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ABSTRACT

Diabetes affects homeless populations at rates similar to the general population (8%), but
homeless individuals receive significantly less medical attention and face higher
complication rates due to food insecurity and lifestyle instability. VitalityShield addresses
this challenge through a Flutter-based mobile application that provides Al-powered food
analysis and personalized diabetes prevention recommendations. The system integrates
three core components: an OpenAl GPT-4 Vision food scanner for nutritional analysis, an
Al recommendation service using GPT-4o-mini for personalized dietary suggestions, and
interactive health analytics for progress tracking [1]. Key challenges included achieving
accurate food recognition across varying image qualities and generating practical
recommendations for populations with limited food access. Experimental results
demonstrated 83.25% accuracy in nutritional analysis and moderate practicality scores
(3.4/5) for recommendations. While limitations exist in accessibility and accuracy,
VitalityShield offers significant advantages over traditional outreach methods by providing
scalable, 24/7 diabetes prevention support that adapts to individual dietary patterns,
potentially reducing diabetes risk in vulnerable homeless communities.
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1. INTRODUCTION

The difficulties of chronic illness have long been an issue in vulnerable communities, especially
among the homeless [2]. With daily survival concerns—especially food insecurity— taking
precedence, health often becomes a secondary priority. This constant struggle for basic survival
leaves little time for the homeless to worry about chronic disease care. Notably, type 1 and type 2
diabetes pose a huge threat to homeless communities, as almost 75% of homeless people have no
health insurance, putting them at a greater risk for health complications (Elder & Tubb, 2014).
Although the prevalence of diabetes in the homeless and general population is roughly the same,
at about 8% (Bernstein et al., 2015), homeless people with diabetes were markedly less likely to
obtain medical attention (Wiens et al., 2024). Due to the reduced likelihood of receiving
screening care, homeless people also have much higher rates of macrovascular complications
(Sharan et al., 2023) compared to the non-homeless, with rates of hospitalization in homeless
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minors reaching up to 14 times that of non-homeless minors (Sakai-Bizmark et al., 2020). With
food being one of the major priorities for homeless individuals, these food insecure populations
are more prone to poor health because of their chaotic lifestyle of homelessness (Elder & Tubb,
2014; Hernandez et al., 2019). To address the growing concern of diabetes care in homeless
communities, we aim to develop a mobile application dedicated to reducing the risk of diabetes
and promoting a healthier diet in homeless communities [3]. We recognize that the problem has
two sides: the large proportion of people with diabetes in homeless communities, and the lack of
treatment homeless communities receive. For our mobile application, we strive to decrease the
proportion of homeless people with diabetes, however we would also like to find solutions to
increasing medical support for these communities in the future.

Three existing methodologies address diabetes prevention in homeless populations with varying
approaches and limitations. Campbell et al.'s systematic review (2020) identified effective
outreach programs including screening teams and shelter-based monitoring, but these suffer from
high costs, limited reach, and scheduling barriers that exclude many homeless individuals with
chaotic lifestyles. Recent SMS intervention trials (2020-2024) achieve behavior improvements
through automated messaging, with the SupportMe trial showing 86.6% user satisfaction, but
lack personalization and real-time feedback capabilities, relying on generic content that cannot
adapt to individual dietary patterns [4]. Current mHealth app systematic reviews (2020-2024)
show promising results for glycemic control but face usability challenges and fail to address food
accessibility issues specific to homeless populations. VitalityShield improves upon these
approaches by combining the accessibility of digital interventions with personalized, Al-driven
analysis that provides immediate feedback on dietary choices. Unlike previous methods, it
specifically addresses food availability constraints through context-aware recommendations
while eliminating location and scheduling barriers that plague traditional outreach programs.

Our proposed approach to addressing the problem of diabetes in homeless communities is to
allow individuals to track their food intake and, after assessing their risk for diabetes, structure
better meal plans to lower their risk. People experiencing homelessness have reported a lack of
stability and predictability in their everyday lives (Manser et al., 2024). By giving homeless
people, the simple task of scanning their every meal, we add a little more structure and
predictability into their lives, hopefully giving them the opportunity to slow down and take time
to focus on their health. Our method shows promise as a future for diabetes care, as many studies
have found that self-monitoring interventions as well as mobile-based interventions have been
effective among homeless adults in improving diabetes outcomes (Kershaw et al., 2022;
Constance & Lusher, 2020) [5]. A common method for tackling diabetes in homeless
communities is to organize outreach programs to help screen individuals who may not have had
the opportunity to do so. Many studies have found these outreach programs to be beneficial for
homeless individuals when coordinated well (Lihanceanu et al., 2013) and done locally
(McNicholl et al., 2025). Other studies have found that educational programs dedicated to
diabetes control in homeless communities have helped inform the homeless of diabetes
knowledge and prevention strategies. Although both outreach and education programs are valid
solutions to diabetes control, neither puts structure into people’s lives. Our method targets a
psychological need for the homeless—predictability—and also builds habits that make diabetes
prevention learning more permanent. By adding healthy eating habits in the lives of the homeless
and allowing them to reflect on their risk for diabetes individually, our mobile application builds
long-lasting solutions to diabetes control in homeless populations.

Two experiments tested critical blind spots in VitalityShield's functionality. The first experiment
evaluated Al food recognition accuracy across 50 diverse food images with varying quality levels,
using USDA nutritional data as control standards. Results showed 83.25% mean accuracy with
significant performance drops for mixed dishes (71%) and low-quality images (72% vs. 91% for
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high-quality). Image quality emerged as the primary factor affecting accuracy, likely due to the
Al's reliance on visual detail for nutritional analysis. The second experiment assessed
recommendation practicality through shelter worker evaluations of 100 Al-generated suggestions.
Results revealed moderate relevance scores (3.4/5) concerning accessibility limitations (3.1/5).
Protein and dairy recommendations scored poorly (2.9/5 and 2.7/5) because these foods are less
available in food bank environments. Higher diabetes risk profiles paradoxically received less
practical recommendations, suggesting the Al prioritizes medical ideals over real-world
constraints. Both experiments highlight the need for improved image guidance and food
accessibility integration in the recommendation algorithm.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Accurate Nutritional Analysis

One major challenge in implementing the Al food recognition system is achieving accurate
nutritional analysis from food images [6]. The system could encounter issues with image quality,
lighting conditions, portion size estimation, and distinguishing similar-looking foods. Mixed
dishes or foods with hidden ingredients could lead to incomplete nutritional breakdowns. To
address these challenges, we could implement multiple validation layers including confidence
scoring for Al predictions, fallback databases for common foods, portion size calibration using
reference objects, and user feedback mechanisms to improve accuracy over time. Additionally, I
could use multiple Al models or ensemble methods to cross-validate nutritional assessments and
provide more reliable results for users tracking their diabetes risk.

2.2. Personalized Dietary Recommendation

A significant challenge in the personalized recommendation system is generating relevant dietary
suggestions from limited and potentially inconsistent user data. Homeless individuals may have
irregular eating patterns, limited access to diverse foods, and varying data quality in their food
logging. The Al recommendation service could struggle with sparse data, contradictory nutrition
patterns, or dietary restrictions unique to homeless populations. To overcome these issues, we
could implement adaptive algorithms that account for food accessibility constraints, incorporate
local food bank inventories, use demographic health data to fill gaps, and design flexible
recommendation engines that prioritize practical, affordable food choices over ideal nutritional
recommendations.

2.3. Health Data Visualization Challenges

The health analytics and progress tracking component faces challenges in creating meaningful
visualizations from irregular user data patterns. Homeless users may have inconsistent app usage,
missing data periods, or extreme nutritional fluctuations that could skew trend analysis. The
charting system could misrepresent health progress or fail to identify concerning patterns due to
data gaps. To address these challenges, we could implement intelligent data interpolation
methods, weighted averaging for irregular intervals, anomaly detection to flag unusual patterns,
and contextual indicators that account for lifestyle factors. The system could also provide
multiple visualization timeframes and emphasize recent data trends over long-term averages
when data consistency is poor.
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3. SOLUTION

VitalityShield is a Flutter-based mobile application designed to help homeless individuals prevent
diabetes through food tracking and personalized recommendations. The system integrates three
major components: an Al Food Scanner, an Al Recommendation Service, and Health Analytics
with Progress Tracking. The application flow begins when users capture or upload food images
through the scanning interface. The Al Food Scanner processes these images using OpenAl's
GPT-4 Vision API to extract detailed nutritional information including calories, protein, vitamins,
fats, carbohydrates, and a diabetes-friendly index score. The data is maintained in Firebase
Firestore and triggers the Al Recommendation Service, which analyzes the user's nutritional
patterns and generates personalized food suggestions using GPT-40-mini. The recommendations
identify both foods to include and avoid based on the individual's dietary history and diabetes risk
factors. Finally, the Health Analytics component visualizes this data through interactive charts
showing nutritional trends over various time periods (daily, weekly, monthly, yearly), enabling
users to track their progress and maintain awareness of their dietary patterns. The complete
system is developed using Flutter for cross-platform compatibility, Firebase for authentication
and data storage, and OpenAl APIs for intelligent food analysis and recommendation generation

[7].
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Figure 1. Overview of the solution

The Al Food Scanner serves as the primary data collection component, capturing food images
and extracting nutritional information. It utilizes OpenAl's GPT-4 Vision API for computer
vision as well as natural language processing to assess food images and generate structured JSON
responses containing detailed nutritional breakdowns, enabling automated dietary tracking for
diabetes prevention.
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Figure 3. Screenshot of code 1

This code runs when users tap the "Analyze" button after capturing or selecting a food image in
scan_screen.dart:58. The sendlmageWithResponse API method handles the core Al food analysis
functionality. First, it converts the selected image file into a base64-encoded string that can be
transmitted via HTTP. The method then constructs a request body containing the GPT-4 Vision
model specification and detailed prompt instructions that tell the Al to act as a nutritionist and
return structured JSON nutritional data. The request is sent to OpenAl's API with proper
authentication headers [8]. When the server responds successfully, it returns nutritional analysis
including calories, vitamins, fats, proteins, and a diabetes-friendly rating. The code parses this
JSON response and updates the Ul state through setState(), triggering a rebuild that displays the
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nutritional information to the user. This enables real-time food analysis and immediate feedback
on dietary choices for diabetes prevention.

The Al Recommendation Service generates personalized dietary suggestions based on users'
nutritional history stored in Firebase. It employs OpenAl's GPT-40-mini for natural language
processing and reasoning, analyzing patterns in calorie, protein, fiber, and sugar intake to
recommend specific food categories and identify foods to avoid for diabetes prevention.
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Figure 5. Screenshot of code 2

This code executes when users navigate to the Food Suggestions screen, automatically triggered
by the fetchRecommendations() method in food suggestions screen.dart:29. The
_generateAlComprehensiveRecommendations function represents the core intelligence of
therecommendation system. It first retrieves the user's recent nutritional data from Firebase
through the nutritionData parameter. The method constructs a detailed prompt for GPT-40-mini
that includes specific constraints (maximum 5 recommended foods, 4 foods to avoid) and
requires personalized reasoning based on actual nutritional deficiencies or excesses [9]. The Al
analyzes patterns in the user's eating habits, identifies nutritional gaps or concerning trends, and
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generates contextually relevant food suggestions. The response is parsed from JSON format and
organized into two categories: foods to include and foods to avoid. This enables the system to
provide targeted dietary guidance that addresses individual health needs rather than generic
nutritional advice, making diabetes prevention recommendations more relevant and actionable for
homeless users.

The Health Analytics component transforms nutritional data into meaningful visual insights using
Syncfusion Flutter Charts. It processes time-series data from Firebase, employs Al-powered data
aggregation through GPT-40-mini to handle irregular patterns, and creates interactive
visualizations showing trends in calories, protein, and cholesterol across multiple timeframes for
progress tracking.

=0 ® 2409 O @ @

Health Dashboard < Health Dashboard

Health Overview

Health analysis of your nutrition and wellnes:

Nutritional Rating

group into
p into monthly

1t.map((item) => (item['date'], item['value'].toDoub

Figure 7. Screenshot of code 3
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This code runs when users select different time periods or metric types in the Charts screen,
triggered by the setData() method in charts screen.dart:63. The function handles the complex
task of aggregating irregular nutritional data into meaningful time-based visualizations. First,
getOrdersInRange() retrieves user data from Firebase based on the selected timeframe [10]. The
method then leverages GPT-40-mini's analytical capabilities to intelligently group data according
to specific distribution rules - hourly for "Today", daily for "Last 7 Days", weekly for "Last 30
Days", and monthly for "Last Year". This Al-powered aggregation is crucial for homeless users
who may have inconsistent eating patterns, as it can handle data gaps and irregular intervals. The
Al processes raw timestamp-value pairs and returns properly formatted chart data with
appropriate time labels. Finally, the results are mapped to _SalesData objects compatible with
Syncfusion charts, enabling smooth visualization of nutritional trends that help users understand
their dietary patterns and diabetes risk progression over time.

4. EXPERIMENT

4.1. Experiment 1

Testing the accuracy of Al food recognition across different image qualities and food types. This
component is critical because inaccurate nutritional analysis could lead to poor dietary decisions
and ineffective diabetes prevention among vulnerable homeless populations.

We tested 50 food images across five categories (fruits, vegetables, processed foods, mixed
dishes, and beverages) with varying image qualities (high, medium, low lighting and resolution).
Each food item has verified nutritional data from USDA food database as control data. The
experiment compares Al-generated nutritional values against established standards, measuring
accuracy percentages for calories, protein, fat, and carbohydrates. This design ensures
comprehensive testing across food types commonly accessed by homeless populations while
accounting for real-world photography conditions where users may not have optimal lighting or
camera equipment. The USDA database provides reliable baseline measurements for accuracy
calculations.
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Figure 8. Figure of experiment 1
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The overall mean accuracy across all nutrients was 83.25%, with a median of 83.5%. The lowest
accuracy was 71% for mixed dishes, while the highest was 92% for fruits. The results show that
image quality significantly impacts accuracy, with a 19-percentage-point drop from high to low
quality images. This exceeded expectations, as we anticipated more consistent performance
across quality levels. Mixed dishes performed surprisingly poorly at 71%, likely because
complex foods with multiple ingredients challenge the Al's ability to distinguish individual
components and their proportions. Single-ingredient foods like fruits and vegetables achieved the
highest accuracy due to their visual simplicity. Image quality emerged as the biggest factor
affecting results, suggesting that user education about photography techniques could substantially
improve system performance. The 82% protein accuracy was lower than expected, possibly
because protein content is less visually apparent than other macronutrients. These findings
indicate the need for confidence scoring and user guidance for optimal image capture.

4.2. Experiment 2

Testing the relevance and practicality of Al-generated food recommendations for homeless
populations with limited food access. Poor recommendations could lead to user frustration and
app abandonment, undermining diabetes prevention efforts.

We surveyed 5 case workers from homeless shelters and food banks to evaluate 100 Al-generated
food recommendations across different nutritional profiles. Each recommendation was rated on a
1-5 scale for accessibility (availability at food banks/shelters), affordability (cost under $2), and
practicality (no special preparation equipment needed). Control data came from existing meal
programs at local shelters. The recommendations were generated using simulated user profiles
with varying nutritional needs (high diabetes risk, vitamin deficiencies, etc.). This design tests
whether the Al considers real-world constraints faced by homeless populations rather than ideal
nutritional scenarios, ensuring recommendations are actually implementable in their daily lives.
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Figure 9. Figure of experiment 2

The mean relevance score was 3.4/5 with a median of 3.5, indicating moderate practical value.
Protein recommendations scored lowest at 2.9/5, while vegetable recommendations achieved the
highest score at 4.1/5. The accessibility score of 3.1/5 was concerning, suggesting that many
recommendations assume food availability that may not exist in homeless-serving environments.
Surprisingly, affordability scored highest at 3.8/5, indicating the Al effectively considers cost
constraints. The low protein and dairy scores (2.9/5 and 2.7/5) reflect the challenge of accessing
these food groups in food bank settings, where shelf-stable items dominate. The correlation
analysis revealed that higher diabetes risk profiles received less practical recommendations,
opposite to the intended outcome. This suggests the Al prioritizes medical ideals over real-world
constraints for high-risk users. These findings highlight the need for incorporating food
accessibility databases and shelter-specific dietary constraints into the recommendation algorithm
to improve practical relevance for the target population.
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5. RELATED WORK

Campbell et al. (2020) conducted a systematic review of diabetes management interventions for
homeless adults, identifying multidisciplinary treatments including provision of basic necessities
including medication,healthy meals,and educational outreach programs [11]. Their analysis found
that effective interventions included outpatient screening teams, shelter-based monitoring
programs, and housing supports. Nevertheless, these approaches are subject tonotable limitations
including high operational costs, limited geographic reach, and dependency on healthcare staff
availability. The interventions also require participants to visit specific locations at scheduled
times, creating barriers for homeless individuals with unpredictable schedules. VitalityShield
improves upon this by providing 24/7 accessible diabetes prevention tools through smartphones,
eliminating location and scheduling constraints while offering personalized, Al-driven
interventions that scale efficiently across populations.

Recent randomized controlled trials from 2020-2024 have demonstrated the success of
interventions delivered via SMS text messaging for diabetes self-management [12]. The
SupportMe trial (2023) found that customized SMS text messages providing self-management
support showed improved medication adherence, with participants reporting that SMS messages
were useful (86.6%) and motivated change (63.1%). However, this approach is limited by its one-
way communication model that cannot adapt to individual dietary patterns or provide real-time
feedback on food choices. The intervention also assumes literacy and consistent phone access,
which may not apply to all homeless individuals. Additionally, generic messages lack
personalization based on actual eating habits. VitalityShield addresses these limitations by
offering interactive, Al-powered food analysis and customized recommendations that
dynamically respond to user behavior, creating a more engaging and individually relevant
diabetes prevention experience.

Systematic reviews of mobile health interventions for diabetes management (2020-2024) show
that mHealth apps often employ smartphone applications and automated messaging for glycemic
control [13]. A 2025 systematic review found that mHealth interventions show promising effects
on diabetes management, particularly in glycemic control and weight regulation. However,
studies revealed significant limitations in sustained app usage because ofcomplicated interfaces
and a lack of immediate feedback. The methodology required users to manually input extensive
health data, making it difficult for people with limited digital literacy or time constraints. These
apps also failed to address nutritional education or food access challenges specific to homeless
populations. VitalityShield overcomes these barriers by simplifying data input through automated
image analysis, providing immediate nutritional feedback, and specifically addressing food
accessibility challenges faced by homeless individuals through context-aware recommendations.

6. CONCLUSIONS

VitalityShield faces several limitations that require future development. The Al food recognition
system achieved only 83% accuracy, particularly struggling with mixed dishes and low-quality
images, which could mislead users about their nutritional intake. The recommendation system
showed moderate practicality scores (3.4/5), indicating insufficient consideration of food
accessibility constraints in homeless environments. Additionally, the application requires
smartphone access and basic digital literacy, potentially excluding some vulnerable populations.
Internet connectivity is necessary for Al processing, limiting offline functionality [14]. To
improve these limitations, we would implement offline food databases for basic nutritional
information, develop computer vision models specifically trained on foods commonly available
to homeless populations, integrate local food bank inventory APIs to ensure realistic
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recommendations, add multilingual support and voice commands for accessibility, and create
partnerships with homeless service providers to gather real-world usage feedback [15]. Enhanced
machine learning algorithms could better handle complex food recognition scenarios, while local
data caching would reduce connectivity dependencies and improve user experience in areas with
poor internet access.

VitalityShield represents a promising technological approach to diabetes prevention in homeless
communities through Al-powered nutrition tracking and personalized recommendations. While
current limitations exist in accuracy and accessibility, the application offers significant
advantages over traditional outreach methods by providing scalable, 24/7 diabetes prevention
support that adapts to individual dietary patterns.
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