ENHANCING SOFTWARE PRODUCT LINES
WITH MACHINE LEARNING COMPONENTS

Luz-Viviana Cobaleda !, Julian Carvajal !, Paola Vallejo 2,
Andrés Lopez !* and Raul Mazo 3

! Facultad de Ingenieria, Universidad de Antioquia, Medellin, Colombia.
2 Escuela de Ciencias Aplicadas e Ingenieria, Universidad EAFIT, Medellin,
Colombia.
3 Lab-STICC, ENSTA, Brest, Francia.

ABSTRACT

Modern software systems increasingly integrate machine learning (ML) due to its
advancements and ability to enhance data-driven decision-making. However, this
integration introduces significant challenges for software engineering, especially in
software product lines (SPLs), where managing variability and reuse becomes more
complex with the inclusion of ML components. Although existing approaches have
addressed variability management in SPLs and the integration of ML components in
isolated systems, few have explored the intersection of both domains. Specifically, there is
limited support for modeling and managing variability in SPLs that incorporate ML
components. To bridge this gap, this article proposes a structured framework designed to
extend Software Product Line engineering, facilitating the integration of ML components.
It facilitates the design of SPLs with ML capabilities by enabling systematic modeling of
variability and reuse. The proposal has been partially implemented with the VariaMos tool.

KEYWORDS

Machine Learning (ML), Software Product Lines (SPL), ML-based systems, variability
modeling.

1. INTRODUCTION

The rapid evolution of artificial intelligence (Al) over the last decade can be attributed to a
convergence of key factors: enhanced computational power, the widespread availability of
massive datasets, and the creation of more sophisticated algorithms. Consequently, Al has
emerged as a transformative technological force, empowering software-intensive systems with
novel capabilities in a wide range of domains [1], [2], [3], [4]. Al-based systems are essentially
software systems whose functionalities are enabled by at least one Al component (e.g., for image
and speech recognition or autonomous driving) [4]. However, incorporating Al components into
software products introduces new software engineering challenges and amplifies existing ones.
The situation becomes even more critical when these components are integrated not only into a
single product but into a family of software products or a Software Product Line (SPL). Thus, the
integration of Machine Learning (ML) components into SPLs introduces new dimensions of
variability that traditional modeling techniques are not prepared to handle. This raises
fundamental questions: How can an AI/ML component be modeled within an SPL? How can
architects effectively integrate ML components into their SPLs? What information about the
model is necessary to enable a successful SPL configuration process? The inability of current
modeling approaches to address these questions reveals a significant research gap. Additionally,
the integration of ML components into software systems introduces unique challenges that have

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA - 2025
pp. 73-94,2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152006

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152006
https://www.zotero.org/google-docs/?8W6TQo
https://www.zotero.org/google-docs/?QbmH0l

74 Computer Science & Information Technology (CS & IT)

given rise to the field of Software Engineering for Al (SE4Al). Recent literature has
systematically identified the issues that emerge across the software lifecycle, impacting areas
such as requirements engineering, architecture, testing, deployment, and maintenance [3], [4],
[5], [6]. While these challenges are broad, this article focuses on those most relevant to the design
of SPL.

Most research in SE4AI has focused, to date, on the challenges of integrating ML components
into individual software systems. In the context of SPLs, where systematic reuse is the primary
goal, these challenges not only persist but are magnified and transformed into variability
management problems. For example, defining performance metrics for a product is an
engineering challenge, but managing a catalog of components with different performance profiles
to configure multiple products becomes a challenge in variability management. The literature that
explicitly addresses this transformation of ML challenges in the SPL domain is notably scarce,
representing a significant research gap. One of the main challenges documented for individual
systems lies in requirements engineering, particularly in managing expectations. It has been
reported that both customers [3] and development teams [6] often have limited knowledge of the
actual capabilities and limitations of ML, leading to the establishment of unattainable
requirements, such as requests for systems with no false positives or 100% accuracy [4]. This
problem extends to the difficulty of translating business objectives into appropriate technical
specifications, as the quantitative metrics used to characterize an ML model are often unintuitive
to non-technical stakeholders [3]. Beyond the requirements, the dynamic nature of ML
components introduces complex operational challenges. The literature highlights the emergence
of new quality attributes, such as freshness and robustness, whose understanding is still
fragmented [3], [4]. For instance, the freshness requirement addresses the performance
degradation caused by phenomena like “concept drift” through continuous monitoring, which in
turn necessitates defining both the tolerance for such degradation and the specific triggers for a
model update [3]. Additionally, the management of these new attributes is complicated by the
existence of inherent trade-offs, such as that between fairness and accuracy in a model [3], [4].

Although the challenges discussed are significant for individual software systems, their impact is
amplified in the context of SPLs, where systematic reuse and variability management are
paramount. The incorporation of ML components introduces additional variability issues, such as
defining performance metrics at the product line level, aligning stakeholder understanding across
multiple products, and specifying monitoring policies, that must be addressed not only for
individual products but for product lines. Despite extensive research on Al-related software
components, the current literature lacks approaches that explicitly consider the distinctive
characteristics of these components within the context of SPLs [3], [4].

In this paper, we propose a framework for enhancing SPLs by enabling the seamless integration
of ML components. Our main contribution is a specification-oriented approach that guides the
integration of ML-based functionalities into SPLs. This approach addresses key aspects,
including variability management, probabilistic feature modeling, ML component
characterization, systematic ML component monitoring, systematic component replacement
strategy, and derivation products with ML components. This strategy enables more systematic
reuse, customization, and traceability of ML components across product configurations in the
SPL context.

The remainder of the paper is structured as follows: Section 2 provides background on SPL
engineering and ML components documentation. Section 3 details the proposed framework for
designing SPLs with ML components and discusses the implications of this approach. Section 4
presents related work. Finally, Section 5 concludes the article and outlines directions for future
work.

https://www.zotero.org/google-docs/?MRsch7
https://www.zotero.org/google-docs/?MRsch7
https://www.zotero.org/google-docs/?6UJz5O
https://www.zotero.org/google-docs/?HCinZi
https://www.zotero.org/google-docs/?UG0Cyk
https://www.zotero.org/google-docs/?4Loxiz
https://www.zotero.org/google-docs/?5gYHRD
https://www.zotero.org/google-docs/?isHDdO
https://www.zotero.org/google-docs/?7vhxgR
https://www.zotero.org/google-docs/?XXUdDn

Computer Science & Information Technology (CS & IT) 75
2. BACKGROUND

The design and development of SPLs rely on systematic approaches to manage variability and
promote reuse across families of related software systems. To provide the necessary foundation
for the proposed framework, this section outlines the core concepts of SPL engineering and the
integration of ML components.

2.1. SPL and Variability Management

A SPL represents a systematic approach to developing families of related applications within a
specific domain through strategic reuse of common assets [7]. This paradigm leverages shared
components and systematic variability management to achieve significant reductions in
development time and costs while improving product quality through the incorporation of proven,
reusable artifacts.

Software Product Line Engineering (SPLE) operationalizes this approach through two
fundamental processes, as presented in Figure 1: (1) Domain engineering, which establishes
reusable assets and variability models, and (2) Application engineering, which derives specific
products from these shared resources [7]. Variability—the capacity of a system to be adapted or
configured for specific contexts—serves as the core mechanism enabling this systematic reuse
across diverse product requirements.

1) Domain engineering establishes the foundation of reusable assets through two sequential
phases. A) Domain analysis identifies and specifies SPL variability using formal models such as
feature models [8], which define wvariation points, available alternatives, and constraint
relationships. This phase encompasses: domain requirements definition to capture stakeholder
needs and scope constraints, reference architecture specification aligned with domain
requirements, and variability model quality assurance through systematic verification, diagnosis,
and validation activities. B) Domain implementation transforms abstract specifications into
concrete, reusable components. Key activities include requirements engineering for domain
components, architectural design specification, domain component implementation,
comprehensive unit testing, and explicit linkage between components and variability model
elements. This phase produces the core asset base comprising domain components, architectural
models, and associated test suites.

2) Application engineering derives specific products through the systematic configuration and
instantiation of domain assets across two phases. A) Configuration and customization
management captures customer-specific requirements and configures variability models
accordingly, encompassing application requirements engineering, variability —model
configuration, application architecture definition, and component customization to meet specific
product needs. B) Derivation constructs final products from configured domain assets through
requirements engineering for the derivation process, assembly architecture definition, systematic
product implementation from domain components, and comprehensive system integrity testing,
including performance, validation, and audit verification.

This dual-process framework ensures systematic reuse while maintaining the flexibility necessary
to address diverse product requirements within the target domain. The SPLE framework applies
to various domains, including but not limited to education [9], agricultural systems [10], smart
building [11], e-commerce [12], automotive manufacturing [13], and information systems [14].

https://www.zotero.org/google-docs/?RsdLki
https://www.zotero.org/google-docs/?h54iId
https://www.zotero.org/google-docs/?aWThnY
https://www.zotero.org/google-docs/?qaMiXW
https://www.zotero.org/google-docs/?0LYiJw
https://www.zotero.org/google-docs/?1DUBEx
https://www.zotero.org/google-docs/?BTzBcc
https://www.zotero.org/google-docs/?O6ECTf
https://www.zotero.org/google-docs/?5tPqFf

76 Computer Science & Information Technology (CS & IT)

As a representative example of an SPL, the virtual store SPL models a family of e-commerce
platforms designed to support the online exchange of goods and services across diverse markets
such as fashion, electronics, and digital content, this SPL captures a set of core functionalities
common to most product instances, including a product catalog, shopping cart, payment module,
and delivery system. These shared components are complemented by a range of variability points
that allow customization according to specific business needs, such as authentication
mechanisms, catalog presentation styles, supported payment gateways, search engines, content
moderation tools, and user interface configurations. The SPL is designed to promote systematic
reuse while enabling flexibility to address the functional and non-functional requirements of
different virtual store deployments.

Problem space Solution space
Domain analysis ” p Domain implementation
- implementation
-
= * Requirements engineering for domain components
2 ¢ Domain requirements definition * Architectural design specification
= e Reference architecture specification * Domain component implementation
= e Variability model quality assurance ¢ Comprehensive unit testing
g * Linkage components with variability model elements
2 : — s
* Requirements variability model s s
) || ¢ Domain component model
* Reference architecture model ,,E
,‘____—_—______._——-—-—_—‘—-——_
E
g
Configuration and {g} Deikvafion
customization management
sl
% * Application requirements engineering e Requirements engineering for the derivation process
g ¢ Variability model configuration * Assembly architecture definition
g * Application architecture definition e Systematic product implementation
g s Component customization * System integrity testing
=
=
= * Configured products * Derivation artifacts
- I
derivation > Products >

Figure 1. SPLE framework implemented in the VariaMos web tool, from [7]
2.2. ML Components

An ML component is a special type of software component that encapsulates ML models along
with their associated data processing, inference logic, and system integration capabilities [6],
[15]. These components constitute the main means of integrating ML capabilities into complex
software systems, acting as a bridge between the underlying ML models and the overall system
architecture. Component reuse is a foundational principle that enables the efficient development
of multiple products from a shared, common core.

ML components can be deployed across various operational contexts depending on system
requirements and architectural constraints. Common deployment patterns include: (1) embedded
software libraries integrated directly within applications for low-latency scenarios; (2) standalone
services accessible through REST or gRPC APIs for service-oriented architectures; and (3)
containerized microservices within distributed cloud-native environments. The execution
environment may range from local computational resources and edge devices to cloud-based
infrastructures, each presenting distinct trade-offs in terms of latency, scalability, resource
consumption, and operational complexity. The selection of an appropriate deployment strategy

https://www.zotero.org/google-docs/?mYQaIY
https://www.zotero.org/google-docs/?jap6ob
https://www.zotero.org/google-docs/?jap6ob

Computer Science & Information Technology (CS & IT) 77

requires systematic evaluation of quality attributes, including performance characteristics,
scalability requirements, maintainability constraints, and security considerations. These decisions
must align with both functional requirements and non-functional system objectives, as the
deployment choice significantly impacts the overall system behavior and operational
characteristics. Given the critical role of ML models within these components, establishing a
clear understanding of their behavior, limitations, and applicability conditions is essential for
responsible reuse in systems.

In our representative example, the SPL for the virtual store also incorporates ML components,
introducing a new dimension of intelligent behavior and adaptive functionality. These ML-based
components include a semantic search engine that interprets the context of user queries, a
sentiment analysis module applied to customer reviews, a content moderation module that
filters out inappropriate content, and a fraud detection module to prevent and detect fraudulent
activity. Each of these components can be configured in multiple ways depending on
performance requirements, latency constraints, and human-in-the-loop considerations. For
instance, the content moderation module may operate in a human-assisted mode or as a fully
automated system, depending on the confidence thresholds applied to the underlying ML model.
These components are encapsulated as reusable assets within the SPL, enabling developers to
integrate advanced ML capabilities without retraining models from scratch for each product
variant.

The selected components in the previous example are notable for both their practical applicability
and their capacity to introduce significant variability dimensions—including model selection,
performance thresholds, and human-in-the-loop configurations—that require explicit
management within an SPL. However, in other domains, the set of selected components may
differ. For instance, in the agricultural Al domain, relevant ML components for predictive
modeling could include capabilities for carbon sequestration [16] or for emissions forecasting
[17].

3. PROPOSAL

The integration of ML components into SPL represents a fundamental paradigm shift that
challenges the traditional assumptions underlying systematic software reuse. While conventional
SPL approaches have proven effective for deterministic software components with predictable
behavior and stable interfaces [18], [19], ML components introduce unprecedented complexity
through their inherent stochasticity, data dependency, continuous evolution requirements, and
non-functional characteristics that defy traditional software engineering practices [3], [4].

This proposal presents a comprehensive framework that extends the foundational principles of
product line engineering to accommodate the unique properties of ML components while
preserving the economic and technical benefits that have made SPL a cornerstone of systematic
software development. Our approach recognizes that ML components cannot be treated as “black
boxes” within existing SPL methodologies; rather, they require a fundamental
reconceptualization of domain modeling, component characterization, architectural design, and
product derivation processes.

The framework proposed in this paper is currently being implemented in the VariaMos web tool
(www.variamos.com) as part of an ongoing effort to operationalize and validate its practical
applicability. It is organized around five interconnected phases that collectively address the
complete lifecycle of ML-enhanced SPLs: ML-aware domain analysis, Adaptive architecture
design, ML-aware domainimplementation, Dynamic product configuration, and Product
derivation and validation of its resulting products. Each phase builds upon established SPL

https://www.zotero.org/google-docs/?zjTPME
https://www.zotero.org/google-docs/?nKBplF
https://www.zotero.org/google-docs/?qpM278
https://www.zotero.org/google-docs/?yTgQ5i

78 Computer Science & Information Technology (CS & IT)

theory while introducing novel concepts and recommended practices specifically designed to
handle the probabilistic nature, performance variability, and operational complexity inherent in
ML systems. While VariaMos is a versatile, generic tool that accepts different domains, our
examples pertain to the e-commerce domain.

3.1. ML-Aware Domain Analysis

The domain analysis phase requires significant adaptations when ML components are involved,
particularly in feature modeling and architectural decision-making [7]. Traditional Boolean
feature satisfaction proves inadequate for ML components whose capabilities vary across
contexts and exhibit probabilistic behavior [6]. A key distinction of ML-based features lies in
their inherent reliance on training data properties. The performance and functional capabilities
of these features are susceptible to the characteristics of the training data, including its quality,
representativeness, and intrinsic attributes. Additionally, implementing ML-based features can
introduce risks associated with sensitive data, particularly regarding privacy, security, and
information governance, due to the implications of data use and storage for model training and
inference.

Recommendation 1: Implement Probabilistic Feature Modeling.

SPL engineers should extend conventional feature models to capture the uncertainty inherent in
ML component capabilities[8]. Rather than relying on binary feature satisfaction, engineers
should model features with quality distributions that reflect the variability in ML component
performance.

Practical Implementation: For each feature that will be satisfied by an ML component, SPL
engineers should identify it as an “ML-based feature” and define the following Feature Quality
Profile:

FeatureQualityProfile = {

feature_id: String,

feature_type: type,

ml_component_id: String,

quality distribution: {
accuracy_range: [min_accuracy, max_accuracy],
context_sensitivity: Map[Context, AccuracylLevel],
confidence_intervals: Map[Scenario, ConfidenceRange]

i3

E-commerce Example: For a fraud detection feature in an online retail SPL, implementing
recommendation 1, its Feature Quality Profile should look as follows:

FeatureQualityProfile = {
feature_id: “fraud_detection”,
feature_type:ML-based,
ml_component_id: “fraud_detection_V1.0”,
quality distribution: {
accuracy_range: [0.88, 0.95],
context_sensitivity:{
domestic_transactions_during_week:0.95,
international_transactions_during_week: ©.88,
domestic_transactions_during_weekend: ©.90,
international_transactions_during_weekend: ©.75,

https://www.zotero.org/google-docs/?iaQha8
https://www.zotero.org/google-docs/?wKLKV1
https://www.zotero.org/google-docs/?s1mqUr

Computer Science & Information Technology (CS & IT) 79

transactions_from_suspicious_IP: 0.98,

transactions_less_than_10 USD: 0.70},
confidence_intervals: {

high_confidence: [0.85, 1.0],

medium_confidence: [0.70, 0.84],

low _confidence: [0.0, 0.69]}}

3}
3.2. Adaptive Architecture Design

The reference architecture must explicitly address the dynamic and context-sensitive nature of
ML components. ML models often evolve over time, depend on external data sources, and
exhibit probabilistic behavior that affects system reliability and performance. Therefore,
architectural decisions must incorporate design strategies that manage adaptability and
traceability, ensure periodic updates, and maintain the long-term stability and performance of
integrated ML functionalities. These strategies should align feature variability, model
capabilities, and operational constraints, which is paramount for ensuring the robustness,
adaptability, scalability, and maintainability of the ML-based SPL.

Recommendation 2: Design ML-Aware Reference Architecture.

The reference architecture must account for several key aspects.

e [t must provide for a clear separation of concerns between the core SPL framework, the
ML model development cycle, the deployment pipeline, and model monitoring.

e [t must support various deployment strategies, including on-device (edge computing), on-
premises, or cloud-based, depending on the specific product requirements and
constraints.

e It must ensure data privacy, security, and compliance, while facilitating seamless
integration with robust ML engineering practices, such as MLOps.

Practical Implementation: SPL engineers should be able to:
e Use microservice-based architecture, where ML components are deployed as decoupled
services accessible through well-defined APIs.
e Use of containerization (e.g., Docker) to package models and their dependencies,
ensuring environmental consistency and portability.

3.3. ML-Aware Domain Implementation

The domain implementation phase requires a structured approach to documenting, versioning,
and managing ML components. This approach should be complemented by a formal monitoring
process that can detect performance degradation and automatically trigger component
replacement procedures. Effectively characterizing and selecting suitable ML components is
essential to understanding their capabilities, limitations, and performance profiles. This enables
successful integration and reduces associated risks. The monitoring system is designed to address
the dynamic and non-deterministic nature of ML components by identifying potential degradation
in the production environment and issuing alerts. Additionally, careful consideration is required
for some aspects. For example, orchestrating ML components across products involves managing
dependencies, activation conditions, and contextual adaptation. Furthermore, replacing ML
components systematically requires mechanisms to evaluate, decouple, and reintegrate new
versions with minimal disruption.

80 Computer Science & Information Technology (CS & IT)

Recommendation 3: Adopt Intelligent Component Characterization.

To ensure the precise and systematic characterization of pre-trained ML components, it is
proposed that Model Cards be mandatorily adopted. Model Cards, introduced by Mitchell [20]
and further extended by Toma [21], provide a standardized framework for documenting ML
models in a transparent and structured manner. This approach recommends customizing specific
sections of the standard Model Card, such as Model Details, Intended Use, SPL reusability
Profile, Model Usage, Operational Requirements, Performance Metrics, and Caveats. These cards
are tailored for domain experts who, while not data scientists, are responsible for selecting and
integrating third-party components.

Practical Implementation: For each ML component in the SPL, a standardized model card is
proposed, capturing the following essential information:

ModelCard= {

model_details: {
model _id: String,
version: ModelVersion,
developed_by: String,
model_type: MLModelType,
license: LicenseSpecification

}, intended_use: {
primary_use: String,
out-of-scope_use: String

}, spl_reusability profile: {
supported_domains: Set[Domain],
integration_complexity: String, (ej. “Low”)

}, model usage: {
api_endpoint: String,
deployment_guidance: String

}, performance_metrics: Map[clave, valor],

operational_requirements: {
cpu: CPUSpecification, ram: RAMSize,
gpu: String, notes: String
¥

caveats: [String]

}

The SPL-aware Model Card specification defines the essential attributes for characterizing an
ML component. The purpose and content of each key attribute are detailed below:

e model details: Provides technical specifications—covering developer information, version
control, model architecture, training methodology, and licensing terms that define commercial
use rights, current license type, and redistribution permissions.

o model_id: A unique identifier for the model, such as its name in a public repository.

o version: The specific version of the model, following semantic versioning where
possible, to track changes and dependencies.

o developed_by: The organization, team, or individual responsible for the model's
development.

o model_type: Specifies the model's task category (e.g., Text Classification, Object
Detection), informing its functional role.

o license: The legal specification governing the use, modification, and distribution of
the model, crucial for commercial product derivation.

https://www.zotero.org/google-docs/?rhKQid
https://www.zotero.org/google-docs/?jt5WBR

Computer Science & Information Technology (CS & IT) 81

e intended_use: Defines appropriate use cases, target applications, and intended user
populations by outlining usage scenarios, specifying primary and out-of-scope applications,
detailing the model’s adaptability, and highlighting its limitations and potential biases.

o primary_use: A concise description of the model's main purpose and the scenarios
where it is designed to be applied (e.g., real-time fraud detection).

o out-of-scope_use: Explicitly states the limitations and use cases for which the model
has not been designed or validated, preventing misuse.

e spl reusability profile: A section dedicated to evaluating the ML component's fitness as a
reusable asset within the SPL context. This is a key input for variability modeling.

o supported_domains: A set of application domains where the model has
demonstrated reliable performance, highlighting potential domain biases.

o integration_complexity: A categorical rating (e.g., "Low", "Medium", "High") that
estimates the engineering effort needed to integrate the component, based on its
dependencies and API.

e Model usage: Offers guidance on model consumption through various interfaces (e.g., Ul,
API) and outlines its compatibility with different deployment platforms and operating
systems.It also provides guidance on optimizing performance and outlines deployment
strategies for different environments, including local setups and cloud platforms.

o api_endpoint: The URL or interface for sending inference requests.
o deployment_guidance: A summary of instructions and best practices for deploying
the model in different environments (e.g., cloud, edge).

e performance metrics: Comprehensive performance evaluation including accuracy measures,
uncertainty quantification, and decision thresholds.

e operational_requirements: Provides system requirements and hardware recommendations to
help users prepare for deploying or fine-tuning the model in their computing environment.

o cpu: The recommended minimum specification for the CPU. This is critical for
overall system performance and serves as the primary compute resource when no
GPU is used.

o ram: The recommended minimum system RAM. This memory is required to hold
the operating system, host application, model dependencies, and the model itself
before being loaded into specialized hardware.

o gpu: Specify whether a GPU is required, as well as its minimum specifications.

o notes: Provides additional qualitative context or performance tips.

e caveats and recommendations: Presents caveats and recommendations by assessing
potential societal impacts, fairness considerations, and bias mitigation strategies, while also
outlining behavioral limitations related to “Not Safe For Work” (NSFW) content such as
explicit material, violence, or hate speech.

E-commerce Example: The Model Card of the ML component of sentiment analysis would be:

ModelCard= {
model details: {

82 Computer Science & Information Technology (CS & IT)

model_id: “tc_001”,
version: 2,
developed_by: “Hugging Face”,
model type: Text Classification,
license: Apache-2.0,
s
intended_use: {
primary_use: “The model can be used for topic classification”,
out-of-scope_use: “The model was not trained to be factual or true
representations of people”
s
model_usage: {
api_endpoint: https://plapplication.com/sentimentAnalisysl/predict,
deployment_guidance: http://huggingface.co/distilbert/distilbert-base-
uncased
s
spl_reusability profile: {
supported_domains: [“Movies”, “Series”, “Music”, “Products”],
integration_complexity: “Low”
¥
performance_metrics: [“Accuracy”: 91.3],
operational_requirements: {
cpu: 2+ CPU Cores, ram: 4GB, gpu: “Optional”,
notes: “Although the GPU is optional, its inclusion can significantly
improve performance for some scenarios”
¥
caveats_recommendations: [“The model 1is vulnerable +to producing biased
predictions affecting underrepresented groups. For instance, when evaluating
sentences such as “This film was filmed in COUNTRY,” the model assigns
drastically different probabilities to the positive label based on the country
mentioned (e.g., a 0.89 probability for France versus 0.08 for Afghanistan).”]

}

This information empowers the SPL architect to make a reasoned configuration decision: either
accept a component with known limitations and plan for specific monitoring, or select an
alternative component whose characteristics are better aligned with the product being built. In
addition, the systematic adoption of Model Cards represents a crucial step toward responsible ML
deployment by enhancing transparency around model behavior and operational boundaries. By
standardizing both technical and ethical documentation practices, Model Cards enable
stakeholders to evaluate and compare models using multidimensional criteria that extend beyond
traditional performance metrics to encompass fairness, inclusivity, and equity considerations.

Recommendation 4: Implement Systematic ML Component Monitoring.

Given the inherently non-deterministic and data-dependent behavior of ML components, SPL
engineers must design robust monitoring mechanisms capable of detecting performance
degradation [22]. Operating at runtime, these mechanisms should continuously observe both
model performance and business-critical signals, while being seamlessly integrated with drift
detection and alerting processes to ensure resilient and self-adaptive system behavior.

Practical Implementation: To effectively implement this recommendation, SPL engineers
should define a dedicated ML monitoring component for each domain component that
incorporates ML capabilities. This component must specify the following attributes:

https://www.zotero.org/google-docs/?CPhGiK

Computer Science & Information Technology (CS & IT) 83

MLComponentMonitor: {
component_id: String,
monitoring_configuration: {
metrics: Set[MonitoringMetric],
frequency: TemporalSpecification,
data_collection_strategy: DataCollectionApproach,
baseline_establishment: BaselineDefinition

}s

threshold_definitions: {
performance_thresholds: Map[Metric, ThresholdSpec],
drift_detection_thresholds: Map[DriftType, ThresholdSpec],
business_impact_thresholds: Map[BusinessMetric, ThresholdSpec]

}s

intervention_strategies: {
alert_procedures: AlertSpecification

}
}

The specification defines the structural requirements needed to establish consistent, interpretable,
and actionable monitoring configurations. The key attributes of the monitoring specification are
detailed below:

e component_id: Unique identifier of the monitored ML component. Used to record events,
logs, and monitoring metrics.

e monitoring_configuration: Parameters that define what, how, and when monitoring is
performed.

o

metrics: Set of key metrics for monitoring model performance. These metrics
depend on the type of ML model (e.g., classification [F1Score, AUC, Accuracy],
regression [RMSE, MAE], recommendation [Precision, Recall)).

frequency: Frequency at which the model's status is evaluated. It may depend on the
traffic rate or importance of the model (e.g., Hourly: useful for high-volume
production; Daily: balanced for general use; EveryBatch: suitable for batch systems;
RealTime: when online processing is used).

data_collection_strategy: Method for collecting input data (for comparison and
evaluation), predictions, and actual labels (if available) (e.g., Streaminglogs:
continuous online capture. (e.g., BatchLogs: data collected in intervals;
ShadowDeployment: evaluates without exposing to the user; MiddlewareCapture:
collects from a proxy or wrapper).

baseline_establishment: Reference against which current metrics are compared. It
can be a previous version or a historical average. (e.g., StaticThresholds: defined by
experts; PrelaunchModelBaseline: based on offline evaluation;
Rolling7DayAverage: adaptive and dynamic).

o threshold_definitions: Set of thresholds that trigger alerts.

performance_thresholds: Thresholds over key model quality metrics.
drift_detection_thresholds: Statistical thresholds for detecting changes in the
distribution (data drift, concept drift, prediction drift, etc).
business_impact_thresholds: Business metrics that may be impacted by the model,
such as CTR, revenue, and churn.

84 Computer Science & Information Technology (CS & IT)

e intervention_strategies: Defines actions to take if an anomaly or system degradation is
detected.

o alert_procedures: Specification of the channel and form of alert to the responsible
team (e.g., SendMailToMLTeam, PushToPagerDuty).

E-commerce Example: In an online retail SPL, the sentiment analysis component can be
continuously monitored to detect potential performance degradation, drift, or business impact
issues. The following configuration illustrates how a monitoring component can be defined to
track relevant metrics and trigger intervention strategies when necessary.

MLComponentMonitor: {
component_id: “tc_001”,
monitoring configuration: {
metrics: [“Precision”, “Recall”],
frequency: “Daily”,
data_collection_strategy: “StreaminglLogs”,
baseline_establishment: “Rolling7DayAverage”
¥
threshold_definitions: {
performance_thresholds: {
Precision: {min: ©.94, critical: 0.89, window: “24h”},
Recall: {min: ©.87, critical: 0.82, window: “24h”}
¥
drift_detection_thresholds: {
DataDrift: {
metric: “KL-Divergence”, warning: 0.04, critical: 0.08, window: “7d”
¥
ConceptDrift: {
metric: “JS-Divergence”, warning: 0.03, critical: 0.07, window: “7d”
}
¥

business_impact_thresholds: {
misclassified_negative_reviews: {
warning: 200, critical: 400, window: “24h”}

}
}s
intervention_strategies: {
alert_procedures: {
warning_level: “SendMailToMLTeam”, critical_level: “PushToPagerDuty”

}
}
}

Recommendation 5: Implement ML Component Orchestration.

Effective orchestration—the coordinated management and execution of ML components—in
dynamic product configurations requires an infrastructure that enables flexible model
composition, state management between runs, and contextual integration. For this, we
recommend:

e Use of modular ML pipelines, which allow integrating, monitoring, and scaling ML
components in distributed environments.

Computer Science & Information Technology (CS & IT) 85

e Intelligent orchestrators that dynamically adjust component activation according to
contextual signals, business rules, or environmental conditions. Techniques such as
context-aware scheduling can be applied.

e Functional decoupling of components, promoting a microservices-based architecture to
facilitate model replacement, enhancement, or re-trainability without altering the overall
configuration.

e Instrumentation for traceability and versioning: employ systems that record training data,
parameters, results, and decisions made by each component to facilitate audits and
optimization.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a
dedicated orchestration layer that governs the lifecycle, dependencies, and interactions of ML
components. This orchestration must support declarative workflows, dynamic adaptation policies,
and seamless integration with monitoring systems. The following schema defines a formal
representation of such an orchestration-aware product configuration:

ProductConfiguration = {

configuration_id: String,

feature_binding: Map[Feature, ComponentBinding],

workflow_specification: {
component_graph: DirectedAcyclicGraph[Component, DataFlow],
execution_constraints: Set[Constraint],
quality objectives: Map[QualityAttribute, Objective],
resource_allocations: Map[Component, ResourceAllocation]

}, adaptation_policies: {
monitoring_configuration: MonitoringPolicy,
replacement_triggers: Set[ReplacementTrigger],
quality_negotiation: QualityNegotiationStrategy,
performance_optimization: OptimizationPolicy

}, validation_requirements: {
functional_tests: Set[TestSpecification],
performance_benchmarks: Set[BenchmarkTest],
quality assertions: Set[QualityAssertion],
compliance_checks: Set[ComplianceCheck]

}

}

This schema defines the structural and behavioral dimensions of a configurable product instance.
Its modular design supports precise, verifiable, and adaptive configuration management across a
wide range of variability. The key components are described below:

e configuration_id: A unique identifier assigned to the product configuration instance.

e feature binding: A mapping between product features and their corresponding component
implementations. This allows resolution of variability by specifying which components realize
which features in a given configuration.

o workflow_specification: Captures the operational logic of the product.

o component_graph: A directed acyclic graph (DAG) that defines the data flow and
execution dependencies among software and ML components.

o execution_constraints: A set of logical or resource-based constraints that govern
component execution (e.g., timing, sequencing).

86 Computer Science & Information Technology (CS & IT)

o quality_objectives: Specifies target values for quality attributes, such as accuracy,
latency, and energy consumption.

o resource_allocations: Assigns computational resources (e.g., CPU, memory, GPU)
to each component to ensure operational feasibility.

e adaptation_policies: Define the runtime behavior of the product under varying operational
conditions:

o monitoring_configuration: Indicates how system performance is monitored during
execution.

o replacement_triggers: Defines conditions under which components should be
replaced.

o quality_negotiation: Specifies strategies for balancing competing quality attributes
under constraints.

o performance_optimization: Policies for dynamically optimizing performance
based on monitored feedback.

e validation_requirements: Ensures that configured products meet their intended goals and
regulatory requirements:

o functional _tests: Set of specifications for functional correctness.

o performance_benchmarks: Benchmark tests that measure system performance
under predefined workloads.

o quality assertions: Verifiable and testable statements specifying the quality
attributes that a configured product is required to meet.

o compliance checks: Formal checks to ensure adherence to standards, certifications,
or domain-specific regulations.

E-commerce Example: In an online retail SPL, a dynamic product configuration may include
ML components for personalized recommendations, fraud detection, and sentiment analysis. The
component bindings for each product instance can vary significantly based on factors such as the
target audience, expected transaction volume, and specific regional compliance mandates.

Recommendation 6: Implement Systematic ML Component Replacement Strategy.

During product configuration, an automated strategy should be established to update or replace
ML components when performance degradation is detected. This requires the definition of an
intervention mechanism that is triggered when the performance metrics of an ML component fall
below predefined thresholds. The mechanism must support replacing the underperforming
component with one of several alternatives: another ML model, a traditional software component,
or, if appropriate, the temporary exclusion of the affected functionality from the system's
execution flow.

Practical Implementation: To operationalize this recommendation, SPL engineers must define a
replacement strategy component associated with each ML-enabled domain component. This
component is responsible for responding to degradation alerts issued by the monitoring system
and executing the actions defined in the replacement policy. The structure of the replacement
strategy component can be formally specified as follows:

MLComponentReplacementStrategy = {
component_id: String,
replacement_hierarchy: {

Computer Science & Information Technology (CS & IT) 87

primary_alternative: ComponentReference,
secondary_alternatives: List[ComponentReference],
fallback_strategy: FallbackApproach

}
}

This specification defines the structure required to enable resilient and automated replacement
mechanisms for ML components. The attributes are described below:

e component_id: Unique identifier of the ML component.
e replacement_hierarchy: Hierarchy of alternatives in case of model degradation.

o primary_alternative: Component directly prepared to take over the current ML
model.

o secondary_alternatives: List of additional (less optimal) alternatives.

o fallback_strategy: Emergency strategy to continue providing service with reduced
capabilities (e.g., AllowAll, ConservativeRuleBasedBlocking, RuleBasedBlocking,
ManualReview, GracefulShutdown).

E-commerce Example: In an online retail SPL, a replacement strategy can be defined for the
sentiment analysis component using both traditional and ML-based alternative models. To ensure
system resilience, if no alternative component meets the required quality thresholds, a predefined
fallback strategy is triggered, such as temporarily deactivating the sentiment analysis feature from
the process flow.

MLComponentReplacementStrategy: {
component_id: “tc_001”,
replacement_hierarchy: {
primary_alternative: {
id: “cardiffnlp/twitter-roberta-base-sentiment-latest”,
type: “ml_model”, reason: “Most compatible fine-tuned model”
¥
secondary_alternatives: [{
id: “distilbert-base-uncased-sentiment”,
type: “ml_model”,
reason: “Lightweight model for fallback”
b A
id: “rule_based_sentiment_classifier_v1”,
type: “software_component”,
reason: “Legacy rules-based classifier for conservative estimation”

H
fallback_strategy: {type: “RuleBasedBlocking” }

}}
3.4. Dynamic Product Configuration

Incorporating ML components during product configuration adds substantial depth to the
variability and intelligence of SPL. However, configuration decisions must balance multiple
competing objectives, such as performance, cost, and reliability, often under shifting operational
conditions.

88 Computer Science & Information Technology (CS & IT)

Recommendation 7: Establish Multi-Objective Configuration Optimization.

To enhance the adaptability and performance of ML-enabled SPLs, it is essential to establish
multi-objective configuration optimization mechanisms. This approach enables organizations to
simultaneously evaluate and balance competing concerns, including accuracy, latency, resource
consumption, interpretability, and ethical constraints. By leveraging advanced optimization
techniques such as Pareto efficiency or evolutionary algorithms, teams can generate configuration
sets that meet diverse stakeholder requirements without compromising system integrity.
Implementing multi-objective optimization also promotes continuous improvement, enabling
dynamic reconfiguration as environments evolve or model behaviors drift over time.

Practical Implementation: To operationalize multi-objective configuration optimization, it is
first necessary to formalize a set of competing objectives, such as model accuracy, latency,
resource utilization, interpretability, and compliance with ethical standards, into quantifiable
metrics. The configuration space should encompass both system-level parameters and ML-
specific settings, including hyperparameters and pipeline structures. The exploration of trade-offs
across this space can be conducted using optimization techniques such as evolutionary algorithms
(e.g., NSGA-II), Bayesian multi-objective methods, or Pareto-based analysis. Configurations are
evaluated through simulation or benchmarking, producing Pareto-optimal sets that offer balanced
solutions. These sets can be visualized or presented through decision-support interfaces to
facilitate selection based on dynamic stakeholder priorities and preferences. Finally, integrating
the optimization process within CI/CD pipelines ensures continuous reconfiguration in response
to model drift or changing operational constraints.

3.5. Product Derivation and Validation

This phase considers the methodology for deriving specific products from a configurable
architecture, detailing how optimization criteria and stakeholder requirements guide the selection
process. It also describes the validation mechanisms employed to ensure that the resulting
products meet expected standards of functionality, performance, and reliability prior to
deployment.

Recommendation 8: Implement validation and testing strategies specifically designed for
ML-enhanced products.

Validation and testing strategies should incorporate both functional and non-functional
assessments, including unit and integration testing, model performance evaluation across diverse
datasets, fairness audits, and resource utilization benchmarking. In addition, these strategies
should extend to include ML-specific validation approaches, such as statistical performance
validation, bias detection testing, adversarial robustness assessment, and long-term stability
verification. It must also support automated validation pipelines integrated into CI/CD
workflows, enabling continuous monitoring and the rapid detection of anomalies, drift, or
compliance violations.

Practical Implementation: To implement this recommendation, the first step is to configure the
derivation. This involves selecting binary features and determining the quality distributions for
ML components. It is essential to establish optimization criteria and stakeholder requirements to
guide the automated selection of ML components. This ensures that each product is customized
to meet its use case requirements. Once a product is derived, the unit tests, integration tests, and
non-functional requirement tests must be executed. The process is further enhanced with ML-
specific validations such as bias detection, adversarial robustness assessments, and long-term
stability verification to address the unique vulnerabilities of machine learning models. The

Computer Science & Information Technology (CS & IT) 89

overall goal is to ensure that the derived products meet all expected standards of functionality,
performance, and reliability prior to deployment. Finally, to ensure long-term reliability, all of
these validation strategies are integrated into automated CI/CD pipelines.

To conclude, the proposed framework's recommendations, which encompass the entire lifecycle
of ML-enhanced SPLs, have been partially implemented within the VariaMos web tool. An
excerpt from this implementation is illustrated in Figure 2. These recommendations are currently
being applied to the development of two proof-of-concept SPL—an e-commerce SPL and a text
editor SPLs—enabling us to validate the framework's practical effectiveness empirically.

Problem space Solution space
Domain analysis < % Domain implementation
implementation
Domain ’ Sentiment analysis
5 5 components assets
Feature model with attributes
\+@ Sentiment analysis Sentiment analysis
e cardiffnip ™ cardifinlp model card
sangfory Maring - Tz & Ny
0 ® V) Sentiment analysis Sentiment analysis
_administration ¥ |_purchases T distilbert ¥ distilbert model card
20
= Feature model with attributes
] Mandatory
3 ‘ V) fangtt Manty Sentiment analysis G
= usess Rule based
a shopping cart
s
E_ thna L | Domain components model
£ o—@
g go] o,)
= v
(]
7. N Sentiment analysis Sentiment analysis monitor Sentiment analysis replacement
a
Sentiment analysis cardiffnip Sentiment analysis cardiffnip Sentiment analysis cardiffnip
Sentiment analysis distilbert Sentiment analysis distilbert Sentiment analysis distilbert
Sentiment analysis Rule based| | Sentiment analysis Rule based Iysss Rule based
Cuslémlze Proilaed Proimed Alenévent AlertEvent

Figure 2. Partial implementation of ML-enhanced SPL Framework in VariaMos Tool

4. RELATED WORK

The intersection of SPL engineering and ML represents an emerging research area that builds
upon established foundations in both domains. Traditional SPL engineering, formalized through
seminal work by Clements, Mazo, and Pohl, respectively [7], [18], [19], has established
comprehensive methodologies for systematic software reuse through domain engineering and
application engineering processes. The Feature-Oriented Domain Analysis (FODA) approach
introduced by Kang [8] and subsequent advances in variability management [7], [23] provide
robust frameworks for managing product family complexity. However, these approaches
fundamentally assume component determinism and behavioral predictability, creating significant
gaps when dealing with probabilistic ML components.

Parallel developments in ML engineering have addressed the unique challenges of ML-enabled
systems through comprehensive frameworks for technical debt management [22], engineering
practices [24], and quality assurance approaches [25]. The emergence of systematic
documentation practices, as exemplified by Model Cards [20] and behavioral testing frameworks

https://www.zotero.org/google-docs/?AOcDKh
https://www.zotero.org/google-docs/?rGSotw
https://www.zotero.org/google-docs/?SkkSTg
https://www.zotero.org/google-docs/?byWC86
https://www.zotero.org/google-docs/?ZGlkep
https://www.zotero.org/google-docs/?JypEQ2
https://www.zotero.org/google-docs/?5LboIR

90 Computer Science & Information Technology (CS & IT)

[26], represents substantial progress in ML system engineering. Recent systematic reviews by
Martinez-Fernandez [4] and empirical studies by Nahar and Ribeiro, respectively [5], [26] have
documented collaboration challenges and the complexity of requirements engineering specific to
ML systems. Nevertheless, this body of work predominantly focuses on standalone ML systems
or monolithic application contexts, with limited consideration of systematic reuse frameworks.

Architectural approaches for ML integration have evolved toward microservices-based patterns
[27] and adaptive system frameworks [28], [29], while dynamic SPL research [7], [30], [31] has
explored evolution and adaptation in product line contexts. However, existing approaches have
not systematically addressed the unique requirements of ML components within SPL
environments, including cross-product consistency management, shared component instance
coordination, and the specific adaptation patterns required for probabilistic components subject to
performance degradation and concept drift.

Current literature reveals critical limitations when applied to ML-enhanced SPL contexts.
Traditional SPL methodologies assume behavioral predictability, which is incompatible with the
probabilistic nature of ML components. In contrast, ML engineering approaches lack systematic
frameworks for ensuring cross-product consistency and shared component management. Existing
documentation frameworks do not provide reusability assessment mechanisms required for SPL
component selection, and current adaptive system approaches do not address ML-specific
degradation patterns and monitoring requirements.

This work addresses these fundamental gaps by providing the first comprehensive framework
specifically designed to integrate ML components within SPLs, while preserving the benefits of
systematic reuse. Unlike existing approaches that treat ML components as standalone services or
apply ad-hoc integration patterns, our framework systematically extends established SPL
methodologies with ML-specific concepts, including probabilistic feature modeling, degradation-
aware component characterization, adaptive architectural patterns, and dynamic configuration
optimization. The framework proposed in this paper provides concrete specifications, including
formal orchestration languages (MCOSL), systematic monitoring frameworks, and multi-
objective optimization approaches, enabling practitioners to maintain an engineering discipline
and leverage systematic reuse advantages while effectively utilizing ML capabilities across
products derived from product lines.

5. CONCLUSIONS AND FUTURE WORK

The integration of ML components into SPLs presents new challenges that traditional modeling
techniques are not equipped to address. By addressing the variability and uncertainty inherent in
ML components, this approach lays the groundwork for bridging the gap between SPLE and Al-
based software development.

In this paper, we propose a framework that supports the inclusion of ML components in SPLs,
facilitating systematic reuse, customization, and evolution. Our contribution consists of a
specification-oriented approach that guides the integration of ML-based functionalities into SPLs,
along with a set of recommendations and practical implementations. The framework is structured
around five interconnected phases that encompass the entire lifecycle of ML-enhanced SPLs:
ML-aware domain analysis, Adaptive architecture design, ML-aware domain implementation,
Dynamic product configuration, and Product derivation and validation of its resulting products.

The proposed framework has been partially implemented in the VariaMos tool
(https://variamos.com/). This web-based tool utilizes microservices to enable the specification of
product lines through a multi-language modeling approach and the reasoning on these products

https://www.zotero.org/google-docs/?k5ARxi
https://www.zotero.org/google-docs/?j0Bq52
https://www.zotero.org/google-docs/?NU9seB
https://www.zotero.org/google-docs/?zhistl
https://www.zotero.org/google-docs/?VujQy3
https://www.zotero.org/google-docs/?lMoBrQ

Computer Science & Information Technology (CS & IT) 91

and product lines. Initial empirical findings, obtained by applying these recommendations to two
distinct SPL—an e-commerce SPL and a text editor SPL—suggest that this comprehensive
documentation approach facilitates informed decision-making across the entire ML component
lifecycle. This process spans from initial model selection to deployment and ongoing monitoring.
Furthermore, Model Cards support regulatory compliance and risk management by providing
auditable documentation of model characteristics and decision rationale, which contributes to the
development of more accountable and trustworthy ML systems. Although these preliminary
results are promising, further experimentation and implementation improvements are needed to
fully assess the actual value and impact of this proposal in production environments. Future work
involves evaluating the proposed strategy in real-world industrial domains, including a detailed
cost-benefit analysis, extending the capabilities of the VariaMos tool, and exploring its
applicability to Al components beyond ML. Furthermore, in the educational context, we plan to
move beyond the individual courses on “Software Engineering for ML-enabled Systems” and
“Software Product Line Engineering” currently offered at each institution by developing a joint
course in which students collaboratively design SPLs to address real-world problems.

ACKNOWLEDGMENTS

This research was supported by the University of Antioquia, Colombia, through the Committee
for the development of research — CODI (PRV2022-52951), and the ENSTA, France.

REFERENCES

[1] N. Ahmed y N. Shakoor, «Advancing agriculture through IoT, Big Data, and Al: A review of smart
technologies enabling sustainability», Smart Agricultural Technology, vol. 10, p. 100848, mar.
2025, doi: 10.1016/j.atech.2025.100848.

[2] G. Anthes, «Artificial intelligence poised to ride a new wave», Commun. ACM, vol. 60, n.° 7, pp.
19-21, jun. 2017, doi: 10.1145/3088342.

[3] G. Giray, «A software engineering perspective on engineering machine learning systems: State of
the art and challenges», Journal of Systems and Software, vol. 180, p. 111031, oct. 2021, doi:
10.1016/j.jss.2021.111031.

[4] S. Martinez-Fernandez et al., «Software Engineering for Al-Based Systems: A Survey», ACM
Trans. Softw. Eng. Methodol., vol. 31, n.o 2, pp. 1-59, abr. 2022, doi: 10.1145/3487043.

[5] N. Nahar, S. Zhou, G. Lewis, y C. Késtner, «Collaboration Challenges in Building ML-Enabled
Systems: Communication, Documentation, Engineering, and Process», en 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE), may 2022, pp. 413-425. doi:
10.1145/3510003.35102009.

[6] N. Nahar, H. Zhang, G. Lewis, S. Zhou, y C. Késtner, «A Meta-Summary of Challenges in Building
Products with ML Components — Collecting Experiences from 4758+ Practitioners», en 2023
IEEE/ACM 2nd International Conference on Al Engineering — Software Engineering for Al
(CAIN), may 2023, pp. 171-183. doi: 10.1109/CAIN58948.2023.00034.

[71 R. Mazo, Guia para la adopcion industrial de lineas de productos de software. 2018. Accedido: 19
de marzo de 2024. [En linea]. Disponible en: https://www.digitaliapublishing.com/a/67651/guia-
para-la-adopcion-industrial-de-lineas-de-productos-de-software

[8] K. Kang, «Feature-Oriented Domain Analysis (FODA) Feasibility Study». Accedido: 4 de mayo de
2024. [En linea]. Disponible en: https://insights.sei.cmu.edu/library/feature-oriented-domain-
analysis-foda-feasibility-study/

[9] L. Dounas, R. Mazo, C. Salinesi, y O. El Beqqali, «Continuous monitoring of adaptive e-learning
systems requirements», en 2015 IEEE/ACS 12th International Conference of Computer Systems
and Applications (AICCSA), nov. 2015, pp. 1-8. doi: 10.1109/AICCSA.2015.7507210.

[10] A. Achtaich, N. Souissi, C. Salinesi, R. Mazo, y O. Roudies, «A Constraint-based Approach to Deal
with Self-Adaptation: The Case of Smart Irrigation Systems», IJACSA, vol. 10, n.o 7, 2019, doi:
10.14569/1JACSA.2019.0100727.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

92
[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Computer Science & Information Technology (CS & IT)

A. Achtaich, N. Souissi, R. Mazo, O. Roudies, y C. Salinesi, «A DSPL Design Framework for
SASs: A Smart Building Example», EAI Endorsed Transactions on Smart Cities, vol. 3, n.o 8, jun.
2018, Accedido: 18 de agosto de 2025. [En linea]. Disponible en: https://eudl.eu/doi/10.4108/eai.26-
6-2018.154829

G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, y D. Diaz, «Dynamic adaptation of service
compositions with variability models», Journal of Systems and Software, vol. 91, pp. 24-47, may
2014, doi: 10.1016/j.js5.2013.06.034.

C. Dumitrescu, R. Mazo, C. Salinesi, y A. Dauron, «Bridging the gap between product lines and
systems engineering: an experience in variability management for automotive model based systems
engineering», en Proceedings of the 17th International Software Product Line Conference, en SPLC
’13. New York, NY, USA: Association for Computing Machinery, ago. 2013, pp. 254-263. doi:
10.1145/2491627.2491655.

R. Mazo, S. Assar, C. Salinesi, y N. Ben Hassen, «Using software product line to improve ERP
engineering : literature review and analysis», Latin-American Journal of Computing, vol. 1, n.o 1, p.
., oct. 2014.

V. Indykov, «Component-based Approach to Software Engineering of Machine Learning-enabled
Systems», en Proceedings of the IEEE/ACM 3rd International Conference on Al Engineering -
Software Engineering for Al, en CAIN ’24. New York, NY, USA: Association for Computing
Machinery, jun. 2024, pp. 250-252. doi: 10.1145/3644815.3644976.

Y. Shyamkumar Khatri, «Estimation Of Carbon Sequestration Yerla Project - a Hugging Face Space
by Yasssh». Accedido: 18 de agosto de 2025. [En linea]. Disponible en:
https://huggingface.co/spaces/Yasssh/Estimation_of Carbon_Sequestration Yerla Project Nagpur
Dandge, «Forcasting - a Hugging Face Space by Prathmesh16». Accedido: 18 de agosto de 2025.
[En linea]. Disponible en: https://huggingface.co/spaces/Prathmesh16/forcasting

P. Clements y L. M. Northrop, Software Product Lines: Practices and Patterns. Boston, 2001.

K. Pohl, G. Bockle, y F. Van Der Linden, Software Product Line Engineering. Berlin, Heidelberg:
Springer, 2005. doi: 10.1007/3-540-28901-1.

M. Mitchell et al., «Model Cards for Model Reporting», en Proceedings of the Conference on
Fairness, Accountability, and Transparency, en FAT* *19. New York, NY, USA: Association for
Computing Machinery, ene. 2019, pp. 220-229. doi: 10.1145/3287560.3287596.

T. R. Toma, B. Grewal, y C.-P. Bezemer, «Answering User Questions About Machine Learning
Models Through Standardized Model Cardsy», en 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), 2025, pp. 1488-1500. doi: 10.1109/ICSE55347.2025.00066.

D. Sculley et al., «Hidden Technical Debt in Machine Learning Systems», en Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2015. doi/10.5555/2969442.2969519

C. Kastner, S. Apel, y M. Kuhlemann, «Granularity in software product lines», en Proceedings of
the 30th international conference on Software engineering, en ICSE ’08. New York, NY, USA:
Association for Computing Machinery, may 2008, pp. 311-320. doi: 10.1145/1368088.1368131.

S. Amershi etal.,, «Software Engineering for Machine Learning: A Case Study», en 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), Montreal, QC, Canada: IEEE, may 2019, pp. 291-300. doi: 10.1109/ICSE-
SEIP.2019.00042.

E. Breck, S. Cai, E. Nielsen, M. Salib, y D. Sculley, «The ML test score: A rubric for ML
production readiness and technical debt reduction», en 2017 IEEE International Conference on Big
Data (Big Data), dic. 2017, pp. 1123-1132. doi: 10.1109/BigData.2017.8258038.

M. T. Ribeiro, T. Wu, C. Guestrin, y S. Singh, «Beyond Accuracy: Behavioral Testing of NLP
Models with CheckList», en Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, y J. Tetreault, Eds., Online:
Association for Computational Linguistics, jul. 2020, pp. 4902-4912. doi: 10.18653/v1/2020.acl-
main.442.

S. Newman, «Building Microservices», O’Reilly Online Learning. Accedido: 2 de agosto de 2025.
Disponible en: https://www.oreilly.com/library/view/building-microservices/9781491950340/

G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, y D. Diaz, «Dynamic adaptation of service
compositions with variability models», Journal of Systems and Software, vol. 91, pp. 24-47, may
2014, doi: 10.1016/j.jss.2013.06.034.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

Computer Science & Information Technology (CS & IT) 93

[29] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, y P. Steenkiste, «Rainbow: architecture-based
self-adaptation with reusable infrastructurey», Computer, vol. 37, n.o 10, pp. 46-54, oct. 2004, doi:
10.1109/MC.2004.175.

[30] S. Hallsteinsen, M. Hinchey, S. Park, y K. Schmid, «Dynamic Software Product Lines», Computer,
vol. 41, n.o 4, pp. 93-95, abr. 2008, doi: 10.1109/MC.2008.123.

[31] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, y D. Hughes, «Constraint Programming as a Means to
Manage Configurations in Self-Adaptive Systems», Special Issue in IEEE Computer Dynamic
Software Product Lines, pp. 1-12, dic. 2012.

AUTHORS

Luz-Viviana Cobaleda is an Associate Professor at the University of Antioquia,
Colombia. She received her Ph.D. in Electronic Engineering with an emphasis on
Software Engineering, her Master’s degree in Engineering, and her B.Sc. in Systems
Engineering, all from the University of Antioquia, as well as a Specialization in
Software Engineering from EAFIT University, Colombia.Her research interests
include software engineering for AI/ML-enabled systems (SE4Al), as well as
software engineering methods and techniques—such as model-driven development, \
software design and specification, and adaptive and personalized systems—and requirements engineering.
She has published papers in international conferences and journals and actively participates in collaborative
research projects in software engineering, including adaptive and personalized software systems, at the
University of Antioquia.

Julian Carvajal is a Colombian software engineer in training and a Systems
Engineering student at the University of Antioquia (Colombia). He has professional
experience as a software developer, with a particular focus on building educational
video games for preschool children and contributing to research-driven software
projects. He has also collaborated in the VariaMos project, developing a tool to help
users define the graphical representation of modeling languages. He is currently
working on SignAl UdeA, an initiative that leverages artificial intelligence to facilitate
communication between deaf and hearing people through the recognition of
Colombian Sign Language (LSC). His research interests include software engineering for artificial
intelligence (SE4Al), particularly the integration of Al components into software systems.

Paola Vallejo is a Systems Engineer graduated from Universidad EAFIT in 2012. She
got her Master degree (Human Computer Centered Systems) at Ecole Nationale
d’Ingénieurs de Brest - France in 2012. She received the Ph. D. degree in Computer
Science from Université de Bretagne Occidentale - France in 2015. She is currently a
full professor at Universidad EAFIT. She has also collaborated in the VariaMos
working group. Her research interests include the reuse of software components,
model-driven engineering, requirements engineering, software architecture, and
human—computer interactions.

Andrés Orlando Lépez Henao is a Colombian systems engineer. He graduated in
2013 with a degree in Systems Engineering from the University of Antioquia
(Colombia) and in 2018 obtained a Master’s in Engineering from EAFIT University
(Colombia). He is currently pursuing a joint Ph.D. in Sciences pour 1’ingénieur et le
numérique at the Ecole Nationale Supérieure de Techniques Avancées — ENSTA
(France) and in Electronic and Computer Engineering at the University of Antioquia
(Colombia). His research interests focus on software product lines, artificial
intelligence, and software engineering.

https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC
https://www.zotero.org/google-docs/?W1EacC

94 Computer Science & Information Technology (CS & IT)

Raiil Mazo is a Franco-Colombian engineer who received his Engineering degree in
Informatics from the University of Antioquia (Colombia) in 2005, and later earned an
M.S. in Information Systems, a Ph.D. in Computer Science, and the Habilitation a
Diriger des Recherches (HDR) from the University Panthéon-Sorbonne (France) in
2008, 2011, and 2018, respectively.He is currently a Full Professor at the Ecole
Nationale Supérieure de Techniques Avancées (ENSTA). Prior to this, he served as an
Associate Professor at Panthéon-Sorbonne University and worked as a software
developer and telecommunications engineer in small and medium-sized enterprises.
His research and teaching interests include model-driven engineering, requirements engineering, variability
management, software & systems architecture, and artificial reasoning. He leads the VariaMos working
group and tool, through which he has contributed to numerous national, European, and intercontinental
research initiatives.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

