
David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA – 2025

pp. 123-132, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152009

AN AUGMENTED REALITY SYSTEM FOR

EVENT-DRIVEN MULTIMEDIA UNLOCKING

ON A RUBIK-TYPE CUBE USING VUFORIA

AND FIREBASE

Jingbo Yang 1, Garret Washburn 2

1 Robert Louis Stevenson School, 3152 Forest Lake Rd, CA 93953
2 California State Polytechnic University, Pomona, CA, 91768

ABSTRACT

This paper presents an augmented reality (AR) system that overlays multimedia content on

a Rubik-type cube using Vuforia Engine and Firebase services [1]. The system addresses

the challenge of combining secure authentication, event-driven unlocking, and cloud-based

content delivery. After user login through Firebase Authentication, cube interactions

detected by Vuforia trigger the UnlockEventSystem, which updates Firestore to track

progression [2]. Media files are retrieved from Firebase Storage and displayed in AR via

Unity’s VideoPlayer and ImagePlayer managers [3]. Experiments tested tracking

reliability under varying lighting conditions and media load times across network

environments. Results demonstrated strong accuracy in normal settings and low latency on

modern networks, though performance declined in poor lighting and weak connectivity.

Methodology comparisons showed that while prior research identified AR’s educational

potential, our work contributes a functional prototype that directly integrates progression,

gamification, and cloud persistence. Ultimately, the project demonstrates a scalable,

engaging, and secure AR framework for interactive learning and training.

KEYWORDS

Augmented Reality (AR), Vuforia Engine, Rubik’s Cube Tracking, Unity3D, Firebase

Authentication

1. INTRODUCTION

Augmented reality (AR) has matured into a practical medium for delivering interactive

instruction, training, and entertainment [4]. Yet many AR experiences still rely on flat markers or

GPS anchoring, which limits spatial understanding and immersion [5]. Physical cubic markers—

such as Rubik‑type cubes or 2×2×2 educational cubes—offer six stable, repeatable faces that can

be used to anchor distinct instructional media in space. When properly tracked, a cube enables

face‑specific overlays (e.g., different videos, images, or labels per face), natural user

manipulation, and intuitive pedagogical sequencing. The challenge is to achieve robust,

low‑latency tracking under real‑world lighting and occlusions while securely gating and updating

the media content associated with the cube.

Existing approaches often embed media directly in the application bundle, which impedes

iteration and version control, or they rely on anonymous access to cloud assets, which raises

compliance and misuse concerns. In educational or training contexts, administrators also need

account‑bound progression and auditability so that unlocks depend on verified interactions, not

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152009

124 Computer Science & Information Technology (CS & IT)

merely device state. Without these capabilities, AR deployments risk fragile tracking, stale

content, and weak engagement loops.

The combination of Vuforia Engine (for multi‑face cube tracking) with a cloud‑backed content

layer addresses these gaps by binding spatial events to authenticated users and serving media

just‑in‑time [6]. For classrooms, museums, and skills training, this enables hands‑on,

face‑by‑face exploration where each solved task or correctly oriented face can unveil new content.

The outcome is an AR experience that is repeatable, measurable, and maintainable, aligning well

with instructional design principles and modern software operations.

Methodology A reviewed educational mobile AR games (EMARGs), showing AR’s potential for

context-sensitive learning. Its limitation was that it primarily synthesized guidelines without

delivering an implementable system. Our project advances this by providing a concrete AR cube

prototype with real-time progression.

Methodology B analyzed 78 AR education studies, emphasizing motivation and engagement but

also noting barriers such as infrastructure and teacher readiness. Unlike this broad survey, our

project focuses on a deployable, cloud-enabled application with secure authentication and event

unlocking.

Methodology C reviewed 26 AR learning games, reporting positive impacts on performance,

motivation, and collaboration. However, it lacked detail on retention effects and technical

implementation. Our system extends these findings by integrating Vuforia cube tracking with

Firebase services, ensuring persistence, security, and real-world applicability.

We propose an AR media system that anchors videos and images to the faces of a Rubik‑type

cube using Vuforia Engine in Unity, while Firebase Authentication, Firestore, and Storage

provide secure user control, progression, and media delivery. At a high level, the Unity/Vuforia

client detects and tracks the cube (via a Multi‑Target, Model Target, or VuMark‑based

configuration). When a specified cube state or face‑visibility event occurs, the app uses an

event‑driven unlock mechanism to grant access to a corresponding media artifact. The artifact’s

metadata (type, path, level) is stored in Firestore, while the asset itself resides in Firebase Storage

and is fetched through time‑scoped download URLs.

Client‑side, Authentication enforces account‑based access; UnlockEventSystem records

milestone triggers and moves items from the user’s locked lists into their unlocked collection;

HistoryPage lists unlocked items and allows re‑viewing; VideoPlayerManager and

ImagePlayerManager render media in AR by drawing onto textures attached to quads that are

rigidly aligned with the currently visible cube face. This ensures the visual overlay appears

pinned to the physical cube as the user rotates it. Content authors can update or add media in the

cloud without republishing the app, and instructors can design face‑specific learning paths (e.g.,

Face 1: primer video, Face 2: diagram, Face 3: assessment prompt, etc.).

Compared to bundling assets locally or using unauthenticated CDNs, this architecture improves

security (account‑tied access), maintainability (cloud‑managed assets), and engagement

(event‑based unlocking). It also provides a clear path to analytics and A/B testing, since

interactions and unlocks can be captured per user and per face orientation. The result is a scalable,

secure, and pedagogically expressive AR system for cube‑based media delivery.

Two experiments were conducted to evaluate the AR cube system. The first tested tracking

accuracy under different lighting conditions, revealing that performance remained high in bright

(95%) and normal (92%) light but declined in dim (78%) and very dim (60%) environments. This

Computer Science & Information Technology (CS & IT) 125

confirmed lighting as a major factor influencing AR reliability. The second experiment measured

media load times across network conditions, showing rapid performance under WiFi (1.2s) and

LTE (2.3s), but noticeable delays on 3G (5.5s) and poor WiFi (8.7s). Together, the experiments

highlighted key system strengths: strong performance in common environments and adaptability

across modern networks. They also underscored limitations: sensitivity to poor lighting and weak

connectivity. These results validate the system’s core design but suggest improvements like

caching, adaptive streaming, and lighting-aware feedback to enhance usability and robustness.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Stabilizing AR Cube Tracking

A critical challenge in an AR cube-based system is ensuring robust face tracking under real-

world conditions. Vuforia Engine’s Model Targets and Multi-Targets must cope with variable

lighting, partial occlusions, and user movement [15]. If the cube is misaligned or partially out of

frame, overlays may jitter, drift, or disappear, undermining immersion and accuracy. To address

this, the system could incorporate tracking stabilization features, provide visual feedback when

alignment is weak, and employ fallback logic that gracefully pauses media playback until the

cube is re-tracked. Additionally, training the Vuforia database with high-quality scans of the cube

at multiple angles improves recognition reliability.

2.2. Optimizing Media Loading for AR Experiences

Displaying media in AR requires that videos and images load quickly and smoothly. Since assets

are stored in Firebase Storage, download times and network variability pose risks to user

experience, especially when large video files are involved. Latency can cause overlays to stutter,

desynchronize, or fail to load during critical teaching moments. To mitigate this, the system could

implement progressive downloads, caching, and compression techniques to reduce file size. Pre-

fetching content once a face is nearly visible could further smooth transitions. Monitoring

connection quality and adapting playback resolution dynamically ensures the application remains

responsive in diverse connectivity environments.

2.3. Ensuring Reliable Unlock Tracking in AR Systems

The UnlockEventSystem introduces complexity in guaranteeing that milestones (e.g., solving one

side of the cube) reliably trigger unlocks without duplication or data loss. Since progression is

stored in Firestore, concurrent updates or client-side interruptions could lead to inconsistent

records between the locked and unlocked lists. For example, a user might unlock an item locally

but fail to sync it to the cloud if connectivity drops. To resolve this, the system could apply

transactional writes in Firestore, validate unlock conditions server-side, and design idempotent

update routines that avoid duplicate entries. This ensures fairness, persistence, and secure

tracking of user progress.

3. SOLUTION

The system is composed of three core components: authentication services, cloud content

management, and AR media display linked to unlock events.

126 Computer Science & Information Technology (CS & IT)

Authentication services ensure that each user has a unique, secure identity. Authentication.cs

provides login, registration, and profile updates. This ensures content unlocks are tied to accounts

rather than devices, enabling persistence across multiple sessions.

Cloud content management uses FirebaseHelper.cs to communicate with Firestore and Storage.

Firestore stores metadata (unlocked items, locked lists), while Storage houses media files. This

modular design separates state tracking from asset hosting, improving scalability.

AR media display leverages Unity with Vuforia Engine. When cube states or face detections

occur, UnlockEventSystem.cs modifies user progress. HistoryPage.cs dynamically builds a UI

list of unlocked items. Depending on media type, VideoPlayerManager.cs streams video to a

RenderTexture, while ImagePlayerManager.cs loads images into Unity Materials.

The program’s flow begins at login. Navigate.cs then directs the user to the correct interface.

Once authenticated, cube interactions generate unlock events, which are stored in Firestore. The

HistoryPage lists unlocked media, and media managers display the content. This architecture

ensures real-time responsiveness while maintaining cloud-backed persistence.

Figure 1. Overview of the solution

Authentication.cs manages login, registration, and user profile updates using Firebase

Authentication. It validates input, handles errors, and ties a unique Firebase UID to each user.

This ensures that unlocked media is securely bound to individual accounts. Authentication relies

on Firebase SDK methods like CreateUserWithEmailAndPasswordAsync and

SignInWithEmailAndPasswordAsync.

Figure 2. Screenshot of search box

Computer Science & Information Technology (CS & IT) 127

Figure 3. Screenshot of code 1

This snippet illustrates the login workflow. When a user presses the login button, the program

calls the login method with the provided email and password. Firebase Authentication’s

SignInWithEmailAndPasswordAsync is executed. The result is handled asynchronously,

ensuring the main Unity thread remains responsive.

If the operation fails (e.g., wrong password, invalid email, or network error), an exception is

logged, preventing silent failures. If successful, Firebase returns an AuthResult object containing

the authenticated user. The system then prints the user’s display name and unique UID [7]. This

UID is crucial — it links the user’s Firestore document, Storage access, and unlock progression.

Thus, Authentication.cs not only gates access but also establishes the identity anchor for all

subsequent interactions (unlocking items, retrieving history, playing media). Without this, cube-

based progression could not be securely tied to individual users.

FirebaseHelper.cs provides an abstraction layer between Unity and Firebase services [8]. It

manages Firestore documents, Firebase Storage uploads/downloads, and URL retrieval. This

component is crucial for keeping the Unity codebase clean, since other scripts (HistoryPage,

UnlockEventSystem) can simply call helper methods instead of writing raw Firebase API logic.

Figure 4. Screenshot of files

128 Computer Science & Information Technology (CS & IT)

Figure 5. Screenshot of code 2

This snippet shows how FirebaseHelper retrieves documents from Firestore. The method accepts

a collection name and document ID, constructs a reference, and asynchronously fetches a

snapshot. If the document exists, it is returned as a dictionary that Unity scripts can manipulate

directly. If the document is missing, a warning is logged.

This is critical in the AR cube system because the user’s progression state (locked/unlocked items)

lives in Firestore [9]. HistoryPage.cs depends on this method to list available media, while

UnlockEventSystem.cs relies on it to move items between lists. By wrapping Firestore logic in a

helper, the code becomes easier to maintain and less error-prone, while also standardizing error

handling [10].

UnlockEventSystem.cs manages milestone-based progression. It listens for cube-related events

(like detecting one solved side or ring) and then unlocks items accordingly. This gamification

layer links physical cube interactions, tracked via Vuforia, with digital media progression stored

in Firestore.

Figure 6. Screenshot of detecting sides

Computer Science & Information Technology (CS & IT) 129

Figure 7. Screenshot of code 3

This method governs the unlocking process. It begins by fetching the user’s document from

Firestore through FirebaseHelper. Based on the level parameter, it identifies the correct locked

list (e.g., locked_level_1). A random item is selected from this list, removed, and then appended

into the unlocked list. Finally, the updated data is written back to Firestore.

This approach ensures progression fairness while keeping user states persistent across devices.

For the AR cube system, this means that when the cube’s state is recognized by Vuforia (e.g., one

face solved), the app can reward the user with a new video or image. By randomizing unlocks,

the system avoids predictability, keeping users engaged. The reliance on Firebase ensures that

even if the app closes or the device changes, progression remains intact.

4. EXPERIMENT

4.1. Experiment 1

We tested the accuracy of AR cube face recognition under different lighting conditions, since

tracking reliability directly affects the stability of overlays and the usability of the system.

The experiment measured Vuforia’s ability to correctly identify cube faces under four controlled

lighting conditions: bright daylight, normal indoor light, dim light, and very dim light. A Rubik-

type cube was placed at a fixed distance, and recognition attempts were recorded. For each

lighting condition, the system attempted to detect faces 50 times, and success rates were

calculated as percentages. This setup was chosen to reflect real-world environments, since

classrooms, museums, or homes may not always have optimal lighting. No external tracking aids

were used, ensuring results represent baseline performance.

130 Computer Science & Information Technology (CS & IT)

Figure 8. Figure of experiment 1

Results show a clear decline in tracking accuracy as lighting decreases. The mean accuracy

across conditions was 81%, with a median of 85%. The highest value (95%) occurred in bright

daylight, while the lowest value (60%) occurred under very dim lighting. The significant drop in

accuracy under dim conditions was expected, as Vuforia’s feature detection relies heavily on

edge contrast. Interestingly, “ Normal indoor light ” maintained high accuracy (92%),

suggesting the system is reliable in typical use cases. The most surprising result was that “Dim”

lighting still achieved 78%, higher than predicted, likely due to the cube’s strong contrast

design. The largest factor influencing results is lighting consistency, highlighting the need for

visual cues or adaptive brightness warnings when conditions degrade.

4.2. Experiment 2

We tested media load times for video and image content under different network conditions,

since latency directly impacts the usability and immersion of AR-based overlays.

Figure 9. Figure of experiment 2

This experiment measured the time required to load and play a short (10 MB) video file from

Firebase Storage across four network conditions: high-speed WiFi (100 Mbps), 4G LTE, 3G, and

poor WiFi (5 Mbps with packet loss). Each condition was tested by attempting playback 20 times,

and average load times were calculated. These conditions were selected to represent typical

connectivity scenarios users might encounter in classrooms, homes, or mobile field use. The

experiment focused on time-to-first frame, representing the user’s wait before content became

visible in AR.

Computer Science & Information Technology (CS & IT) 131

The system loaded content rapidly under high-speed WiFi (1.2s) and remained usable on 4G LTE

(2.3s). However, load times increased significantly on 3G (5.5s) and poor WiFi (8.7s). The mean

time load across all networks was 4.4s, with a median of 3.9s. The fastest condition (WiFi)

outperformed the slowest (poor WiFi) by over 7.5 seconds, which would noticeably impact user

experience in low-bandwidth environments. The results highlight that while the system is robust

under modern network conditions, caching strategies or adaptive resolution may be required for

slower networks. The surprise was that 3G still performed under 6 seconds, indicating Firebase’s

CDN and signed URL delivery are optimized. Network quality remains the largest factor

influencing media load times.

5. RELATED WORK

One related approach is presented through a systematic review of Educational Mobile

Augmented Reality Games (EMARGs), which analyzed 31 AR applications between 2012–2017

alongside 26 AR platforms [11]. This study emphasized the educational affordances of AR by

combining technology, pedagogy, and gaming perspectives. The review demonstrated that mobile

AR can deliver context-sensitive content and enhance engagement, with notable success in public

adoption through games such as Pokémon Go. However, the solution’s limitation lies in its broad,

survey-style focus; it identifies guidelines rather than providing an implementable framework.

Our project extends this by delivering a concrete, event-driven AR cube system tied to cloud

progression.

Amanatidis (2022) conducted a focused literature review of 78 studies on AR in education and

AR serious games, exploring implementation, evaluation, and theoretical underpinnings [12]. The

review emphasized cognitive benefits, increased motivation, and immersive engagement, while

also highlighting critical barriers such as teacher readiness, infrastructure constraints, and

curriculum alignment. It proposed evaluation of rubrics and frameworks to assess AR learning

effectiveness across disciplines like science, mathematics, and language studies. While

comprehensive in identifying challenges and future directions, this methodology is limited by its

secondary analysis approach. Our system advances beyond review by implementing a functional

AR cube prototype with Firebase integration, directly addressing deployment and user

progression tracking.

Li et al. (2017) conducted a literature review of 26 AR learning games to analyze their effects on

student learning outcomes, motivation, and social interaction [13]. The study classified learner

groups, subjects, and environments, finding that AR games generally improved performance,

engagement, and collaboration. Common design elements included quizzes, puzzles, goal setting,

and 3D models. Evaluation methods relied on pre/post-tests, observations, and surveys, showing

that AR games fostered enjoyment and teamwork. However, the review was limited to secondary

synthesis and did not examine retention effects or implementation challenges in depth. Our

project extends these findings by deploying a practical AR cube system with event-driven

unlocking and cloud integration.

6. CONCLUSIONS

While the proposed AR cube system demonstrates promise in combining Vuforia-based tracking

with Firebase authentication and cloud storage, several limitations remain. First, tracking

reliability is highly dependent on environmental lighting and cube visibility; although accuracy

was acceptable under normal conditions, performance declined in low light. This could be

mitigated by integrating adaptive brightness detection or combining Vuforia with AR Foundation

132 Computer Science & Information Technology (CS & IT)

for sensor fusion. Second, network latency poses challenges for seamless media playback.

Current performance is strong under WiFi or LTE, but slower connections result in noticeable

delays [14]. Implementing caching strategies, adaptive streaming, or lightweight media previews

could enhance responsiveness. Third, data consistency in unlocking events remains a concern, as

connectivity drops may cause sync errors. Employing Firestore transactional writes and

redundancy mechanisms would reduce risk. Finally, user studies are limited in scale. Larger

deployments in classrooms or museums would provide stronger validation, especially regarding

long-term engagement and educational effectiveness.

This research shows that combining cube-based AR tracking with cloud-backed event unlocking

can create immersive, engaging, and persistent learning experiences. By linking physical

interactions to digital rewards, the system demonstrates a scalable framework for interactive

education. Future improvements will strengthen its robustness, ensuring broad applicability in

learning and training contexts.

REFERENCES

[1] Chang, George, Patricia Morreale, and Padmavathi Medicherla. "Applications of augmented reality

systems in education." Society for Information Technology & Teacher Education International

Conference. Association for the Advancement of Computing in Education (AACE), 2010.

[2] Moroney, Laurence. "Using authentication in firebase." The Definitive Guide to Firebase: Build

Android Apps on Google's Mobile Platform. Berkeley, CA: Apress, 2017. 25-50.

[3] Moroney, Laurence. "Cloud storage for firebase." The definitive guide to firebase: build android

apps on google's mobile platform. Berkeley, CA: Apress, 2017. 73-92.

[4] Carmigniani, Julie, and Borko Furht. "Augmented reality: an overview." Handbook of augmented

reality (2011): 3-46.

[5] Aughey, Robert J. "Applications of GPS technologies to field sports." International journal of sports

physiology and performance 6.3 (2011): 295-310.

[6] Chaudhary, Meenu, et al. "Leveraging Unity 3D and Vuforia Engine for Augmented Reality

Application Development." 2023 3rd International Conference on Technological Advancements in

Computational Sciences (ICTACS). IEEE, 2023.

[7] Sarkar, Swagato. "The unique identity (UID) project, biometrics and re-imagining governance in

India." Oxford Development Studies 42.4 (2014): 516-533.

[8] Nadales, David Cantón. Build Your Own Metaverse with Unity: A practical guide to developing

your own cross-platform Metaverse with Unity3D and Firebase. Packt Publishing Ltd, 2023.

[9] Jiménez Fernández‐Palacios, Belen, et al. "ARC ube—The Augmented Reality Cube for

Archaeology." Archaeometry 57 (2015): 250-262.

[10] Kesavan, Ram, et al. "Firestore: The nosql serverless database for the application developer." 2023

IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023.

[11] Laine, Teemu H. "Mobile educational augmented reality games: A systematic literature review and

two case studies." Computers 7.1 (2018): 19.

[12] Amanatidis, N. "Augmented reality in education and educational games-implementation and

evaluation: a focused literature review." Computers and Children 1.1 (2022): 1-11.

[13] Li, Jingya, et al. "Augmented reality games for learning: A literature review." International

Conference on Distributed, Ambient, and Pervasive Interactions. Cham: Springer International

Publishing, 2017.

[14] Astély, David, et al. "LTE: the evolution of mobile broadband." IEEE Communications magazine

47.4 (2009): 44-51.

[15] Grahn, Ivar. "The vuforia sdk and unity3d game engine: Evaluating performance on android

devices." (2017).

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://airccse.org/

