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ABSTRACT 
 
Diabetes affects homeless populations at rates similar to the general population (8%), but 

homeless individuals receive significantly less medical attention and face higher 

complication rates due to food insecurity and lifestyle instability. VitalityShield addresses 

this challenge through a Flutter-based mobile application that provides AI-powered food 

analysis and personalized diabetes prevention recommendations. The system integrates 

three core components: an OpenAI GPT-4 Vision food scanner for nutritional analysis, an 

AI recommendation service using GPT-4o-mini for personalized dietary suggestions, and 

interactive health analytics for progress tracking [1]. Key challenges included achieving 

accurate food recognition across varying image qualities and generating practical 

recommendations for populations with limited food access. Experimental results 

demonstrated 83.25% accuracy in nutritional analysis and moderate practicality scores 

(3.4/5) for recommendations. While limitations exist in accessibility and accuracy, 

VitalityShield offers significant advantages over traditional outreach methods by providing 

scalable, 24/7 diabetes prevention support that adapts to individual dietary patterns, 

potentially reducing diabetes risk in vulnerable homeless communities. 
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1. INTRODUCTION 
 

The difficulties of chronic illness have long been an issue in vulnerable communities, especially 

among the homeless [2]. With daily survival concerns–especially food insecurity– taking 

precedence, health often becomes a secondary priority. This constant struggle for basic survival 

leaves little time for the homeless to worry about chronic disease care. Notably, type 1 and type 2 

diabetes pose a huge threat to homeless communities, as almost 75% of homeless people have no 

health insurance, putting them at a greater risk for health complications (Elder & Tubb, 2014). 

Although the prevalence of diabetes in the homeless and general population is roughly the same, 

at about 8% (Bernstein et al., 2015), homeless people with diabetes were markedly less likely to 

obtain medical attention (Wiens et al., 2024). Due to the reduced likelihood of receiving 

screening care, homeless people also have much higher rates of macrovascular complications 

(Sharan et al., 2023) compared to the non-homeless, with rates of hospitalization in homeless 
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minors reaching up to 14 times that of non-homeless minors (Sakai‑Bizmark et al., 2020). With 

food being one of the major priorities for homeless individuals, these food insecure populations 

are more prone to poor health because of their chaotic lifestyle of homelessness (Elder & Tubb, 

2014; Hernandez et al., 2019). To address the growing concern of diabetes care in homeless 

communities, we aim to develop a mobile application dedicated to reducing the risk of diabetes 

and promoting a healthier diet in homeless communities [3]. We recognize that the problem has 

two sides: the large proportion of people with diabetes in homeless communities, and the lack of 

treatment homeless communities receive. For our mobile application, we strive to decrease the 

proportion of homeless people with diabetes, however we would also like to find solutions to 

increasing medical support for these communities in the future. 

 

Three existing methodologies address diabetes prevention in homeless populations with varying 

approaches and limitations. Campbell et al.'s systematic review (2020) identified effective 

outreach programs including screening teams and shelter-based monitoring, but these suffer from 

high costs, limited reach, and scheduling barriers that exclude many homeless individuals with 

chaotic lifestyles. Recent SMS intervention trials (2020-2024) achieve behavior improvements 

through automated messaging, with the SupportMe trial showing 86.6% user satisfaction, but 

lack personalization and real-time feedback capabilities, relying on generic content that cannot 

adapt to individual dietary patterns [4]. Current mHealth app systematic reviews (2020-2024) 

show promising results for glycemic control but face usability challenges and fail to address food 

accessibility issues specific to homeless populations. VitalityShield improves upon these 

approaches by combining the accessibility of digital interventions with personalized, AI-driven 

analysis that provides immediate feedback on dietary choices. Unlike previous methods, it 

specifically addresses food availability constraints through context-aware recommendations 

while eliminating location and scheduling barriers that plague traditional outreach programs. 

 

Our proposed approach to addressing the problem of diabetes in homeless communities is to 

allow individuals to track their food intake and, after assessing their risk for diabetes, structure 

better meal plans to lower their risk. People experiencing homelessness have reported a lack of 

stability and predictability in their everyday lives (Manser et al., 2024). By giving homeless 

people, the simple task of scanning their every meal, we add a little more structure and 

predictability into their lives, hopefully giving them the opportunity to slow down and take time 

to focus on their health. Our method shows promise as a future for diabetes care, as many studies 

have found that self-monitoring interventions as well as mobile-based interventions have been 

effective among homeless adults in improving diabetes outcomes (Kershaw et al., 2022; 

Constance & Lusher, 2020) [5]. A common method for tackling diabetes in homeless 

communities is to organize outreach programs to help screen individuals who may not have had 

the opportunity to do so. Many studies have found these outreach programs to be beneficial for 

homeless individuals when coordinated well (Lihanceanu et al., 2013) and done locally 

(McNicholl et al., 2025). Other studies have found that educational programs dedicated to 

diabetes control in homeless communities have helped inform the homeless of diabetes 

knowledge and prevention strategies. Although both outreach and education programs are valid 

solutions to diabetes control, neither puts structure into people’s lives. Our method targets a 

psychological need for the homeless–predictability–and also builds habits that make diabetes 

prevention learning more permanent. By adding healthy eating habits in the lives of the homeless 

and allowing them to reflect on their risk for diabetes individually, our mobile application builds 

long-lasting solutions to diabetes control in homeless populations. 

 

Two experiments tested critical blind spots in VitalityShield's functionality. The first experiment 

evaluated AI food recognition accuracy across 50 diverse food images with varying quality levels, 

using USDA nutritional data as control standards. Results showed 83.25% mean accuracy with 

significant performance drops for mixed dishes (71%) and low-quality images (72% vs. 91% for 
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high-quality). Image quality emerged as the primary factor affecting accuracy, likely due to the 

AI's reliance on visual detail for nutritional analysis. The second experiment assessed 

recommendation practicality through shelter worker evaluations of 100 AI-generated suggestions. 

Results revealed moderate relevance scores (3.4/5) concerning accessibility limitations (3.1/5). 

Protein and dairy recommendations scored poorly (2.9/5 and 2.7/5) because these foods are less 

available in food bank environments. Higher diabetes risk profiles paradoxically received less 

practical recommendations, suggesting the AI prioritizes medical ideals over real-world 

constraints. Both experiments highlight the need for improved image guidance and food 

accessibility integration in the recommendation algorithm.  

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. Accurate Nutritional Analysis 
 

One major challenge in implementing the AI food recognition system is achieving accurate 

nutritional analysis from food images [6]. The system could encounter issues with image quality, 

lighting conditions, portion size estimation, and distinguishing similar-looking foods. Mixed 

dishes or foods with hidden ingredients could lead to incomplete nutritional breakdowns. To 

address these challenges, we could implement multiple validation layers including confidence 

scoring for AI predictions, fallback databases for common foods, portion size calibration using 

reference objects, and user feedback mechanisms to improve accuracy over time. Additionally, I 

could use multiple AI models or ensemble methods to cross-validate nutritional assessments and 

provide more reliable results for users tracking their diabetes risk.  

 

2.2. Personalized Dietary Recommendation 
 

A significant challenge in the personalized recommendation system is generating relevant dietary 

suggestions from limited and potentially inconsistent user data. Homeless individuals may have 

irregular eating patterns, limited access to diverse foods, and varying data quality in their food 

logging. The AI recommendation service could struggle with sparse data, contradictory nutrition 

patterns, or dietary restrictions unique to homeless populations. To overcome these issues, we 

could implement adaptive algorithms that account for food accessibility constraints, incorporate 

local food bank inventories, use demographic health data to fill gaps, and design flexible 

recommendation engines that prioritize practical, affordable food choices over ideal nutritional 

recommendations.  

 

2.3. Health Data Visualization Challenges 
 

The health analytics and progress tracking component faces challenges in creating meaningful 

visualizations from irregular user data patterns. Homeless users may have inconsistent app usage, 

missing data periods, or extreme nutritional fluctuations that could skew trend analysis. The 

charting system could misrepresent health progress or fail to identify concerning patterns due to 

data gaps. To address these challenges, we could implement intelligent data interpolation 

methods, weighted averaging for irregular intervals, anomaly detection to flag unusual patterns, 

and contextual indicators that account for lifestyle factors. The system could also provide 

multiple visualization timeframes and emphasize recent data trends over long-term averages 

when data consistency is poor.   
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3. SOLUTION 
 

VitalityShield is a Flutter-based mobile application designed to help homeless individuals prevent 

diabetes through food tracking and personalized recommendations. The system integrates three 

major components: an AI Food Scanner, an AI Recommendation Service, and Health Analytics 

with Progress Tracking. The application flow begins when users capture or upload food images 

through the scanning interface. The AI Food Scanner processes these images using OpenAI's 

GPT-4 Vision API to extract detailed nutritional information including calories, protein, vitamins, 

fats, carbohydrates, and a diabetes-friendly index score. The data is maintained in Firebase 

Firestore and triggers the AI Recommendation Service, which analyzes the user's nutritional 

patterns and generates personalized food suggestions using GPT-4o-mini. The recommendations 

identify both foods to include and avoid based on the individual's dietary history and diabetes risk 

factors. Finally, the Health Analytics component visualizes this data through interactive charts 

showing nutritional trends over various time periods (daily, weekly, monthly, yearly), enabling 

users to track their progress and maintain awareness of their dietary patterns. The complete 

system is developed using Flutter for cross-platform compatibility, Firebase for authentication 

and data storage, and OpenAI APIs for intelligent food analysis and recommendation generation 

[7].  

 

 
 

Figure 1. Overview of the solution 

 

The AI Food Scanner serves as the primary data collection component, capturing food images 

and extracting nutritional information. It utilizes OpenAI's GPT-4 Vision API for computer 

vision as well as natural language processing to assess food images and generate structured JSON 

responses containing detailed nutritional breakdowns, enabling automated dietary tracking for 

diabetes prevention. 
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Figure 2.  Screenshot of food scanner 

 

 
 

Figure 3. Screenshot of code 1 

 

This code runs when users tap the "Analyze" button after capturing or selecting a food image in 

scan_screen.dart:58. The sendImageWithResponseAPI method handles the core AI food analysis 

functionality. First, it converts the selected image file into a base64-encoded string that can be 

transmitted via HTTP. The method then constructs a request body containing the GPT-4 Vision 

model specification and detailed prompt instructions that tell the AI to act as a nutritionist and 

return structured JSON nutritional data. The request is sent to OpenAI's API with proper 

authentication headers [8]. When the server responds successfully, it returns nutritional analysis 

including calories, vitamins, fats, proteins, and a diabetes-friendly rating. The code parses this 

JSON response and updates the UI state through setState(), triggering a rebuild that displays the 
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nutritional information to the user. This enables real-time food analysis and immediate feedback 

on dietary choices for diabetes prevention. 

 

The AI Recommendation Service generates personalized dietary suggestions based on users' 

nutritional history stored in Firebase. It employs OpenAI's GPT-4o-mini for natural language 

processing and reasoning, analyzing patterns in calorie, protein, fiber, and sugar intake to 

recommend specific food categories and identify foods to avoid for diabetes prevention. 

 

 
 

Figure 4. Screenshot of food advisor 

 

 
 

Figure 5. Screenshot of code 2 

 

This code executes when users navigate to the Food Suggestions screen, automatically triggered 

by the fetchRecommendations() method in food_suggestions_screen.dart:29. The 

_generateAIComprehensiveRecommendations function represents the core intelligence of 

therecommendation system. It first retrieves the user's recent nutritional data from Firebase 

through the nutritionData parameter. The method constructs a detailed prompt for GPT-4o-mini 

that includes specific constraints (maximum 5 recommended foods, 4 foods to avoid) and 

requires personalized reasoning based on actual nutritional deficiencies or excesses [9]. The AI 

analyzes patterns in the user's eating habits, identifies nutritional gaps or concerning trends, and 
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generates contextually relevant food suggestions. The response is parsed from JSON format and 

organized into two categories: foods to include and foods to avoid. This enables the system to 

provide targeted dietary guidance that addresses individual health needs rather than generic 

nutritional advice, making diabetes prevention recommendations more relevant and actionable for 

homeless users. 

 

The Health Analytics component transforms nutritional data into meaningful visual insights using 

Syncfusion Flutter Charts. It processes time-series data from Firebase, employs AI-powered data 

aggregation through GPT-4o-mini to handle irregular patterns, and creates interactive 

visualizations showing trends in calories, protein, and cholesterol across multiple timeframes for 

progress tracking. 

 

 
 

Figure 6. Screenshot of health dashboard 

 

 
 

Figure 7. Screenshot of code 3 
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This code runs when users select different time periods or metric types in the Charts screen, 

triggered by the setData() method in charts_screen.dart:63. The function handles the complex 

task of aggregating irregular nutritional data into meaningful time-based visualizations. First, 

getOrdersInRange() retrieves user data from Firebase based on the selected timeframe [10]. The 

method then leverages GPT-4o-mini's analytical capabilities to intelligently group data according 

to specific distribution rules - hourly for "Today", daily for "Last 7 Days", weekly for "Last 30 

Days", and monthly for "Last Year". This AI-powered aggregation is crucial for homeless users 

who may have inconsistent eating patterns, as it can handle data gaps and irregular intervals. The 

AI processes raw timestamp-value pairs and returns properly formatted chart data with 

appropriate time labels. Finally, the results are mapped to _SalesData objects compatible with 

Syncfusion charts, enabling smooth visualization of nutritional trends that help users understand 

their dietary patterns and diabetes risk progression over time. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

Testing the accuracy of AI food recognition across different image qualities and food types. This 

component is critical because inaccurate nutritional analysis could lead to poor dietary decisions 

and ineffective diabetes prevention among vulnerable homeless populations. 

 

We tested 50 food images across five categories (fruits, vegetables, processed foods, mixed 

dishes, and beverages) with varying image qualities (high, medium, low lighting and resolution). 

Each food item has verified nutritional data from USDA food database as control data. The 

experiment compares AI-generated nutritional values against established standards, measuring 

accuracy percentages for calories, protein, fat, and carbohydrates. This design ensures 

comprehensive testing across food types commonly accessed by homeless populations while 

accounting for real-world photography conditions where users may not have optimal lighting or 

camera equipment. The USDA database provides reliable baseline measurements for accuracy 

calculations. 

 

 
 

Figure 8. Figure of experiment 1 
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The overall mean accuracy across all nutrients was 83.25%, with a median of 83.5%. The lowest 

accuracy was 71% for mixed dishes, while the highest was 92% for fruits. The results show that 

image quality significantly impacts accuracy, with a 19-percentage-point drop from high to low 

quality images. This exceeded expectations, as we anticipated more consistent performance 

across quality levels. Mixed dishes performed surprisingly poorly at 71%, likely because 

complex foods with multiple ingredients challenge the AI's ability to distinguish individual 

components and their proportions. Single-ingredient foods like fruits and vegetables achieved the 

highest accuracy due to their visual simplicity. Image quality emerged as the biggest factor 

affecting results, suggesting that user education about photography techniques could substantially 

improve system performance. The 82% protein accuracy was lower than expected, possibly 

because protein content is less visually apparent than other macronutrients. These findings 

indicate the need for confidence scoring and user guidance for optimal image capture. 

 

4.2. Experiment 2 
 

Testing the relevance and practicality of AI-generated food recommendations for homeless 

populations with limited food access. Poor recommendations could lead to user frustration and 

app abandonment, undermining diabetes prevention efforts. 

 

We surveyed 5 case workers from homeless shelters and food banks to evaluate 100 AI-generated 

food recommendations across different nutritional profiles. Each recommendation was rated on a 

1-5 scale for accessibility (availability at food banks/shelters), affordability (cost under $2), and 

practicality (no special preparation equipment needed). Control data came from existing meal 

programs at local shelters. The recommendations were generated using simulated user profiles 

with varying nutritional needs (high diabetes risk, vitamin deficiencies, etc.). This design tests 

whether the AI considers real-world constraints faced by homeless populations rather than ideal 

nutritional scenarios, ensuring recommendations are actually implementable in their daily lives. 

 

 
 

Figure 9. Figure of experiment 2 

 

The mean relevance score was 3.4/5 with a median of 3.5, indicating moderate practical value. 

Protein recommendations scored lowest at 2.9/5, while vegetable recommendations achieved the 

highest score at 4.1/5. The accessibility score of 3.1/5 was concerning, suggesting that many 

recommendations assume food availability that may not exist in homeless-serving environments. 

Surprisingly, affordability scored highest at 3.8/5, indicating the AI effectively considers cost 

constraints. The low protein and dairy scores (2.9/5 and 2.7/5) reflect the challenge of accessing 

these food groups in food bank settings, where shelf-stable items dominate. The correlation 

analysis revealed that higher diabetes risk profiles received less practical recommendations, 

opposite to the intended outcome. This suggests the AI prioritizes medical ideals over real-world 

constraints for high-risk users. These findings highlight the need for incorporating food 

accessibility databases and shelter-specific dietary constraints into the recommendation algorithm 

to improve practical relevance for the target population. 
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5. RELATED WORK 
 

Campbell et al. (2020) conducted a systematic review of diabetes management interventions for 

homeless adults, identifying multidisciplinary treatments including provision of basic necessities 

including medication,healthy meals,and educational outreach programs [11]. Their analysis found 

that effective interventions included outpatient screening teams, shelter-based monitoring 

programs, and housing supports. Nevertheless, these approaches are subject tonotable limitations 

including high operational costs, limited geographic reach, and dependency on healthcare staff 

availability. The interventions also require participants to visit specific locations at scheduled 

times, creating barriers for homeless individuals with unpredictable schedules. VitalityShield 

improves upon this by providing 24/7 accessible diabetes prevention tools through smartphones, 

eliminating location and scheduling constraints while offering personalized, AI-driven 

interventions that scale efficiently across populations. 

 

Recent randomized controlled trials from 2020-2024 have demonstrated the success of 

interventions delivered via SMS text messaging for diabetes self-management [12]. The 

SupportMe trial (2023) found that customized SMS text messages providing self-management 

support showed improved medication adherence, with participants reporting that SMS messages 

were useful (86.6%) and motivated change (63.1%). However, this approach is limited by its one-

way communication model that cannot adapt to individual dietary patterns or provide real-time 

feedback on food choices. The intervention also assumes literacy and consistent phone access, 

which may not apply to all homeless individuals. Additionally, generic messages lack 

personalization based on actual eating habits. VitalityShield addresses these limitations by 

offering interactive, AI-powered food analysis and customized recommendations that 

dynamically respond to user behavior, creating a more engaging and individually relevant 

diabetes prevention experience. 

 

Systematic reviews of mobile health interventions for diabetes management (2020-2024) show 

that mHealth apps often employ smartphone applications and automated messaging for glycemic 

control [13]. A 2025 systematic review found that mHealth interventions show promising effects 

on diabetes management, particularly in glycemic control and weight regulation. However, 

studies revealed significant limitations in sustained app usage because ofcomplicated interfaces 

and a lack of immediate feedback. The methodology required users to manually input extensive 

health data, making it difficult for people with limited digital literacy or time constraints. These 

apps also failed to address nutritional education or food access challenges specific to homeless 

populations. VitalityShield overcomes these barriers by simplifying data input through automated 

image analysis, providing immediate nutritional feedback, and specifically addressing food 

accessibility challenges faced by homeless individuals through context-aware recommendations. 

 

6. CONCLUSIONS 
 

VitalityShield faces several limitations that require future development. The AI food recognition 

system achieved only 83% accuracy, particularly struggling with mixed dishes and low-quality 

images, which could mislead users about their nutritional intake. The recommendation system 

showed moderate practicality scores (3.4/5), indicating insufficient consideration of food 

accessibility constraints in homeless environments. Additionally, the application requires 

smartphone access and basic digital literacy, potentially excluding some vulnerable populations. 

Internet connectivity is necessary for AI processing, limiting offline functionality [14]. To 

improve these limitations, we would implement offline food databases for basic nutritional 

information, develop computer vision models specifically trained on foods commonly available 

to homeless populations, integrate local food bank inventory APIs to ensure realistic 
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recommendations, add multilingual support and voice commands for accessibility, and create 

partnerships with homeless service providers to gather real-world usage feedback [15]. Enhanced 

machine learning algorithms could better handle complex food recognition scenarios, while local 

data caching would reduce connectivity dependencies and improve user experience in areas with 

poor internet access. 

 

VitalityShield represents a promising technological approach to diabetes prevention in homeless 

communities through AI-powered nutrition tracking and personalized recommendations. While 

current limitations exist in accuracy and accessibility, the application offers significant 

advantages over traditional outreach methods by providing scalable, 24/7 diabetes prevention 

support that adapts to individual dietary patterns. 
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