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ABSTRACT 
 
This paper presents a Unity-based reinforcement learning system for simulating rocket 

descent and landing. Leveraging the Unity ML-Agents framework, our approach applies 

Proximal Policy Optimization (PPO) combined with imitation learning to balance 

exploration with guided behavior [8]. Unlike prior works, our system introduces vertical 

dynamics, randomized initial conditions to reduce overfitting, and variable environmental 

factors such as gravity, drag, rocket mass, and thruster power. We further refine the 

reward structure by incorporating precision- and time-based incentives, including a 

“bullseye bonus” for accuracy and a time bonus for efficiency. Experimental results show 

that our rocket agents achieve competitive success rates compared to existing 

implementations, even under more complex conditions. By extending Unity’s simulation 

environment with both technical rigor and user-oriented design, this work contributes to 

advancing reinforcement learning applications in aerospace while also promoting 

accessibility and engagement for broader audiences interested in space exploration 

technologies [9]. 

 

KEYWORDS 
 
Unity, Machine Learning, Rockets, Landing 

 

1. INTRODUCTION 
 

Currently, new technologies seem to be developing at a tremendous rate; AI systems have 

become startlingly capable in the last several years. Alongside such advancements, public 

fascination with space travel continues to rise. As of 2023, a majority of Americans (~55%) 

believe that people will routinely travel to space as tourists within the next 50 years (Pew 

Research Center, 2023). An even larger majority of Americans believe it is essential for the U.S. 

to be a leader in space exploration, which suggests a receptive audience for space-related learning 

experiences that are more modern and hands-on [1]. Despite this, classrooms still struggle to 

convert much of the interest into careers. In a study of 15,847 students, interest in an astronomy 

career starts comparatively high in middle school but declines at each educational level. For 

example, interest from male children drops from ~6% in middle school to ~1-2% by college, with 

even lower figures (3.9% to 0.5%) for females (Bergstrom et al, 2016). However, the same study 

also found extracurricular activities such as stargazing, tinkering, reading, and watching science 

predict stronger retention, particularly among girls. A similar paradox is observed in a study with 

STEM undergraduates, where students report positive views of space exploration but do not have 

intentions of further engaging through clubs or projects (Pyrkosz‐Pacyna et al, 2022) [2]. Meta-

analyses across STEM show a higher exam performance when students engage in hands-on 

learning rather than just listening to lectures (Freeman et al, 2014). Getting more people involved 

in the space sector is important to pushing forward technological progress for space travel. 
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The three prior methodologies each advanced reinforcement learning for vehicle control but 

faced notable shortcomings [3]. Yusef Savid et al. applied Unity ML-Agents to race karts, 

showing PPO with behavioral cloning improved outcomes, though the lack of randomized spawn 

conditions risked overfitting. Rathod et al. trained PPO-based rocket agents with imitation 

learning, reaching a 95% success rate; however, their omission of atmospheric effects and 

reliance on discrete thruster control limited real-world realism. Hicham Bouchana et al. 

incorporated Thrust Vector Control and Cold Gas Thrusters, yielding 99.6% success, but still 

assumed discrete engine behaviors not aligned with real rockets. Our project built on these by 

introducing vertical dynamics, randomized initial conditions, and variable environmental factors 

such as gravity, drag, and rocket mass [4]. We also refined neural network architecture and 

enhanced reward shaping with “bullseye” and time-based bonuses. Together, these improvements 

increased robustness, reduced overfitting, and emphasized both precision and efficiency in rocket 

landings. 

 

To better leverage the rising interest in space travel, creating and distributing a simulated 

experience that explores new advancements in rocketry is imperative. Showcasing the 

intersection of modern AI developments with rocket simulations can direct more attention on 

pursuing careers and innovation in the space industry [10]. We can use AI and machine learning 

in order to create reliable and consistent self-landing rockets which the user can in turn directly 

interact with. The pipeline to produce such models are created in Unity, a 3d game engine, that 

trains a model controlling a SpaceX Falcon 9 rocket to land on a target platform from variable 

starting positions and physics parameters. This serves to push forward the viability of AI for the 

use of landing reusable spacecraft and better understanding the impact of a model’s architecture 

in its capacity to learn and execute such a task. The inclusion of multiple environments and 

adjustable variables produces a more robust solution compared to similar endeavors where 

models are only tailored to a more limited set of starting conditions. 

 

In each experiment, we sought to test the effect of manipulating intrinsic and extrinsic variables 

on the ability of the AI to land. We ran four experiments, each testing one of four variables: 

gravity, drag, mass, and thrust. Prior to all modifications, we ran a control set of 300 runs using 

the default Earth-based parameters to get a baseline set of performance metrics. For gravity, we 

picked the gravities expressed by four celestial bodies: Moon, Mars, Venus, and Jupiter. As for 

the drag, For the intrinsic values like mass and thrust, each was modified in two increments 

above and below the control. The increments were 100,000 kg and 1,000,000 N for mass and 

thrust respectively. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. Neural Network Architecture Tuning 
 

Determining the neural network’s depth and width is deceptively critical. If the policy network is 

undersized-say, fewer than two hidden layers or fewer than 128 neurons per layer-it lacks the 

ability to learn complex actions as it doesn’t have the representational power to approximate the 

landing process, causing it to plateau at a mediocre success rate. Oversizing the network, on the 

other hand, inflates the parameter count, slows down learning, and increases pressure on 

computer hardware. Worse, changing the architecture afterwards voids all previous training data, 

forcing a retrain. To help mitigate these issues, we can set up the agent training scene early in the 
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process and run various configurations of hidden units and layers to settle on the most promising 

candidate before proceeding to further refinements in the reinforcement step. 

 

2.2. Accelerating PPO Training 
 

While Proximal Policy Optimization (PPO) is relatively stable, it can still require millions of 

agent steps and hours of computation to result in a high-quality landing strategy [14]. Having too 

long a wait between steps can hinder iteration progress and put weaker systems under undue 

stress. To help speed things up, we can increase the number of agents running simultaneously up 

to what the host system can handle, while also providing player-controlled recordings of the 

correct actions. These recordings are captured via Unity’s demonstration recorder and are enabled 

by activating “behavioral cloning” and Generative Adversarial Imitation Learning (GAIL) with a 

roughly 0.6 strength value to kickstart learning [11]. Throughout this training process, various 

maladaptive behaviours must be struck down with an immediate punishment value and episode 

termination to limit how far the agents are permitted to drift from the desired actions. We can 

also alter the simulation’s time_scale to further accelerate progress both in iteration and data 

collection. 

 

2.3. Failure Diagnostics System 
 

Without proper diagnostic tools, failed episodes are opaque, as we simply observe a dip in the 

reward trends, but not why such a dip is occurring. Failure can range anywhere from crashing too 

hard into the ground, drifting too far away, rising up, or just missing the target entirely. To help 

pinpoint the overall failure trend, we can introduce a structured logging system that outputs both 

to the console and the user interface that counts the occurrences of each type of failure. Each 

agent reports their results at the end of an episode to the central logger, as identifying what the 

agents as a whole are missing is more important than what a singular failure happens to be. These 

layered diagnostics can help guide iteration refinements more effectively. 

 

3. SOLUTION 
 

The system is constructed out of three primary components (Figure 1). The first component is the 

AI brain, a PyTorch-based neural network managed by Unity ML-Agents that provides control 

inputs for the targeted rocket [12]. The second component is the environment, which is the world 

space the rocket exists and operates in, from which we can define and observe the parameter 

hooks for gravity, drag, mass, and thrust while also providing general intrigue for the user. The 

third component is the UI/UX, as various interface elements are provided to the end user to allow 

them to change physics parameters, change the rocket they are viewing, assume manual control, 

and also observe the performance of the agents in reaction to them. 
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Figure 1. Overview of the solution 

 

The AI brain utilizes PPO as the reinforcement learning algorithm and maps a 12-element 

observation vector (positions, rotations, destinations, target speed, and current speed) to a discrete 

action vector. It is implemented with two fully connected hidden layers of 512 neurons each 

which enables it to better comprehend the complexities of gracefully landing a rocket. The 

models are trained through a continuous cycle of setup, observations, attempted actions, and end-

goal evaluations before then being assigned during inference to try and land the rocket in the 

correct location and descent velocity.  

 

 
 

Figure 2.  Screenshot of log in page 
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Figure 3. Screenshot of code 1 
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This YAML configuration is parsed by the `mlagents-learn` trainer at startup. Under 

`RocketCapabilities`, the `trainer_type` key selects PPO, after which `network_settings` defines a 

two-layer multilayer perceptron with 512 neurons per layer. `reward_signals` combines the 

standard discounted-return objective (`extrinsic`) with GAIL, which encourages the agent to 

imitate the recorded landings provided before the training session. `behavioral_cloning` further 

stabilizes early learning by minimizing the mean-squared error between the policy and the same 

demonstrations. To put it another way, GAIL attempts to act similarly to the demo while 

behavioral cloning seeks to directly copy the example. `max_steps` sets the overall training 

horizon, while the `time_horizon` (GAE rollout length) and `summary_freq` tune the sampling 

cadence. Changing any parameter will automatically propagate to the trainer without needing to 

recompile through Unity, which enables faster and more efficient iteration. 

 

The environment governs the physics and visuals that the player sees and interacts with. It also 

acts as the interface through which the user can change world parameters like gravity or drag, 

along with agent parameters like mass or thrust. This enables a variety of dynamic experiments to 

be conducted in-scene without the need for restarting or recompiling code. The environment also 

enforces randomized spawn states and episode-terminating events, such as collisions, to help 

determine if an agent is performing the task correctly. 

 

 
 

Figure 4. Screenshot of the system 1 

 



Computer Science & Information Technology (CS & IT)                                    213 

 

 
 

Figure 5. Screenshot of code 2 
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The script managing the environment contains a series of public physics handlers 

(`OnGravityChanged`, `OnDragChanged`, `OnMassChanged`, `OnThrustChanged`) that relay UI 

inputs to either the Unity physics engine or the rocket agents. Each handler is responsible for 

validating the attempted input or resetting it when the input field is cleared. `Physics.gravity` is a 

singleton value affecting all dynamic bodies, and changing it allows for the immediate impact to 

be observed by the environment. For drag, the routine enumerates all the Rigidbody components 

of active `rocket` instances and assigns them a new drag value. Similar routines are employed for 

the mass and thrust changes. These hot-swappable parameters feed into the agent’s observation 

vector at the next physics tick and ensure the policy reacts to environmental alterations within 

one frame. This approach keeps UI, physics, and ML layers loosely coupled, simplifying 

maintenance [15]. 

 

The orbital camera controller and HUD panels round out the overall system experience by 

transforming otherwise opaque training cycles into a compelling and understandable learning 

experience. Users can pan, zoom, and observe the environment while optionally assuming control 

of the rocket agent to boost interactivity and allow the user to compete with the AI. The 

additional stats panel streams real-time success and failure incidents, which serve to help 

diagnose issues during the training phase and act as a performance indicator during inference, so 

users can gauge how well the AI can complete the task. 

 

 
 

Figure 6. Screenshot of the system 2 
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Figure 7. Screenshot of code 2 

 

`Update()` executes once per rendered frame. The loop first checks if there is a valid target to 

observe and prevents the remainder of the code from running if there is not one. Then, it proceeds 

to check if the user pressed `F` to reset the camera before proceeding to the general control logic. 

The value assigned to the current zoom is attached to the scroll wheel input within predefined 



216                                   Computer Science & Information Technology (CS & IT) 

bounds. The left-mouse drag is captured to rotate the spherical coordinates stored in the x 

(azimuth) and y (elevation) variables. The `Quaternion.Euler` method converts these angles into a 

rotation, then multiplies it by a negative-z vector derived from the current zoom value to obtain 

the camera offset before being applied to the target’s world position. Given that this script runs 

independently of the ML-loop, it imposes zero overhead on training speed, even when 

`time_scale` is elevated. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

The first element of the system we need to test is the impact of extrinsic factors from the 

environment, such as gravity and drag, on the Agent’s accuracy. 

As independent variables, gravity and drug must each be isolated to their own set of tests to avoid 

interference from one another. For each set, Earth-like parameters that have been used during the 

entire training phase are used as the control, while notable values higher and lower are chosen to 

be tested and compared against the control. Each value is tested against 300 runs to filter outliers 

and get a reasonable average. 

 

For gravity, we selected values based on several different celestial bodies in the Solar System. On 

the lower end we have the Moon, followed by the planets Mars and Venus, which are closer to 

the control of gravity. As an extra bonus, we also included the gravity of Jupiter to observe how 

the system reacts to a dramatically larger stressor. 

 

Drag values were selected in intervals of 0.001 with the exception of 0, 0.01, and 0.05 in order to 

observe more drastic changes as well. 

 

Control Results: 

 

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666% 

Crashes: 15, Misses: 7, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

Gravity values: control = -9.81 m/s^2,  

moon = -1.625 m/s^2: 

No run complete, however, the rockets all sit suspended a few inches above the platform, 

suggesting that they would succeed, but at the expense of using up all theoretical fuel before 

doing so. 

mars = -3.728 m/s^2: 

Successes: 300, Failures: 0, Total: 300, Accuracy: 100% 

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

venus = -8.87 m/s^2: 

Successes: 290, Failures: 10, Total: 300, Accuracy: 96.66666% 

Crashes: 4, Misses: 6, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

jupiter = -24.79 m/s^2: 

Successes: 84, Failures: 216, Total: 300, Accuracy: 28% 

Crashes: 79, Misses: 137, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

Drag: control = 0.001293 (density of air at sea level in kg/m³), other values:  

0: 

Successes: 274, Failures: 26, Total: 300, Accuracy: 91.33334% 

Crashes: 15, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

0.000293: 

Successes: 275, Failures: 25, Total: 300, Accuracy: 91.66666% 



Computer Science & Information Technology (CS & IT)                                    217 

Crashes: 14, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

0.002293: 

Successes: 281, Failures: 19, Total: 300, Accuracy: 93.66666% 

Crashes: 8, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

0.003293: 

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666% 

Crashes: 11, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

0.01: 

Successes: 286, Failures: 14, Total: 300, Accuracy: 95.33334% 

Crashes: 8, Misses: 6, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

0.05: 

Successes: 300, Failures: 0, Total: 300, Accuracy: 100% 

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

Highest accuracy, but likely excessive fuel consumption 

 

 
 

Figure 8. Figure of experiment 1 

 

Generally speaking, the performance of the rocket agents were better, the lower the gravity likely 

due to easier maneuverability as less force was required to make the necessary adjustments. 

Compared to the control success rate of 92.67%, in Venus it rose to 96.67% and then achieved a 

100% success rate for Mars. However, a weird behavior was observed once we got to Moon 

gravity as no run was able to complete at all; the rocket would instead just perpetually hover a 

couple inches above the platform. This is likely due to the amount of force the agent exerted 

through the thrusters being too strong relative to the gravitational force thus preventing it from 
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making progress towards the ground. On the other hand, when testing a gravity value higher than 

Earth, we observed a significant drop in the performance. When simulating Jupiter’s gravity, the 

rocket was only able to succeed 28% of the time with around ⅔ of the failures being attributed to 

“misses” and the remainder to “crashes.” Misses are defined as when the rocket reaches ground 

level but fails to touch the target platform. The fact that the majority of failures were in this 

category indicates that the gravity was too strong for the lateral thrusters to have enough time to 

move the rocket into position. Crashes are when the rocket does manage to touch the platform but 

is still doing so at a velocity that would incur damage. In the case of drag, the general accuracy 

trended higher as more drag was introduced to the system. The implication here is that the rocket 

became less prone to drifting, allowing for the rocket to make more precise adjustments. 

However, it should be noted that higher drag does force more time and fuel expenditure required 

to land. Between the two extrinsic variables, changes in gravity were much more significant. 

 

4.2. Experiment 2 
 

Another group of elements we tested for the system are intrinsic properties, such as different 

rocket masses and primary thruster power. 

 

Much like the previous experiment, the rocket mass and thrust must also each be isolated to 

properly measure their impact. The same control results are able to be used for this set of 

scenarios. Two values in either direction are tested to the control value are tested. We continue to 

test each value against 300 runs to filter outliers and get a reasonable average. 

 

For mass, increments of 100,000 kg were explored in either direction while thruster force values 

were changed in increments of 1,000,000 to observe the optimal ranges. 

 

Control Results: 

 

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666% 

Crashes: 15, Misses: 7, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

Masses: control = 549054 kg, two increments of 100,000 kg in either direction 

349054 kg: 

Successes: 300, Failures: 0, Total: 300, Accuracy: 100% 

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

449054 kg: 

Successes: 300, Failures: 0, Total: 300, Accuracy: 100% 

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

649054 kg: 

Successes: 248, Failures: 52, Total: 300, Accuracy: 82.66666% 

Crashes: 38, Misses: 14, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

749054 kg: 

Successes: 195, Failures: 105, Total: 300, Accuracy: 65% 

Crashes: 74, Misses: 31, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

Thrust: control = 10,000,000 two increments of a million newtons in either direction 

8,000,000 N: 

Successes: 234, Failures: 66, Total: 300, Accuracy: 78% 

Crashes: 37, Misses: 29, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

9,000,000 N: 

Successes: 253, Failures: 47, Total: 300, Accuracy: 84.33334% 

Crashes: 27, Misses: 20, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

11,000,000 N: 

Successes: 292, Failures: 8, Total: 300, Accuracy: 97.33334% 
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Crashes: 7, Misses: 1, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

12,000,000 N: 

Successes: 300, Failures: 0, Total: 300, Accuracy: 100% 

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m 

 

 
 

Figure 9. Figure of experiment 2 

 

Both the mass and thruster tests yielded a clear trend in the general performance of the rocket 

agents. In the case of mass, accuracy only started to suffer once the rocket started to get heavier 

than the control weight, dropping from 92.67% success to 82.67% and 65% at each larger 

increment respectively. On the flipside, there was a consistent increase in success rising to 100% 

in the lower mass increments.This is a good sign, as generally rockets do not increase in weight 

throughout a flight. The lower mass means the rocket has less inertia to overcome. As for the 

thrust, the trend went in the opposite direction. When it continued to increase, the rocket got 

progressively more accurate, which is likely due to tighter control over drifting afforded to the 

rocket by the stronger thruster. However, at higher values, the rocket would have to be switching 

between on/off incredibly fast, which is impractical in real real-life applications. Both trends 

coincide with one another as decreasing the mass or increasing the thruster power, both result in a 

rocket that is easier to maneuver.  

 

5. RELATED WORK 
 

Yusef Savid et al. also put together a system under the Unity ML-Agents framework, but to teach 

agents how to drive race karts around a track [5]. Their implementation achieved a reasonable 

performance, hitting a mean reward of 0.761 without obstacles and 0.0681 with. While there is a 
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significant drop in the mean reward upon the introduction of foreign obstacles, the fact that 

adding behavioral cloning as a pre-training option allowed the agents to still achieve a positive 

mean reward, which aligns with the effectiveness we observed when providing the same 

references to our own agents. Their conclusion that Proximal Policy Optimization, particularly 

with behavioral cloning, provided the best results matches the evolution we observed in the 

rocket agents. One potential risk acknowledged by the authors is the current lack of 

randomization in the initial spawn position and orientation of the car, which could lead to 

overfitting issues. Our rocket agents expand on the application of using Unity’s ML agent system 

to drive vehicles by introducing a vertical axis to the environment and also implementing a range 

of initial starting conditions to better avoid the risk of overfitting. 

 

The simulation created by Rathod, A. et al. bore a much more similar resemblance to the system 

we designed as both are focused on teaching PPO-based rocket agents within the Unity engine 

how to safely land [6]. Their implementation achieved a very high success rate of 95% which was 

heavily boosted by the presence of curriculum and imitation learning, further corroborating the 

effectiveness of PPO-based solutions backed up with human references. With that being said, the 

lack of atmospheric effects and an unrealistic assumption of engines being able to instantly turn 

on and off via a discrete control system means that further testing is required before any real-

world deployment. While our system shares the same control limitations and works under a 

smaller elevation range, we expand on the concept through the introduction of variable 

environmental factors such as gravity and drag in addition to intrinsic variables like the rocket’s 

mass and thruster power. We were also able to squeeze out a similar success rate in spite of these 

conditions by also leveraging some tweaks to the model architecture such as tuning up the size of 

each layer of the neural network as well as the number of layers. From a thematic standpoint, we 

also placed a greater emphasis on visual elements like the skybox which would normally be 

superfluous but serves to provide a more polished experience as the program is also intended to 

be directly downloaded by others and interacted with to promote accessibility and engagement 

with space media. 

 

Hicham Bouchana et al. also approaches the task of teaching Unity agents to land a rocket, but 

with the added component of Thrust Vector Control (TVC) to augment maneuverability [7]. They 

also incorporate Cold Gas Thrusters (CGT), which are essentially side thrusters located near the 

first stage of the rocket much like the ones we integrated into our own agents to facilitate lateral 

movement and stability. Their solution achieved a very high success rate of 99.6% which mirrors 

the high success rates observed across the board for PPO-based agent solutions. This system, 

however, also has the limitation of assuming discrete controls which does not fully translate to 

real life conditions at this time. Our solution expands on the incentive structure of the rocket 

agent to more explicitly factor in landing time and precision into the rewards the agents can 

achieve; progress reward formulas were tuned into the desired curve. Figure 10 illustrates the 

“bullseye bonus,” which is the exponential reward given the closer the rocket is to the center of 

the platform upon a successful landing. Figure 11 is the additional time bonus provided based on 

the amount of time it took to complete the operation. Higher starting points were tuned to give a 

slightly higher reward yield to further push the agents to prefer faster runs. Given that we are 

operating within the 300-700 meter elevation band, the curve was structured to only give a 

meaningful reward within about 70 seconds. 
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Figure 10. Figure of paper 3 

 

6. CONCLUSIONS 
 

The general scope of the AI model’s utility still has significant room to grow. While the rocket is 

capable of performing spins and rotations, the agents themselves were not trained enough to 

properly take advantage of these controls which limit the conditions it can adapt to. The current 

agent’s focus is on the final vertical landing phase but can also be expanded to perform the earlier 

stages of descent starting at reentry to form a more complete solution. This would require a 

significant increase to the starting height at around 4.6 km for the final vertical landing phase and 

a separate model to handle the reentry phase which begins at around 60-70 km. The increased 

difficulty of such an expansion can be improved through the introduction of more adaptable 

controls like TVC. 

 

Machine learning algorithms play a pivotal role in enabling safe and precise rocket descent and 

landing by optimizing trajectory control, predicting dynamic conditions, and adapting in real 

time. Their integration enhances reliability, reduces risk, and supports sustainable space 

exploration, marking a critical advancement in aerospace engineering and autonomous flight 

systems. 
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