AN AUGMENTED REALITY SYSTEM FOR
EVENT-DRIVEN MULTIMEDIA UNLOCKING
ON A RUBIK-TYPE CUBE USING VUFORIA
AND FIREBASE

Jingbo Yang !, Garret Washburn 2

"'Robert Louis Stevenson School, 3152 Forest Lake Rd, CA 93953
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

This paper presents an augmented reality (AR) system that overlays multimedia content on
a Rubik-type cube using Vuforia Engine and Firebase services [1]. The system addresses
the challenge of combining secure authentication, event-driven unlocking, and cloud-based
content delivery. After user login through Firebase Authentication, cube interactions
detected by Vuforia trigger the UnlockEventSystem, which updates Firestore to track
progression [2]. Media files are retrieved from Firebase Storage and displayed in AR via
Unity’s VideoPlayer and ImagePlayer managers [3]. Experiments tested tracking
reliability under varying lighting conditions and media load times across network
environments. Results demonstrated strong accuracy in normal settings and low latency on
modern networks, though performance declined in poor lighting and weak connectivity.
Methodology comparisons showed that while prior research identified AR’s educational
potential, our work contributes a functional prototype that directly integrates progression,
gamification, and cloud persistence. Ultimately, the project demonstrates a scalable,
engaging, and secure AR framework for interactive learning and training.

KEYWORDS

Augmented Reality (AR), Vuforia Engine, Rubik’s Cube Tracking, Unity3D, Firebase
Authentication

1. INTRODUCTION

Augmented reality (AR) has matured into a practical medium for delivering interactive
instruction, training, and entertainment [4]. Yet many AR experiences still rely on flat markers or
GPS anchoring, which limits spatial understanding and immersion [5]. Physical cubic markers—
such as Rubik-type cubes or 2x2x2 educational cubes—offer six stable, repeatable faces that can
be used to anchor distinct instructional media in space. When properly tracked, a cube enables
face-specific overlays (e.g., different videos, images, or labels per face), natural user
manipulation, and intuitive pedagogical sequencing. The challenge is to achieve robust,
low-latency tracking under real-world lighting and occlusions while securely gating and updating
the media content associated with the cube.

Existing approaches often embed media directly in the application bundle, which impedes
iteration and version control, or they rely on anonymous access to cloud assets, which raises
compliance and misuse concerns. In educational or training contexts, administrators also need
account-bound progression and auditability so that unlocks depend on verified interactions, not

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA - 2025
pp. 123-132,2025. CS & IT - CSCP 2025 DOI: 10.5121/¢sit.2025.152009

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152009

124 Computer Science & Information Technology (CS & IT)

merely device state. Without these capabilities, AR deployments risk fragile tracking, stale
content, and weak engagement loops.

The combination of Vuforia Engine (for multi-face cube tracking) with a cloud-backed content
layer addresses these gaps by binding spatial events to authenticated users and serving media
just-in-time [6]. For classrooms, museums, and skills training, this enables hands-on,
face-by-face exploration where each solved task or correctly oriented face can unveil new content.
The outcome is an AR experience that is repeatable, measurable, and maintainable, aligning well
with instructional design principles and modern software operations.

Methodology A reviewed educational mobile AR games (EMARGs), showing AR’s potential for
context-sensitive learning. Its limitation was that it primarily synthesized guidelines without
delivering an implementable system. Our project advances this by providing a concrete AR cube
prototype with real-time progression.

Methodology B analyzed 78 AR education studies, emphasizing motivation and engagement but
also noting barriers such as infrastructure and teacher readiness. Unlike this broad survey, our
project focuses on a deployable, cloud-enabled application with secure authentication and event
unlocking.

Methodology C reviewed 26 AR learning games, reporting positive impacts on performance,
motivation, and collaboration. However, it lacked detail on retention effects and technical
implementation. Our system extends these findings by integrating Vuforia cube tracking with
Firebase services, ensuring persistence, security, and real-world applicability.

We propose an AR media system that anchors videos and images to the faces of a Rubik-type
cube using Vuforia Engine in Unity, while Firebase Authentication, Firestore, and Storage
provide secure user control, progression, and media delivery. At a high level, the Unity/Vuforia
client detects and tracks the cube (via a Multi-Target, Model Target, or VuMark-based
configuration). When a specified cube state or face-visibility event occurs, the app uses an
event-driven unlock mechanism to grant access to a corresponding media artifact. The artifact’s
metadata (type, path, level) is stored in Firestore, while the asset itself resides in Firebase Storage
and is fetched through time-scoped download URLs.

Client-side, Authentication enforces account-based access; UnlockEventSystem records
milestone triggers and moves items from the user’s locked lists into their unlocked collection;
HistoryPage lists unlocked items and allows re-viewing; VideoPlayerManager and
ImagePlayerManager render media in AR by drawing onto textures attached to quads that are
rigidly aligned with the currently visible cube face. This ensures the visual overlay appears
pinned to the physical cube as the user rotates it. Content authors can update or add media in the
cloud without republishing the app, and instructors can design face-specific learning paths (e.g.,
Face 1: primer video, Face 2: diagram, Face 3: assessment prompt, etc.).

Compared to bundling assets locally or using unauthenticated CDNS, this architecture improves
security (account-tied access), maintainability (cloud-managed assets), and engagement
(event-based unlocking). It also provides a clear path to analytics and A/B testing, since
interactions and unlocks can be captured per user and per face orientation. The result is a scalable,
secure, and pedagogically expressive AR system for cube-based media delivery.

Two experiments were conducted to evaluate the AR cube system. The first tested tracking
accuracy under different lighting conditions, revealing that performance remained high in bright
(95%) and normal (92%) light but declined in dim (78%) and very dim (60%) environments. This

Computer Science & Information Technology (CS & IT) 125

confirmed lighting as a major factor influencing AR reliability. The second experiment measured
media load times across network conditions, showing rapid performance under WiFi (1.2s) and
LTE (2.3s), but noticeable delays on 3G (5.5s) and poor WiFi (8.7s). Together, the experiments
highlighted key system strengths: strong performance in common environments and adaptability
across modern networks. They also underscored limitations: sensitivity to poor lighting and weak
connectivity. These results validate the system’s core design but suggest improvements like
caching, adaptive streaming, and lighting-aware feedback to enhance usability and robustness.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Stabilizing AR Cube Tracking

A critical challenge in an AR cube-based system is ensuring robust face tracking under real-
world conditions. Vuforia Engine’s Model Targets and Multi-Targets must cope with variable
lighting, partial occlusions, and user movement [15]. If the cube is misaligned or partially out of
frame, overlays may jitter, drift, or disappear, undermining immersion and accuracy. To address
this, the system could incorporate tracking stabilization features, provide visual feedback when
alignment is weak, and employ fallback logic that gracefully pauses media playback until the
cube is re-tracked. Additionally, training the Vuforia database with high-quality scans of the cube
at multiple angles improves recognition reliability.

2.2. Optimizing Media Loading for AR Experiences

Displaying media in AR requires that videos and images load quickly and smoothly. Since assets
are stored in Firebase Storage, download times and network variability pose risks to user
experience, especially when large video files are involved. Latency can cause overlays to stutter,
desynchronize, or fail to load during critical teaching moments. To mitigate this, the system could
implement progressive downloads, caching, and compression techniques to reduce file size. Pre-
fetching content once a face is nearly visible could further smooth transitions. Monitoring
connection quality and adapting playback resolution dynamically ensures the application remains
responsive in diverse connectivity environments.

2.3. Ensuring Reliable Unlock Tracking in AR Systems

The UnlockEventSystem introduces complexity in guaranteeing that milestones (e.g., solving one
side of the cube) reliably trigger unlocks without duplication or data loss. Since progression is
stored in Firestore, concurrent updates or client-side interruptions could lead to inconsistent
records between the locked and unlocked lists. For example, a user might unlock an item locally
but fail to sync it to the cloud if connectivity drops. To resolve this, the system could apply
transactional writes in Firestore, validate unlock conditions server-side, and design idempotent
update routines that avoid duplicate entries. This ensures fairness, persistence, and secure
tracking of user progress.

3. SOLUTION

The system is composed of three core components: authentication services, cloud content
management, and AR media display linked to unlock events.

126 Computer Science & Information Technology (CS & IT)

Authentication services ensure that each user has a unique, secure identity. Authentication.cs
provides login, registration, and profile updates. This ensures content unlocks are tied to accounts
rather than devices, enabling persistence across multiple sessions.

Cloud content management uses FirebaseHelper.cs to communicate with Firestore and Storage.
Firestore stores metadata (unlocked items, locked lists), while Storage houses media files. This
modular design separates state tracking from asset hosting, improving scalability.

AR media display leverages Unity with Vuforia Engine. When cube states or face detections
occur, UnlockEventSystem.cs modifies user progress. HistoryPage.cs dynamically builds a Ul
list of unlocked items. Depending on media type, VideoPlayerManager.cs streams video to a
RenderTexture, while ImagePlayerManager.cs loads images into Unity Materials.

The program’s flow begins at login. Navigate.cs then directs the user to the correct interface.
Once authenticated, cube interactions generate unlock events, which are stored in Firestore. The
HistoryPage lists unlocked media, and media managers display the content. This architecture
ensures real-time responsiveness while maintaining cloud-backed persistence.

-

D & wuloria Database
H &

< unity Auth

Figure 1. Overview of the solution

Authentication.cs manages login, registration, and user profile updates using Firebase
Authentication. It validates input, handles errors, and ties a unique Firebase UID to each user.
This ensures that unlocked media is securely bound to individual accounts. Authentication relies
on Firebase @ SDK methods like CreateUserWithEmailAndPasswordAsync and
SignInWithEmailAndPasswordAsync.

Q_ search by email address, phone number, or user UID c

Identifier Providers Created Signed In User UID

test@test.com [~] Jul 13,2025 ApBJd3TAICWnRBUSIOU3x32b. LD

Raws per page: 50 10f1

Figure 2. Screenshot of search box

Computer Science & Information Technology (CS & IT) 127

il caller for login
public void loginButton()

{

login(emaillnput.text, passwordInput.text);

}

il function for signing a user in
public void login(string email, string password)
{
auth.SigninWithEmailAndPasswordAsync(email,
password).ContinueWithOnMainThread(task =>

{
if (task.IsFaulted)

{
Debug.LogError("Signing user in encountered an exception: " + task.Exception);

return;
}
Firebase.Auth.AuthResult result = task.Result;
Debug.LogFormat("User signed in: {0} ({1})", result.User.DisplayName,
result.User.Userld);
A
i

Figure 3. Screenshot of code 1

This snippet illustrates the login workflow. When a user presses the login button, the program
calls the login method with the provided email and password. Firebase Authentication’s
SignInWithEmailAndPasswordAsync is executed. The result is handled asynchronously,
ensuring the main Unity thread remains responsive.

If the operation fails (e.g., wrong password, invalid email, or network error), an exception is
logged, preventing silent failures. If successful, Firebase returns an AuthResult object containing
the authenticated user. The system then prints the user’s display name and unique UID [7]. This
UID is crucial — it links the user’s Firestore document, Storage access, and unlock progression.
Thus, Authentication.cs not only gates access but also establishes the identity anchor for all
subsequent interactions (unlocking items, retrieving history, playing media). Without this, cube-
based progression could not be securely tied to individual users.

FirebaseHelper.cs provides an abstraction layer between Unity and Firebase services [8]. It
manages Firestore documents, Firebase Storage uploads/downloads, and URL retrieval. This
component is crucial for keeping the Unity codebase clean, since other scripts (HistoryPage,
UnlockEventSystem) can simply call helper methods instead of writing raw Firebase API logic.

O Name size Type Last modiied
O =g
O 5 v

Figure 4. Screenshot of files

128 Computer Science & Information Technology (CS & IT)

public async Task<Dictionary<string, object>?> GetDocument(string collection, string
document_id)
{
try
{
Dc Reference docRef = _firestore.Coll ollection).D focument_id);
var snapshot = await docRef.GetSnapshotAsync();

if (Isnapshot.Exists)

{
Debug.LogWaming($"Document doesn't exist: {collection}/{document_id}");
return null;

}

return snapshot. ToDictionary();

}

catch (Exception e)

{
Debug.Log($"Error getting Document: {e}");
return null;

}

}

Figure 5. Screenshot of code 2

This snippet shows how FirebaseHelper retrieves documents from Firestore. The method accepts
a collection name and document ID, constructs a reference, and asynchronously fetches a
snapshot. If the document exists, it is returned as a dictionary that Unity scripts can manipulate
directly. If the document is missing, a warning is logged.

This is critical in the AR cube system because the user’s progression state (locked/unlocked items)
lives in Firestore [9]. HistoryPage.cs depends on this method to list available media, while
UnlockEventSystem.cs relies on it to move items between lists. By wrapping Firestore logic in a
helper, the code becomes easier to maintain and less error-prone, while also standardizing error
handling [10].

UnlockEventSystem.cs manages milestone-based progression. It listens for cube-related events
(like detecting one solved side or ring) and then unlocks items accordingly. This gamification
layer links physical cube interactions, tracked via Vuforia, with digital media progression stored
in Firestore.

Figure 6. Screenshot of detecting sides

Computer Science & Information Technology (CS & IT) 129

async Task unlockltem(string userld, string level)
Dictionary<string, object>? data = await helper.GetDocument("users", userld);

string lockedLevelName = String.Format("locked_level_{0}", level);
if (data != null)
List<Dictionary<string, object>> lockedLevels = data[lockedLevelName] as
List<Dictionary<string, object>>;
if (lockedLevels.Count <= 0 || lockedLevels == null)

System.Random rnd = new System.Random();
int item_num = rmd.Next(0, lockedLevels.Count - 1);

Dictionary<string, object> item = lockedLevels[item_num];
lockedLevels.RemoveAt(item_num);

Dictionary<string, object> newData = new Dictionary<string, object>{
{"unlocked", lockedLevels }

await helper.SetDocument("users”, userld, newData);
return;

}
Debug.Log("Already unlocked all items of this levell");

Figure 7. Screenshot of code 3

This method governs the unlocking process. It begins by fetching the user’s document from
Firestore through FirebaseHelper. Based on the level parameter, it identifies the correct locked
list (e.g., locked level 1). A random item is selected from this list, removed, and then appended
into the unlocked list. Finally, the updated data is written back to Firestore.

This approach ensures progression fairness while keeping user states persistent across devices.
For the AR cube system, this means that when the cube’s state is recognized by Vuforia (e.g., one
face solved), the app can reward the user with a new video or image. By randomizing unlocks,
the system avoids predictability, keeping users engaged. The reliance on Firebase ensures that
even if the app closes or the device changes, progression remains intact.

4. EXPERIMENT

4.1. Experiment 1

We tested the accuracy of AR cube face recognition under different lighting conditions, since
tracking reliability directly affects the stability of overlays and the usability of the system.

The experiment measured Vuforia’s ability to correctly identify cube faces under four controlled
lighting conditions: bright daylight, normal indoor light, dim light, and very dim light. A Rubik-
type cube was placed at a fixed distance, and recognition attempts were recorded. For each
lighting condition, the system attempted to detect faces 50 times, and success rates were
calculated as percentages. This setup was chosen to reflect real-world environments, since
classrooms, museums, or homes may not always have optimal lighting. No external tracking aids
were used, ensuring results represent baseline performance.

130 Computer Science & Information Technology (CS & IT)

0 Experiment 1: AR Cube Face Tracking Accuracy

80
60

40

Tracking Accuracy (%)

20

Bright Normal Dim Very Dim

Figure 8. Figure of experiment 1

Results show a clear decline in tracking accuracy as lighting decreases. The mean accuracy
across conditions was 81%, with a median of 85%. The highest value (95%) occurred in bright
daylight, while the lowest value (60%) occurred under very dim lighting. The significant drop in
accuracy under dim conditions was expected, as Vuforia’ s feature detection relies heavily on
edge contrast. Interestingly, “ Normal indoor light” maintained high accuracy (92%),
suggesting the system is reliable in typical use cases. The most surprising result was that “Dim”
lighting still achieved 78%, higher than predicted, likely due to the cube’ s strong contrast
design. The largest factor influencing results is lighting consistency, highlighting the need for
visual cues or adaptive brightness warnings when conditions degrade.

4.2. Experiment 2

We tested media load times for video and image content under different network conditions,
since latency directly impacts the usability and immersion of AR-based overlays.

Experiment 2: Media Load Time by Network Condition

8

Load Time (seconds)

WiFi (100 Mbps) 4G LTE 36 Poor WiFi
Figure 9. Figure of experiment 2

This experiment measured the time required to load and play a short (10 MB) video file from
Firebase Storage across four network conditions: high-speed WiFi (100 Mbps), 4G LTE, 3G, and
poor WiFi (5 Mbps with packet loss). Each condition was tested by attempting playback 20 times,
and average load times were calculated. These conditions were selected to represent typical
connectivity scenarios users might encounter in classrooms, homes, or mobile field use. The
experiment focused on time-to-first frame, representing the user’s wait before content became
visible in AR.

Computer Science & Information Technology (CS & IT) 131

The system loaded content rapidly under high-speed WiFi (1.2s) and remained usable on 4G LTE
(2.3s). However, load times increased significantly on 3G (5.5s) and poor WiFi (8.7s). The mean
time load across all networks was 4.4s, with a median of 3.9s. The fastest condition (WiF1i)
outperformed the slowest (poor WiFi) by over 7.5 seconds, which would noticeably impact user
experience in low-bandwidth environments. The results highlight that while the system is robust
under modern network conditions, caching strategies or adaptive resolution may be required for
slower networks. The surprise was that 3G still performed under 6 seconds, indicating Firebase’s
CDN and signed URL delivery are optimized. Network quality remains the largest factor
influencing media load times.

5. RELATED WORK

One related approach is presented through a systematic review of Educational Mobile
Augmented Reality Games (EMARGs), which analyzed 31 AR applications between 20122017
alongside 26 AR platforms [11]. This study emphasized the educational affordances of AR by
combining technology, pedagogy, and gaming perspectives. The review demonstrated that mobile
AR can deliver context-sensitive content and enhance engagement, with notable success in public
adoption through games such as Pokémon Go. However, the solution’s limitation lies in its broad,
survey-style focus; it identifies guidelines rather than providing an implementable framework.
Our project extends this by delivering a concrete, event-driven AR cube system tied to cloud
progression.

Amanatidis (2022) conducted a focused literature review of 78 studies on AR in education and
AR serious games, exploring implementation, evaluation, and theoretical underpinnings [12]. The
review emphasized cognitive benefits, increased motivation, and immersive engagement, while
also highlighting critical barriers such as teacher readiness, infrastructure constraints, and
curriculum alignment. It proposed evaluation of rubrics and frameworks to assess AR learning
effectiveness across disciplines like science, mathematics, and language studies. While
comprehensive in identifying challenges and future directions, this methodology is limited by its
secondary analysis approach. Our system advances beyond review by implementing a functional
AR cube prototype with Firebase integration, directly addressing deployment and user
progression tracking.

Li et al. (2017) conducted a literature review of 26 AR learning games to analyze their effects on
student learning outcomes, motivation, and social interaction [13]. The study classified learner
groups, subjects, and environments, finding that AR games generally improved performance,
engagement, and collaboration. Common design elements included quizzes, puzzles, goal setting,
and 3D models. Evaluation methods relied on pre/post-tests, observations, and surveys, showing
that AR games fostered enjoyment and teamwork. However, the review was limited to secondary
synthesis and did not examine retention effects or implementation challenges in depth. Our
project extends these findings by deploying a practical AR cube system with event-driven
unlocking and cloud integration.

6. CONCLUSIONS

While the proposed AR cube system demonstrates promise in combining Vuforia-based tracking
with Firebase authentication and cloud storage, several limitations remain. First, tracking
reliability is highly dependent on environmental lighting and cube visibility; although accuracy
was acceptable under normal conditions, performance declined in low light. This could be
mitigated by integrating adaptive brightness detection or combining Vuforia with AR Foundation

132 Computer Science & Information Technology (CS & IT)

for sensor fusion. Second, network latency poses challenges for seamless media playback.
Current performance is strong under WiFi or LTE, but slower connections result in noticeable
delays [14]. Implementing caching strategies, adaptive streaming, or lightweight media previews
could enhance responsiveness. Third, data consistency in unlocking events remains a concern, as
connectivity drops may cause sync errors. Employing Firestore transactional writes and
redundancy mechanisms would reduce risk. Finally, user studies are limited in scale. Larger
deployments in classrooms or museums would provide stronger validation, especially regarding
long-term engagement and educational effectiveness.

This research shows that combining cube-based AR tracking with cloud-backed event unlocking
can create immersive, engaging, and persistent learning experiences. By linking physical
interactions to digital rewards, the system demonstrates a scalable framework for interactive
education. Future improvements will strengthen its robustness, ensuring broad applicability in
learning and training contexts.

REFERENCES

[1] Chang, George, Patricia Morreale, and Padmavathi Medicherla. "Applications of augmented reality
systems in education." Society for Information Technology & Teacher Education International
Conference. Association for the Advancement of Computing in Education (AACE), 2010.

[2] Moroney, Laurence. "Using authentication in firebase." The Definitive Guide to Firebase: Build
Android Apps on Google's Mobile Platform. Berkeley, CA: Apress, 2017. 25-50.

[3] Moroney, Laurence. "Cloud storage for firebase." The definitive guide to firebase: build android
apps on google's mobile platform. Berkeley, CA: Apress, 2017. 73-92.

[4] Carmigniani, Julie, and Borko Furht. "Augmented reality: an overview." Handbook of augmented
reality (2011): 3-46.

[5] Aughey, Robert J. "Applications of GPS technologies to field sports." International journal of sports
physiology and performance 6.3 (2011): 295-310.

[6] Chaudhary, Meenu, et al. "Leveraging Unity 3D and Vuforia Engine for Augmented Reality
Application Development." 2023 3rd International Conference on Technological Advancements in
Computational Sciences (ICTACS). IEEE, 2023.

[7] Sarkar, Swagato. "The unique identity (UID) project, biometrics and re-imagining governance in
India." Oxford Development Studies 42.4 (2014): 516-533.

[8] Nadales, David Cantén. Build Your Own Metaverse with Unity: A practical guide to developing
your own cross-platform Metaverse with Unity3D and Firebase. Packt Publishing Ltd, 2023.

[91 Jiménez Fernandez-Palacios, Belen, et al. "ARC ube—The Augmented Reality Cube for
Archaeology." Archacometry 57 (2015): 250-262.

[10] Kesavan, Ram, et al. "Firestore: The nosql serverless database for the application developer." 2023
IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023.

[11] Laine, Teemu H. "Mobile educational augmented reality games: A systematic literature review and
two case studies." Computers 7.1 (2018): 19.

[12] Amanatidis, N. "Augmented reality in education and educational games-implementation and
evaluation: a focused literature review." Computers and Children 1.1 (2022): 1-11.

[13] Li, Jingya, et al. "Augmented reality games for learning: A literature review." International
Conference on Distributed, Ambient, and Pervasive Interactions. Cham: Springer International
Publishing, 2017.

[14] Astély, David, et al. "LTE: the evolution of mobile broadband." IEEE Communications magazine
47.4 (2009): 44-51.

[15] Grahn, Ivar. "The vuforia sdk and unity3d game engine: Evaluating performance on android
devices." (2017).

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

