individual 

systems lies in requirements engineering, particularly in managing expectations. It has been 

reported that both customers [3] and development teams [6] often have limited knowledge of the 

actual capabilities and limitations of ML, leading to the establishment of unattainable 

requirements, such as requests for systems with no false positives or 100% accuracy [4]. This 

problem extends to the difficulty of translating business objectives into appropriate technical 

specifications, as the quantitative metrics used to characterize an ML model are often unintuitive 

to non-technical stakeholders [3]. Beyond the requirements, the dynamic nature of ML 

components introduces complex operational challenges. The literature highlights the emergence 

of new quality attributes, such as freshness and robustness, whose understanding is still 

fragmented [3], [4]. For instance, the freshness requirement addresses the performance 

degradation caused by phenomena like “concept drift” through continuous monitoring, which in 

turn necessitates defining both the tolerance for such degradation and the specific triggers for a 

model update [3]. Additionally, the management of these new attributes is complicated by the 

existence of inherent trade-offs, such as that between fairness and accuracy in a model [3], [4].  

 

Although the challenges discussed are significant for individual software systems, their impact is 

amplified in the context of SPLs, where systematic reuse and variability management are 

paramount. The incorporation of ML components introduces additional variability issues, such as 

defining performance metrics at the product line level, aligning stakeholder understanding across 

multiple products, and specifying monitoring policies, that must be addressed not only for 

individual products but for product lines. Despite extensive research on AI-related software 

components, the current literature lacks approaches that explicitly consider the distinctive 

characteristics of these components within the context of SPLs [3], [4]. 

 

In this paper, we propose a framework for enhancing SPLs by enabling the seamless integration 

of ML components. Our main contribution is a specification-oriented approach that guides the 

integration of ML-based functionalities into SPLs. This approach addresses key aspects, 

including variability management, probabilistic feature modeling, ML component 

characterization, systematic ML component monitoring, systematic component replacement 

strategy, and derivation products with ML components. This strategy enables more systematic 

reuse, customization, and traceability of ML components across product configurations in the 

SPL context. 

 

The remainder of the paper is structured as follows: Section 2 provides background on SPL 

engineering and ML components documentation. Section 3 details the proposed framework for 

designing SPLs with ML components and discusses the implications of this approach. Section 4 

presents related work. Finally, Section 5 concludes the article and outlines directions for future 

work. 
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2. BACKGROUND 
 

The design and development of SPLs rely on systematic approaches to manage variability and 

promote reuse across families of related software systems. To provide the necessary foundation 

for the proposed framework, this section outlines the core concepts of SPL engineering and the 

integration of ML components. 

 

2.1. SPL and Variability Management  
 

A SPL represents a systematic approach to developing families of related applications within a 

specific domain through strategic reuse of common assets [7]. This paradigm leverages shared 

components and systematic variability management to achieve significant reductions in 

development time and costs while improving product quality through the incorporation of proven, 

reusable artifacts. 

 

Software Product Line Engineering (SPLE) operationalizes this approach through two 

fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes 

reusable assets and variability models, and (2) Application engineering, which derives specific 

products from these shared resources [7]. Variability—the capacity of a system to be adapted or 

configured for specific contexts—serves as the core mechanism enabling this systematic reuse 

across diverse product requirements. 

 

1) Domain engineering establishes the foundation of reusable assets through two sequential 

phases. A) Domain analysis identifies and specifies SPL variability using formal models such as 

feature models [8], which define variation points, available alternatives, and constraint 

relationships. This phase encompasses: domain requirements definition to capture stakeholder 

needs and scope constraints, reference architecture specification aligned with domain 

requirements, and variability model quality assurance through systematic verification, diagnosis, 

and validation activities. B) Domain implementation transforms abstract specifications into 

concrete, reusable components. Key activities include requirements engineering for domain 

components, architectural design specification, domain component implementation, 

comprehensive unit testing, and explicit linkage between components and variability model 

elements. This phase produces the core asset base comprising domain components, architectural 

models, and associated test suites. 

 

2) Application engineering derives specific products through the systematic configuration and 

instantiation of domain assets across two phases. A) Configuration and customization 

management captures customer-specific requirements and configures variability models 

accordingly, encompassing application requirements engineering, variability model 

configuration, application architecture definition, and component customization to meet specific 

product needs. B) Derivation constructs final products from configured domain assets through 

requirements engineering for the derivation process, assembly architecture definition, systematic 

product implementation from domain components, and comprehensive system integrity testing, 

including performance, validation, and audit verification. 

 

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary 

to address diverse product requirements within the target domain. The SPLE framework applies 

to various domains, including but not limited to education [9], agricultural systems [10], smart 

building [11], e-commerce [12], automotive manufacturing [13], and information systems [14]. 
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As a representative example of an SPL, the virtual store SPL models a family of e-commerce 

platforms designed to support the online exchange of goods and services across diverse markets 

such as fashion, electronics, and digital content, this SPL captures a set of core functionalities 

common to most product instances, including a product catalog, shopping cart, payment module, 

and delivery system. These shared components are complemented by a range of variability points 

that allow customization according to specific business needs, such as authentication 

mechanisms, catalog presentation styles, supported payment gateways, search engines, content 

moderation tools, and user interface configurations. The SPL is designed to promote systematic 

reuse while enabling flexibility to address the functional and non-functional requirements of 

different virtual store deployments. 

 

 
 

Figure 1. SPLE framework implemented in the VariaMos web tool, from [7] 

 

2.2. ML Components 
 

An ML component is a special type of software component that encapsulates ML models along 

with their associated data processing, inference logic, and system integration capabilities [6], 

[15]. These components constitute the main means of integrating ML capabilities into complex 

software systems, acting as a bridge between the underlying ML models and the overall system 

architecture. Component reuse is a foundational principle that enables the efficient development 

of multiple products from a shared, common core. 

 

ML components can be deployed across various operational contexts depending on system 

requirements and architectural constraints. Common deployment patterns include: (1) embedded 

software libraries integrated directly within applications for low-latency scenarios; (2) standalone 

services accessible through REST or gRPC APIs for service-oriented architectures; and (3) 

containerized microservices within distributed cloud-native environments. The execution 

environment may range from local computational resources and edge devices to cloud-based 

infrastructures, each presenting distinct trade-offs in terms of latency, scalability, resource 

consumption, and operational complexity. The selection of an appropriate deployment strategy 
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requires systematic evaluation of quality attributes, including performance characteristics, 

scalability requirements, maintainability constraints, and security considerations. These decisions 

must align with both functional requirements and non-functional system objectives, as the 

deployment choice significantly impacts the overall system behavior and operational 

characteristics. Given the critical role of ML models within these components, establishing a 

clear understanding of their behavior, limitations, and applicability conditions is essential for 

responsible reuse in systems.  

 

In our representative example, the SPL for the virtual store also incorporates ML components, 

introducing a new dimension of intelligent behavior and adaptive functionality. These ML-based 

components include a semantic search engine that interprets the context of user queries, a 

sentiment analysis module applied to customer reviews, a content moderation module that 

filters out inappropriate content, and a fraud detection module to prevent and detect fraudulent 

activity. Each of these components can be configured in multiple ways depending on 

performance requirements, latency constraints, and human-in-the-loop considerations. For 

instance, the content moderation module may operate in a human-assisted mode or as a fully 

automated system, depending on the confidence thresholds applied to the underlying ML model. 

These components are encapsulated as reusable assets within the SPL, enabling developers to 

integrate advanced ML capabilities without retraining models from scratch for each product 

variant. 

 

The selected components in the previous example are notable for both their practical applicability 

and their capacity to introduce significant variability dimensions—including model selection, 

performance thresholds, and human-in-the-loop configurations—that require explicit 

management within an SPL. However, in other domains, the set of selected components may 

differ. For instance, in the agricultural AI domain, relevant ML components for predictive 

modeling could include capabilities for carbon sequestration  [16] or for emissions forecasting 

[17]. 

 

3. PROPOSAL 
 

The integration of ML components into SPL represents a fundamental paradigm shift that 

challenges the traditional assumptions underlying systematic software reuse. While conventional 

SPL approaches have proven effective for deterministic software components with predictable 

behavior and stable interfaces [18], [19], ML components introduce unprecedented complexity 

through their inherent stochasticity, data dependency, continuous evolution requirements, and 

non-functional characteristics that defy traditional software engineering practices [3], [4]. 

 

This proposal presents a comprehensive framework that extends the foundational principles of 

product line engineering to accommodate the unique properties of ML components while 

preserving the economic and technical benefits that have made SPL a cornerstone of systematic 

software development. Our approach recognizes that ML components cannot be treated as “black 

boxes” within existing SPL methodologies; rather, they require a fundamental 

reconceptualization of domain modeling, component characterization, architectural design, and 

product derivation processes. 

 

The framework proposed in this paper is currently being implemented in the VariaMos web tool 

(www.variamos.com) as part of an ongoing effort to operationalize and validate its practical 

applicability. It is organized around five interconnected phases that collectively address the 

complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture 

design, ML-aware domainimplementation, Dynamic product configuration, and Product 

derivation and validation of its resulting products. Each phase builds upon established SPL 
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theory while introducing novel concepts and recommended practices specifically designed to 

handle the probabilistic nature, performance variability, and operational complexity inherent in 

ML systems. While VariaMos is a versatile, generic tool that accepts different domains, our 

examples pertain to the e-commerce domain. 

 

3.1. ML-Aware Domain Analysis 
 

The domain analysis phase requires significant adaptations when ML components are involved, 

particularly in feature modeling and architectural decision-making [7]. Traditional Boolean 

feature satisfaction proves inadequate for ML components whose capabilities vary across 

contexts and exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in 

their inherent reliance on training data properties. The performance and functional capabilities 

of these features are susceptible to the characteristics of the training data, including its quality, 

representativeness, and intrinsic attributes. Additionally, implementing ML-based features can 

introduce risks associated with sensitive data, particularly regarding privacy, security, and 

information governance, due to the implications of data use and storage for model training and 

inference. 

 

Recommendation 1: Implement Probabilistic Feature Modeling. 

 

SPL engineers should extend conventional feature models to capture the uncertainty inherent in 

ML component capabilities[8]. Rather than relying on binary feature satisfaction, engineers 

should model features with quality distributions that reflect the variability in ML component 

performance. 

 

Practical Implementation: For each feature that will be satisfied by an ML component, SPL 

engineers should identify it as an “ML-based feature” and define the following Feature Quality 

Profile: 

 
FeatureQualityProfile = { 
feature_id: String, 
feature_type: type, 
ml_component_id: String, 
quality_distribution: { 

accuracy_range: [min_accuracy, max_accuracy], 
context_sensitivity: Map[Context, AccuracyLevel], 
confidence_intervals: Map[Scenario, ConfidenceRange] 

}} 

 

E-commerce Example: For a fraud detection feature in an online retail SPL, implementing 

recommendation 1, its Feature Quality Profile should look as follows: 

 
FeatureQualityProfile = { 
feature_id: “fraud_detection”, 
feature_type:ML-based, 
ml_component_id: “fraud_detection_V1.0”, 
quality_distribution: { 

accuracy_range: [0.88, 0.95], 
context_sensitivity:{ 

domestic_transactions_during_week:0.95, 
international_transactions_during_week: 0.88, 
domestic_transactions_during_weekend: 0.90, 
international_transactions_during_weekend: 0.75, 
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transactions_from_suspicious_IP: 0.98, 
transactions_less_than_10_USD: 0.70},  

       confidence_intervals: { 
high_confidence: [0.85, 1.0], 
medium_confidence: [0.70, 0.84], 
low_confidence: [0.0, 0.69]}} 

}} 

 

3.2. Adaptive Architecture Design 
 

The reference architecture must explicitly address the dynamic and context-sensitive nature of 

ML components. ML models often evolve over time, depend on external data sources, and 

exhibit probabilistic behavior that affects system reliability and performance. Therefore, 

architectural decisions must incorporate design strategies that manage adaptability and 

traceability, ensure periodic updates, and maintain the long-term stability and performance of 

integrated ML functionalities. These strategies should align feature variability, model 

capabilities, and operational constraints, which is paramount for ensuring the robustness, 

adaptability, scalability, and maintainability of the ML-based SPL. 

 

Recommendation 2: Design ML-Aware Reference Architecture. 

 

The reference architecture must account for several key aspects.  

 

● It must provide for a clear separation of concerns between the core SPL framework, the 

ML model development cycle, the deployment pipeline, and model monitoring.  

● It must support various deployment strategies, including on-device (edge computing), on-

premises, or cloud-based, depending on the specific product requirements and 

constraints. 

● It must ensure data privacy, security, and compliance, while facilitating seamless 

integration with robust ML engineering practices, such as MLOps. 

 

Practical Implementation: SPL engineers should be able to: 

● Use microservice-based architecture, where ML components are deployed as decoupled 

services accessible through well-defined APIs. 

● Use of containerization (e.g., Docker) to package models and their dependencies, 

ensuring environmental consistency and portability. 

 

3.3. ML-Aware Domain Implementation 

 

The domain implementation phase requires a structured approach to documenting, versioning, 

and managing ML components. This approach should be complemented by a formal monitoring 

process that can detect performance degradation and automatically trigger component 

replacement procedures. Effectively characterizing and selecting suitable ML components is 

essential to understanding their capabilities, limitations, and performance profiles. This enables 

successful integration and reduces associated risks. The monitoring system is designed to address 

the dynamic and non-deterministic nature of ML components by identifying potential degradation 

in the production environment and issuing alerts. Additionally, careful consideration is required 

for some aspects. For example, orchestrating ML components across products involves managing 

dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML 

components systematically requires mechanisms to evaluate, decouple, and reintegrate new 

versions with minimal disruption. 
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Recommendation 3: Adopt Intelligent Component Characterization. 

 

To ensure the precise and systematic characterization of pre-trained ML components, it is 

proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [20] 

and further extended by Toma [21], provide a standardized framework for documenting ML 

models in a transparent and structured manner. This approach recommends customizing specific 

sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability 

Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards 

are tailored for domain experts who, while not data scientists, are responsible for selecting and 

integrating third-party components.  

 

Practical Implementation: For each ML component in the SPL, a standardized model card is 

proposed, capturing the following essential information: 

 
ModelCard= { 
model_details: { 
 model_id: String, 
 version: ModelVersion, 

developed_by: String,  
model_type: MLModelType, 
license: LicenseSpecification 

}, intended_use: { 
primary_use: String,   
out-of-scope_use: String 

}, spl_reusability_profile: { 
supported_domains: Set[Domain], 
integration_complexity: String, (ej. “Low”) 

}, model_usage: { 
api_endpoint: String,  
deployment_guidance: String 

}, performance_metrics: Map[clave, valor], 
   operational_requirements: { 

cpu: CPUSpecification, ram: RAMSize, 
gpu: String, notes: String 

   },  
   caveats: [String] 
} 
 

The SPL-aware Model Card specification defines the essential attributes for characterizing an 

ML component. The purpose and content of each key attribute are detailed below: 

 

● model_details: Provides technical specifications—covering developer information, version 

control, model architecture, training methodology, and licensing terms that define commercial 

use rights, current license type, and redistribution permissions. 

 

○ model_id: A unique identifier for the model, such as its name in a public repository. 

○ version: The specific version of the model, following semantic versioning where 

possible, to track changes and dependencies. 

○ developed_by: The organization, team, or individual responsible for the model's 

development. 

○ model_type: Specifies the model's task category (e.g., Text Classification, Object 

Detection), informing its functional role. 

○ license: The legal specification governing the use, modification, and distribution of 

the model, crucial for commercial product derivation. 
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● intended_use: Defines appropriate use cases, target applications, and intended user 

populations by outlining usage scenarios, specifying primary and out-of-scope applications, 

detailing the model’s adaptability, and highlighting its limitations and potential biases. 

 

○ primary_use: A concise description of the model's main purpose and the scenarios 

where it is designed to be applied (e.g., real-time fraud detection). 

○ out-of-scope_use: Explicitly states the limitations and use cases for which the model 

has not been designed or validated, preventing misuse. 

 

● spl_reusability_profile: A section dedicated to evaluating the ML component's fitness as a 

reusable asset within the SPL context. This is a key input for variability modeling. 

 

○ supported_domains: A set of application domains where the model has 

demonstrated reliable performance, highlighting potential domain biases. 

○ integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that 

estimates the engineering effort needed to integrate the component, based on its 

dependencies and API. 

 

● Model_usage: Offers guidance on model consumption through various interfaces (e.g., UI, 

API) and outlines its compatibility with different deployment platforms and operating 

systems.It also provides guidance on optimizing performance and outlines deployment 

strategies for different environments, including local setups and cloud platforms. 

 

○ api_endpoint: The URL or interface for sending inference requests. 

○ deployment_guidance: A summary of instructions and best practices for deploying 

the model in different environments (e.g., cloud, edge). 

 

● performance_metrics: Comprehensive performance evaluation including accuracy measures, 

uncertainty quantification, and decision thresholds. 

 

● operational_requirements: Provides system requirements and hardware recommendations to 

help users prepare for deploying or fine-tuning the model in their computing environment. 

 

○ cpu: The recommended minimum specification for the CPU. This is critical for 

overall system performance and serves as the primary compute resource when no 

GPU is used. 

○ ram: The recommended minimum system RAM. This memory is required to hold 

the operating system, host application, model dependencies, and the model itself 

before being loaded into specialized hardware. 

○ gpu: Specify whether a GPU is required, as well as its minimum specifications. 

○ notes: Provides additional qualitative context or performance tips. 

 

● caveats and recommendations: Presents caveats and recommendations by assessing 

potential societal impacts, fairness considerations, and bias mitigation strategies, while also 

outlining behavioral limitations related to “Not Safe For Work” (NSFW) content such as 

explicit material, violence, or hate speech.  

 

E-commerce Example: The Model Card of the ML component of sentiment analysis would be: 

 
ModelCard= { 
model_details: { 
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 model_id: “tc_001”, 
 version: 2, 

developed_by: “Hugging Face”,  
model_type: Text Classification, 
license: Apache-2.0, 

},  
intended_use: { 

primary_use: “The model can be used for topic classification”,  
out-of-scope_use: “The model was not trained to be factual or true 
representations of people" 

},  
model_usage: { 

api_endpoint: https://plapplication.com/sentimentAnalisys1/predict,  
deployment_guidance: http://huggingface.co/distilbert/distilbert-base-
uncased 

},  
spl_reusability_profile: { 

supported_domains: [“Movies”, “Series”, “Music”, “Products”], 
integration_complexity: “Low” 

},  
performance_metrics: [“Accuracy”: 91.3], 
operational_requirements: { 

cpu: 2+ CPU Cores, ram: 4GB, gpu: “Optional”, 
notes: “Although the GPU is optional, its inclusion can significantly 
improve performance for some scenarios” 

},  
caveats_recommendations: [“The model is vulnerable to producing biased 
predictions affecting underrepresented groups. For instance, when evaluating 
sentences such as “This film was filmed in COUNTRY,” the model assigns 
drastically different probabilities to the positive label based on the country 
mentioned (e.g., a 0.89 probability for France versus 0.08 for Afghanistan).”] 
} 

 

This information empowers the SPL architect to make a reasoned configuration decision: either 

accept a component with known limitations and plan for specific monitoring, or select an 

alternative component whose characteristics are better aligned with the product being built. In 

addition, the systematic adoption of Model Cards represents a crucial step toward responsible ML 

deployment by enhancing transparency around model behavior and operational boundaries. By 

standardizing both technical and ethical documentation practices, Model Cards enable 

stakeholders to evaluate and compare models using multidimensional criteria that extend beyond 

traditional performance metrics to encompass fairness, inclusivity, and equity considerations. 

 

Recommendation 4: Implement Systematic ML Component Monitoring. 

 

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL 

engineers must design robust monitoring mechanisms capable of detecting performance 

degradation [22]. Operating at runtime, these mechanisms should continuously observe both 

model performance and business-critical signals, while being seamlessly integrated with drift 

detection and alerting processes to ensure resilient and self-adaptive system behavior. 

 

Practical Implementation: To effectively implement this recommendation, SPL engineers 

should define a dedicated ML monitoring component for each domain component that 

incorporates ML capabilities. This component must specify the following attributes: 
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MLComponentMonitor: { 
    component_id: String, 
    monitoring_configuration: { 
      metrics: Set[MonitoringMetric], 
      frequency: TemporalSpecification, 
      data_collection_strategy: DataCollectionApproach, 
      baseline_establishment: BaselineDefinition 
    },  
    threshold_definitions: { 
      performance_thresholds: Map[Metric, ThresholdSpec], 
      drift_detection_thresholds: Map[DriftType, ThresholdSpec], 
      business_impact_thresholds: Map[BusinessMetric, ThresholdSpec] 
    },  
    intervention_strategies: { 
      alert_procedures: AlertSpecification 
    } 
}  

 

The specification defines the structural requirements needed to establish consistent, interpretable, 

and actionable monitoring configurations. The key attributes of the monitoring specification are 

detailed below: 

 

● component_id: Unique identifier of the monitored ML component. Used to record events, 

logs, and monitoring metrics.  

 

● monitoring_configuration: Parameters that define what, how, and when monitoring is 

performed. 

 

○ metrics: Set of key metrics for monitoring model performance. These metrics 

depend on the type of ML model (e.g., classification [F1Score, AUC, Accuracy], 

regression [RMSE, MAE], recommendation [Precision, Recall]). 

○ frequency: Frequency at which the model's status is evaluated. It may depend on the 

traffic rate or importance of the model (e.g., Hourly: useful for high-volume 

production; Daily: balanced for general use; EveryBatch: suitable for batch systems; 

RealTime: when online processing is used). 

○ data_collection_strategy: Method for collecting input data (for comparison and 

evaluation), predictions, and actual labels (if available) (e.g., StreamingLogs: 

continuous online capture. (e.g., BatchLogs: data collected in intervals; 

ShadowDeployment: evaluates without exposing to the user; MiddlewareCapture: 

collects from a proxy or wrapper). 

○ baseline_establishment: Reference against which current metrics are compared. It 

can be a previous version or a historical average. (e.g., StaticThresholds: defined by 

experts; PrelaunchModelBaseline: based on offline evaluation; 

Rolling7DayAverage: adaptive and dynamic). 

 

● threshold_definitions: Set of thresholds that trigger alerts. 

 

○ performance_thresholds: Thresholds over key model quality metrics. 

○ drift_detection_thresholds: Statistical thresholds for detecting changes in the 

distribution (data drift, concept drift, prediction drift, etc). 

○ business_impact_thresholds: Business metrics that may be impacted by the model, 

such as CTR, revenue, and churn. 
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● intervention_strategies: Defines actions to take if an anomaly or system degradation is 

detected. 

 

○ alert_procedures: Specification of the channel and form of alert to the responsible 

team (e.g., SendMailToMLTeam, PushToPagerDuty). 

 

E-commerce Example: In an online retail SPL, the sentiment analysis component can be 

continuously monitored to detect potential performance degradation, drift, or business impact 

issues. The following configuration illustrates how a monitoring component can be defined to 

track relevant metrics and trigger intervention strategies when necessary. 

 
MLComponentMonitor: { 
  component_id: “tc_001”, 
  monitoring_configuration: { 
    metrics: [“Precision”, “Recall”], 
    frequency: “Daily”, 
    data_collection_strategy: “StreamingLogs”, 
    baseline_establishment: “Rolling7DayAverage” 
  },  
  threshold_definitions: { 
    performance_thresholds: { 
        Precision: {min: 0.94, critical: 0.89, window: “24h”}, 
        Recall: {min: 0.87, critical: 0.82, window: “24h”}       
    },  
    drift_detection_thresholds: { 
      DataDrift: {  
        metric: “KL-Divergence”, warning: 0.04, critical: 0.08, window: “7d”  
      }, 
      ConceptDrift: {  
        metric: “JS-Divergence”, warning: 0.03, critical: 0.07, window: “7d”  
      } 
    },  
    business_impact_thresholds: { 

  misclassified_negative_reviews: { 
  warning: 200, critical: 400, window: “24h”} 

    } 
  },  
  intervention_strategies: { 
    alert_procedures: { 
      warning_level: “SendMailToMLTeam”, critical_level: “PushToPagerDuty” 
    } 
  } 
} 

 

Recommendation 5: Implement ML Component Orchestration. 

Effective orchestration—the coordinated management and execution of ML components—in 

dynamic product configurations requires an infrastructure that enables flexible model 

composition, state management between runs, and contextual integration. For this, we 

recommend: 

 

● Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML 

components in distributed environments. 
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● Intelligent orchestrators that dynamically adjust component activation according to 

contextual signals, business rules, or environmental conditions. Techniques such as 

context-aware scheduling can be applied. 

● Functional decoupling of components, promoting a microservices-based architecture to 

facilitate model replacement, enhancement, or re-trainability without altering the overall 

configuration. 

● Instrumentation for traceability and versioning: employ systems that record training data, 

parameters, results, and decisions made by each component to facilitate audits and 

optimization. 

 

Practical Implementation: To operationalize this recommendation, SPL engineers must define a 

dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML 

components. This orchestration must support declarative workflows, dynamic adaptation policies, 

and seamless integration with monitoring systems. The following schema defines a formal 

representation of such an orchestration-aware product configuration: 

 
ProductConfiguration = { 
  configuration_id: String, 
  feature_binding: Map[Feature, ComponentBinding], 
  workflow_specification: { 
    component_graph: DirectedAcyclicGraph[Component, DataFlow], 
    execution_constraints: Set[Constraint], 
    quality_objectives: Map[QualityAttribute, Objective], 
    resource_allocations: Map[Component, ResourceAllocation] 
  }, adaptation_policies: { 
    monitoring_configuration: MonitoringPolicy, 
    replacement_triggers: Set[ReplacementTrigger], 
    quality_negotiation: QualityNegotiationStrategy, 
    performance_optimization: OptimizationPolicy 
  }, validation_requirements: { 
    functional_tests: Set[TestSpecification], 
    performance_benchmarks: Set[BenchmarkTest], 
    quality_assertions: Set[QualityAssertion], 
    compliance_checks: Set[ComplianceCheck] 
  } 
} 

 

This schema defines the structural and behavioral dimensions of a configurable product instance. 

Its modular design supports precise, verifiable, and adaptive configuration management across a 

wide range of variability. The key components are described below: 

 

● configuration_id: A unique identifier assigned to the product configuration instance. 

 

● feature_binding: A mapping between product features and their corresponding component 

implementations. This allows resolution of variability by specifying which components realize 

which features in a given configuration. 

 

● workflow_specification: Captures the operational logic of the product. 

 

○ component_graph: A directed acyclic graph (DAG) that defines the data flow and 

execution dependencies among software and ML components. 

○ execution_constraints: A set of logical or resource-based constraints that govern 

component execution (e.g., timing, sequencing). 
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○ quality_objectives: Specifies target values for quality attributes, such as accuracy, 

latency, and energy consumption. 

○ resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU) 

to each component to ensure operational feasibility. 

 

● adaptation_policies: Define the runtime behavior of the product under varying operational 

conditions: 

 

○ monitoring_configuration: Indicates how system performance is monitored during 

execution. 

○ replacement_triggers: Defines conditions under which components should be 

replaced. 

○ quality_negotiation: Specifies strategies for balancing competing quality attributes 

under constraints. 

○ performance_optimization: Policies for dynamically optimizing performance 

based on monitored feedback. 

 

● validation_requirements: Ensures that configured products meet their intended goals and 

regulatory requirements: 

 

○ functional_tests: Set of specifications for functional correctness. 

○ performance_benchmarks: Benchmark tests that measure system performance 

under predefined workloads. 

○ quality_assertions: Verifiable and testable statements specifying the quality 

attributes that a configured product is required to meet. 

○ compliance_checks: Formal checks to ensure adherence to standards, certifications, 

or domain-specific regulations. 

 

E-commerce Example: In an online retail SPL, a dynamic product configuration may include 

ML components for personalized recommendations, fraud detection, and sentiment analysis. The 

component bindings for each product instance can vary significantly based on factors such as the 

target audience, expected transaction volume, and specific regional compliance mandates. 

 

Recommendation 6: Implement Systematic ML Component Replacement Strategy. 

 

During product configuration, an automated strategy should be established to update or replace 

ML components when performance degradation is detected. This requires the definition of an 

intervention mechanism that is triggered when the performance metrics of an ML component fall 

below predefined thresholds. The mechanism must support replacing the underperforming 

component with one of several alternatives: another ML model, a traditional software component, 

or, if appropriate, the temporary exclusion of the affected functionality from the system's 

execution flow. 

 

Practical Implementation: To operationalize this recommendation, SPL engineers must define a 

replacement strategy component associated with each ML-enabled domain component. This 

component is responsible for responding to degradation alerts issued by the monitoring system 

and executing the actions defined in the replacement policy. The structure of the replacement 

strategy component can be formally specified as follows: 

 
MLComponentReplacementStrategy = { 
  component_id: String, 
  replacement_hierarchy: { 
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    primary_alternative: ComponentReference, 
    secondary_alternatives: List[ComponentReference], 
    fallback_strategy: FallbackApproach 
  } 
} 

 

This specification defines the structure required to enable resilient and automated replacement 

mechanisms for ML components. The attributes are described below: 
 

● component_id: Unique identifier of the ML component.  

● replacement_hierarchy: Hierarchy of alternatives in case of model degradation. 

 

○ primary_alternative: Component directly prepared to take over the current ML 

model. 

○ secondary_alternatives: List of additional (less optimal) alternatives. 

○ fallback_strategy: Emergency strategy to continue providing service with reduced 

capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking, 

ManualReview, GracefulShutdown). 

 

E-commerce Example: In an online retail SPL, a replacement strategy can be defined for the 

sentiment analysis component using both traditional and ML-based alternative models. To ensure 

system resilience, if no alternative component meets the required quality thresholds, a predefined 

fallback strategy is triggered, such as temporarily deactivating the sentiment analysis feature from 

the process flow. 

 
MLComponentReplacementStrategy: { 
    component_id: “tc_001”,  
    replacement_hierarchy: { 
      primary_alternative: { 
        id: “cardiffnlp/twitter-roberta-base-sentiment-latest”, 
        type: “ml_model”, reason: “Most compatible fine-tuned model” 
      }, 
      secondary_alternatives: [{ 
          id: “distilbert-base-uncased-sentiment”, 
          type: “ml_model”, 
          reason: “Lightweight model for fallback” 
        }, { 
          id: “rule_based_sentiment_classifier_v1”, 
          type: “software_component”, 
          reason: “Legacy rules-based classifier for conservative estimation” 
      }], 
      fallback_strategy: {type: “RuleBasedBlocking” } 
    }} 

 

3.4. Dynamic Product Configuration 
 

Incorporating ML components during product configuration adds substantial depth to the 

variability and intelligence of SPL. However, configuration decisions must balance multiple 

competing objectives, such as performance, cost, and reliability, often under shifting operational 

conditions. 
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Recommendation 7: Establish Multi-Objective Configuration Optimization. 

 

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish 

multi-objective configuration optimization mechanisms. This approach enables organizations to 

simultaneously evaluate and balance competing concerns, including accuracy, latency, resource 

consumption, interpretability, and ethical constraints. By leveraging advanced optimization 

techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration 

sets that meet diverse stakeholder requirements without compromising system integrity. 

Implementing multi-objective optimization also promotes continuous improvement, enabling 

dynamic reconfiguration as environments evolve or model behaviors drift over time. 

 

Practical Implementation: To operationalize multi-objective configuration optimization, it is 

first necessary to formalize a set of competing objectives, such as model accuracy, latency, 

resource utilization, interpretability, and compliance with ethical standards, into quantifiable 

metrics. The configuration space should encompass both system-level parameters and ML-

specific settings, including hyperparameters and pipeline structures. The exploration of trade-offs 

across this space can be conducted using optimization techniques such as evolutionary algorithms 

(e.g., NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are 

evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced 

solutions. These sets can be visualized or presented through decision-support interfaces to 

facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating 

the optimization process within CI/CD pipelines ensures continuous reconfiguration in response 

to model drift or changing operational constraints. 

 

3.5. Product Derivation and Validation 
 

This phase considers the methodology for deriving specific products from a configurable 

architecture, detailing how optimization criteria and stakeholder requirements guide the selection 

process. It also describes the validation mechanisms employed to ensure that the resulting 

products meet expected standards of functionality, performance, and reliability prior to 

deployment. 

 

Recommendation 8: Implement validation and testing strategies specifically designed for 

ML-enhanced products. 
 

Validation and testing strategies should incorporate both functional and non-functional 

assessments, including unit and integration testing, model performance evaluation across diverse 

datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies 

should extend to include ML-specific validation approaches, such as statistical performance 

validation, bias detection testing, adversarial robustness assessment, and long-term stability 

verification. It must also support automated validation pipelines integrated into CI/CD 

workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or 

compliance violations. 

 

Practical Implementation: To implement this recommendation, the first step is to configure the 

derivation. This involves selecting binary features and determining the quality distributions for 

ML components. It is essential to establish optimization criteria and stakeholder requirements to 

guide the automated selection of ML components. This ensures that each product is customized 

to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and 

non-functional requirement tests must be executed. The process is further enhanced with ML-

specific validations such as bias detection, adversarial robustness assessments, and long-term 

stability verification to address the unique vulnerabilities of machine learning models. The 
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overall goal is to ensure that the derived products meet all expected standards of functionality, 

performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of 

these validation strategies are integrated into automated CI/CD pipelines.  

 

To conclude, the proposed framework's recommendations, which encompass the entire lifecycle 

of ML-enhanced SPLs, have been partially implemented within the VariaMos web tool. An 

excerpt from this implementation is illustrated in Figure 2. These recommendations are currently 

being applied to the development of two proof-of-concept SPL—an e-commerce SPL and a text 

editor SPLs—enabling us to validate the framework's practical effectiveness empirically. 

 

 
 

Figure 2. Partial implementation of ML-enhanced SPL Framework in VariaMos Tool 

 

4. RELATED WORK 
 

The intersection of SPL engineering and ML represents an emerging research area that builds 

upon established foundations in both domains. Traditional SPL engineering, formalized through 

seminal work by Clements, Mazo, and Pohl, respectively   [7], [18], [19], has established 

comprehensive methodologies for systematic software reuse through domain engineering and 

application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach 

introduced by Kang [8] and subsequent advances in variability management [7], [23] provide 

robust frameworks for managing product family complexity. However, these approaches 

fundamentally assume component determinism and behavioral predictability, creating significant 

gaps when dealing with probabilistic ML components. 

 

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled 

systems through comprehensive frameworks for technical debt management [22], engineering 

practices [24], and quality assurance approaches [25]. The emergence of systematic 

documentation practices, as exemplified by  Model Cards [20] and behavioral testing frameworks 

https://www.zotero.org/google-docs/?AOcDKh
https://www.zotero.org/google-docs/?rGSotw
https://www.zotero.org/google-docs/?SkkSTg
https://www.zotero.org/google-docs/?byWC86
https://www.zotero.org/google-docs/?ZGlkep
https://www.zotero.org/google-docs/?JypEQ2
https://www.zotero.org/google-docs/?5LboIR
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[26], represents substantial progress in ML system engineering. Recent systematic reviews by 

Martínez-Fernández [4] and empirical studies by Nahar and Ribeiro, respectively [5], [26] have 

documented collaboration challenges and the complexity of requirements engineering specific to 

ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems 

or monolithic application contexts, with limited consideration of systematic reuse frameworks. 

 

Architectural approaches for ML integration have evolved toward microservices-based patterns 

[27]  and adaptive system frameworks [28], [29], while dynamic SPL research [7], [30], [31] has 

explored evolution and adaptation in product line contexts. However, existing approaches have 

not systematically addressed the unique requirements of ML components within SPL 

environments, including cross-product consistency management, shared component instance 

coordination, and the specific adaptation patterns required for probabilistic components subject to 

performance degradation and concept drift. 

 

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts. 

Traditional SPL methodologies assume behavioral predictability, which is incompatible with the 

probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic 

frameworks for ensuring cross-product consistency and shared component management. Existing 

documentation frameworks do not provide reusability assessment mechanisms required for SPL 

component selection, and current adaptive system approaches do not address ML-specific 

degradation patterns and monitoring requirements. 

 

This work addresses these fundamental gaps by providing the first comprehensive framework 

specifically designed to integrate ML components within SPLs, while preserving the benefits of 

systematic reuse. Unlike existing approaches that treat ML components as standalone services or 

apply ad-hoc integration patterns, our framework systematically extends established SPL 

methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-

aware component characterization, adaptive architectural patterns, and dynamic configuration 

optimization. The framework proposed in this paper provides concrete specifications, including 

formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-

objective optimization approaches, enabling practitioners to maintain an engineering discipline 

and leverage systematic reuse advantages while effectively utilizing ML capabilities across 

products derived from product lines. 

 

5. CONCLUSIONS AND FUTURE WORK 
 

The integration of ML components into SPLs presents new challenges that traditional modeling 

techniques are not equipped to address. By addressing the variability and uncertainty inherent in 

ML components, this approach lays the groundwork for bridging the gap between SPLE and AI-

based software development.  

 

In this paper, we propose a framework that supports the inclusion of ML components in SPLs, 

facilitating systematic reuse, customization, and evolution. Our contribution consists of a 

specification-oriented approach that guides the integration of ML-based functionalities into SPLs, 

along with a set of recommendations and practical implementations. The framework is structured 

around five interconnected phases that encompass the entire lifecycle of ML-enhanced SPLs: 

ML-aware domain analysis, Adaptive architecture design, ML-aware domain implementation, 

Dynamic product configuration, and Product derivation and validation of its resulting products. 

 

The proposed framework has been partially implemented in the VariaMos tool 

(https://variamos.com/). This web-based tool utilizes microservices to enable the specification of 

product lines through a multi-language modeling approach and the reasoning on these products 

https://www.zotero.org/google-docs/?k5ARxi
https://www.zotero.org/google-docs/?j0Bq52
https://www.zotero.org/google-docs/?NU9seB
https://www.zotero.org/google-docs/?zhistl
https://www.zotero.org/google-docs/?VujQy3
https://www.zotero.org/google-docs/?lMoBrQ
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and product lines. Initial empirical findings, obtained by applying these recommendations to two 

distinct SPL—an e-commerce SPL and a text editor SPL—suggest that this comprehensive 

documentation approach facilitates informed decision-making across the entire ML component 

lifecycle. This process spans from initial model selection to deployment and ongoing monitoring. 

Furthermore, Model Cards support regulatory compliance and risk management by providing 

auditable documentation of model characteristics and decision rationale, which contributes to the 

development of more accountable and trustworthy ML systems. Although these preliminary 

results are promising, further experimentation and implementation improvements are needed to 

fully assess the actual value and impact of this proposal in production environments. Future work 

involves evaluating the proposed strategy in real-world industrial domains, including a detailed 

cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its 

applicability to AI components beyond ML. Furthermore, in the educational context, we plan to 

move beyond the individual courses on “Software Engineering for ML-enabled Systems” and 

“Software Product Line Engineering” currently offered at each institution by developing a joint 

course in which students collaboratively design SPLs to address real-world problems. 
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