MACHINE LEARNING ALGORITHMS IN
FACILITATING AND ASSISTING ROCKET
DESCENT AND LANDING

Ryan Shen !, Andrew Park 2

' Dos Pueblos High School, 7266 Alameda Ave, Goleta, CA 93117
2 California State Polytechnic University, Pomona, CA 91768

ABSTRACT

This paper presents a Unity-based reinforcement learning system for simulating rocket
descent and landing. Leveraging the Unity ML-Agents framework, our approach applies
Proximal Policy Optimization (PPO) combined with imitation learning to balance
exploration with guided behavior [8]. Unlike prior works, our system introduces vertical
dynamics, randomized initial conditions to reduce overfitting, and variable environmental
factors such as gravity, drag, rocket mass, and thruster power. We further refine the
reward structure by incorporating precision- and time-based incentives, including a
“bullseye bonus” for accuracy and a time bonus for efficiency. Experimental results show
that our rocket agents achieve competitive success rates compared to existing
implementations, even under more complex conditions. By extending Unity’s simulation
environment with both technical rigor and user-oriented design, this work contributes to
advancing reinforcement learning applications in aerospace while also promoting
accessibility and engagement for broader audiences interested in space exploration
technologies [9].

KEYWORDS

Unity, Machine Learning, Rockets, Landing

1. INTRODUCTION

Currently, new technologies seem to be developing at a tremendous rate; Al systems have
become startlingly capable in the last several years. Alongside such advancements, public
fascination with space travel continues to rise. As of 2023, a majority of Americans (~55%)
believe that people will routinely travel to space as tourists within the next 50 years (Pew
Research Center, 2023). An even larger majority of Americans believe it is essential for the U.S.
to be a leader in space exploration, which suggests a receptive audience for space-related learning
experiences that are more modern and hands-on [1]. Despite this, classrooms still struggle to
convert much of the interest into careers. In a study of 15,847 students, interest in an astronomy
career starts comparatively high in middle school but declines at each educational level. For
example, interest from male children drops from ~6% in middle school to ~1-2% by college, with
even lower figures (3.9% to 0.5%) for females (Bergstrom et al, 2016). However, the same study
also found extracurricular activities such as stargazing, tinkering, reading, and watching science
predict stronger retention, particularly among girls. A similar paradox is observed in a study with
STEM undergraduates, where students report positive views of space exploration but do not have
intentions of further engaging through clubs or projects (Pyrkosz-Pacyna et al, 2022) [2]. Meta-
analyses across STEM show a higher exam performance when students engage in hands-on
learning rather than just listening to lectures (Freeman et al, 2014). Getting more people involved
in the space sector is important to pushing forward technological progress for space travel.

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA - 2025
pp. 207-222, 2025. CS & IT - CSCP 2025 DOI: 10.5121/¢sit.2025.152016

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152016

208 Computer Science & Information Technology (CS & IT)

The three prior methodologies each advanced reinforcement learning for vehicle control but
faced notable shortcomings [3]. Yusef Savid et al. applied Unity ML-Agents to race karts,
showing PPO with behavioral cloning improved outcomes, though the lack of randomized spawn
conditions risked overfitting. Rathod et al. trained PPO-based rocket agents with imitation
learning, reaching a 95% success rate; however, their omission of atmospheric effects and
reliance on discrete thruster control limited real-world realism. Hicham Bouchana et al.
incorporated Thrust Vector Control and Cold Gas Thrusters, yielding 99.6% success, but still
assumed discrete engine behaviors not aligned with real rockets. Our project built on these by
introducing vertical dynamics, randomized initial conditions, and variable environmental factors
such as gravity, drag, and rocket mass [4]. We also refined neural network architecture and
enhanced reward shaping with “bullseye” and time-based bonuses. Together, these improvements
increased robustness, reduced overfitting, and emphasized both precision and efficiency in rocket
landings.

To better leverage the rising interest in space travel, creating and distributing a simulated
experience that explores new advancements in rocketry is imperative. Showcasing the
intersection of modern Al developments with rocket simulations can direct more attention on
pursuing careers and innovation in the space industry [10]. We can use Al and machine learning
in order to create reliable and consistent self-landing rockets which the user can in turn directly
interact with. The pipeline to produce such models are created in Unity, a 3d game engine, that
trains a model controlling a SpaceX Falcon 9 rocket to land on a target platform from variable
starting positions and physics parameters. This serves to push forward the viability of Al for the
use of landing reusable spacecraft and better understanding the impact of a model’s architecture
in its capacity to learn and execute such a task. The inclusion of multiple environments and
adjustable variables produces a more robust solution compared to similar endeavors where
models are only tailored to a more limited set of starting conditions.

In each experiment, we sought to test the effect of manipulating intrinsic and extrinsic variables
on the ability of the Al to land. We ran four experiments, each testing one of four variables:
gravity, drag, mass, and thrust. Prior to all modifications, we ran a control set of 300 runs using
the default Earth-based parameters to get a baseline set of performance metrics. For gravity, we
picked the gravities expressed by four celestial bodies: Moon, Mars, Venus, and Jupiter. As for
the drag, For the intrinsic values like mass and thrust, each was modified in two increments
above and below the control. The increments were 100,000 kg and 1,000,000 N for mass and
thrust respectively.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Neural Network Architecture Tuning

Determining the neural network’s depth and width is deceptively critical. If the policy network is
undersized-say, fewer than two hidden layers or fewer than 128 neurons per layer-it lacks the
ability to learn complex actions as it doesn’t have the representational power to approximate the
landing process, causing it to plateau at a mediocre success rate. Oversizing the network, on the
other hand, inflates the parameter count, slows down learning, and increases pressure on
computer hardware. Worse, changing the architecture afterwards voids all previous training data,
forcing a retrain. To help mitigate these issues, we can set up the agent training scene early in the

Computer Science & Information Technology (CS & IT) 209

process and run various configurations of hidden units and layers to settle on the most promising
candidate before proceeding to further refinements in the reinforcement step.

2.2. Accelerating PPO Training

While Proximal Policy Optimization (PPO) is relatively stable, it can still require millions of
agent steps and hours of computation to result in a high-quality landing strategy [14]. Having too
long a wait between steps can hinder iteration progress and put weaker systems under undue
stress. To help speed things up, we can increase the number of agents running simultaneously up
to what the host system can handle, while also providing player-controlled recordings of the
correct actions. These recordings are captured via Unity’s demonstration recorder and are enabled
by activating “behavioral cloning” and Generative Adversarial Imitation Learning (GAIL) with a
roughly 0.6 strength value to kickstart learning [11]. Throughout this training process, various
maladaptive behaviours must be struck down with an immediate punishment value and episode
termination to limit how far the agents are permitted to drift from the desired actions. We can
also alter the simulation’s time scale to further accelerate progress both in iteration and data
collection.

2.3. Failure Diagnostics System

Without proper diagnostic tools, failed episodes are opaque, as we simply observe a dip in the
reward trends, but not why such a dip is occurring. Failure can range anywhere from crashing too
hard into the ground, drifting too far away, rising up, or just missing the target entirely. To help
pinpoint the overall failure trend, we can introduce a structured logging system that outputs both
to the console and the user interface that counts the occurrences of each type of failure. Each
agent reports their results at the end of an episode to the central logger, as identifying what the
agents as a whole are missing is more important than what a singular failure happens to be. These
layered diagnostics can help guide iteration refinements more effectively.

3. SOLUTION

The system is constructed out of three primary components (Figure 1). The first component is the
Al brain, a PyTorch-based neural network managed by Unity ML-Agents that provides control
inputs for the targeted rocket [12]. The second component is the environment, which is the world
space the rocket exists and operates in, from which we can define and observe the parameter
hooks for gravity, drag, mass, and thrust while also providing general intrigue for the user. The
third component is the UI/UX, as various interface elements are provided to the end user to allow
them to change physics parameters, change the rocket they are viewing, assume manual control,
and also observe the performance of the agents in reaction to them.

210

actions taken by the rocket object

Environment

Al Brain

(Neural Network)

Neural Network determines

Neural Network leams
from training

Rocket

Computer Science & Information Technology (CS & IT)

Physical characteristics can
be edited to affect the rocket

UIUX

The AI brain utilizes PPO as the reinforcement learning algorithm and maps a 12-element
observation vector (positions, rotations, destinations, target speed, and current speed) to a discrete
action vector. It is implemented with two fully connected hidden layers of 512 neurons each
which enables it to better comprehend the complexities of gracefully landing a rocket. The
models are trained through a continuous cycle of setup, observations, attempted actions, and end-
goal evaluations before then being assigned during inference to try and land the rocket in the

Environmental characteristics can be edited
to affect the rocket in the environment

Figure 1. Overview of the solution

correct location and descent velocity.

v Behavior Parameters

Behavior Name
Vector Observation
Space Size 12
Stacked Vector @
Actions
Continuous Acti 0
Discrete Branch 4
Branch O Size
Branch 1 Size
Branch 2 Size
Branch 3 Size

Model

Inference Devic Default

Deterministic In
Behavior Type
Team Id 0
Use Child Sensors v
Observable Attribu Ignore

Default

Rocket Capabilities

1; cannot run

Figure 2. Screenshot of log in page

Computer Science & Information Technology (CS & IT) 211

behaviors:

Rocket Capabilities:
trainer_type: pop
hyperparameters:

batch_size: 1024
buffer_size: 18240
learning_rate: @.0003
beta: @8.885
epsilon: 0.2
Aambd: 0.95
num_epoch: 3
shared_critic:
learning_rate_schedule: linear
beta_schedule: linear
epsilon_schedule: linear
checkpoint_interval: 500008
network_settings:
normalize:
hidden_units: 512
num_layers: 2
vis_encode_type: simple
memory :
goal_conditioning_type: hyper
deterministic:
reward_signals:
extrinsi
gamma: 8.99
strength: 1.0
network_settings:
normalize:
hidden_units: 128
num_layers: 2
vis_encode_type: simple
memory :
goal_conditioning_type: hyper
deterministic:
gail:
strength: 0.5
demo_path: "rocketRecordings/translations.demo”
behavioral_cloning:
strength: 8.6
demo_path: "rocketRecordings/translation5.demo"
init_path:
keep_checkpoints: 5
even_checkpoints:
max_steps: 588000
time_horizon: 64
summary_freq: 20000
threaded:
self_play:

v_settings:

env_path:

env_args:

base_port: 5085

num_envs: 1

num_areas: 1

timeout_wait: 6@

seed: -1

max_lifetime_restarts: 18

restarts_rate_limit_n: 1

restarts_rate_limit_period s: 60
engine_settings:

width: 84

height: 84

quality_level: 5

time_scale: 20

target_frame_rate:

capture_frame_rate:

no_graphic

no_graphics_monitor:
environment_parameters:
checkpoint_settings:

run_id: tes

initialize_from:

load_model:

resume

force:

train_model:

inference:

results_dil
torch_settings:

device:
bug:

Figure 3. Screenshot of code 1

212 Computer Science & Information Technology (CS & IT)

This YAML configuration is parsed by the ‘mlagents-learn’ trainer at startup. Under
‘RocketCapabilities’, the “trainer_type" key selects PPO, after which ‘network_settings' defines a
two-layer multilayer perceptron with 512 neurons per layer. ‘reward signals’ combines the
standard discounted-return objective (‘extrinsic’) with GAIL, which encourages the agent to
imitate the recorded landings provided before the training session. ‘behavioral cloning” further
stabilizes early learning by minimizing the mean-squared error between the policy and the same
demonstrations. To put it another way, GAIL attempts to act similarly to the demo while
behavioral cloning seeks to directly copy the example. 'max_steps’ sets the overall training
horizon, while the “time_horizon" (GAE rollout length) and “summary_freq" tune the sampling
cadence. Changing any parameter will automatically propagate to the trainer without needing to
recompile through Unity, which enables faster and more efficient iteration.

The environment governs the physics and visuals that the player sees and interacts with. It also
acts as the interface through which the user can change world parameters like gravity or drag,
along with agent parameters like mass or thrust. This enables a variety of dynamic experiments to
be conducted in-scene without the need for restarting or recompiling code. The environment also
enforces randomized spawn states and episode-terminating events, such as collisions, to help
determine if an agent is performing the task correctly.

jegneEann

Figure 4. Screenshot of the system 1

Computer Science & Information Technology (CS & IT) 213

(gravityInputField.te:
Physics.gravity = Vector3(e, -defaultGravityValue, @);
Debug.Log avity {Physics.gravity)");

-TryParse(gravityInputField.text, gravityValue))

Vector3(8, -gravityValue, 8);

-gravity)");

Debug.LogError("Tnvalid

DragChanged()

(dragInputField. text

env in environments)

rockets = env.GetComponentsInChildren<rocket>();
cket in rockets

rocket . GetComponent<Rigidbody>();
)

rb.linearDamping = defaultDragvalue;
Debug.Log($"0rag set to: {defaultDragvalue} for r n {env,name}

«TryParse(draglnputField. text, dragvalue)) {

env in environments)

= env.GetComponentsInChildrencrockets(
ket in rockets)

rb = rocket.GetComponent<Rigidbody>(
(rb
dragValue;

rb. linearDamping
to: {dragvalue} f

{env. nane}

OnMassChanged()

(massInputField.text ==
environments)

env.GetComponentsInChildren<rockes

rocket in rockets)

rocket GetComponent<Rigidbody>();

rb.mass
Debug. Logi t in {env.name}");

.TryParse(massInputField. text, massValue))

env in environmen:

rockets = env.GetComponentsInChildrencrocket>();

(var rocket in rockets)

rb = rock Component <Rigidbody>();

(rb 1=

o in {env.name}");

rb.mass = massValu

Debug. Log($ {wassValue} for

OnThrustChanged ()

(thrustInputField. text
env in environmen

tComponentsInChildren<rockets(

rockets = env.G
rockets)

(var rocket

defaultThrustValue;
in {env.name}");

rocket.mainThrust
to: {defaultThrustvalue} for rocket

Debug. Log($" Thrust

.TryParse(thrustInputFiel

environments)

rockets = env.GetComponentsInChildrencrocket>();

(var rocket in rocl

rocket.mainThrust = thrustValue;
Debug. Log($"Th set to: {thrustvalue} f in {env.name}")

Figure 5. Screenshot of code 2

214 Computer Science & Information Technology (CS & IT)

The script managing the environment contains a series of public physics handlers
(*OnGravityChanged’, ‘OnDragChanged’, ‘OnMassChanged’, *OnThrustChanged") that relay Ul
inputs to either the Unity physics engine or the rocket agents. Each handler is responsible for
validating the attempted input or resetting it when the input field is cleared. 'Physics.gravity' is a
singleton value affecting all dynamic bodies, and changing it allows for the immediate impact to
be observed by the environment. For drag, the routine enumerates all the Rigidbody components
of active "rocket’ instances and assigns them a new drag value. Similar routines are employed for
the mass and thrust changes. These hot-swappable parameters feed into the agent’s observation
vector at the next physics tick and ensure the policy reacts to environmental alterations within
one frame. This approach keeps Ul, physics, and ML layers loosely coupled, simplifying
maintenance [15].

The orbital camera controller and HUD panels round out the overall system experience by
transforming otherwise opaque training cycles into a compelling and understandable learning
experience. Users can pan, zoom, and observe the environment while optionally assuming control
of the rocket agent to boost interactivity and allow the user to compete with the Al. The
additional stats panel streams real-time success and failure incidents, which serve to help
diagnose issues during the training phase and act as a performance indicator during inference, so
users can gauge how well the Al can complete the task.

Figure 6. Screenshot of the system 2

Computer Science & Information Technology (CS & IT) 215

UnityEngine;
System.Collections.Generic;

class orbitalCamera : MonoBehaviour

Transform target;
Vector3 offset;
ed = 12f;
minZoom = 1ef;
maxZoom = 308f;
currentZoom = 100f;

Vector3 lastPasition;

vector3 initialoffset;

initial¥Spe
Awake()

itialoffset = new Vector3(ef, 3sf, of);
ialXSpeed = 118f;
ial¥Speed = 118f;
ialZoomSpeed
ialMinZoom
initialMaxZ

initialZoom = 100f;
Vector3 angles = transform.eulerAngles;
initialX = angles.y;
initialy = angles.x;

start()

Vector3 angles = transform.eulerAngles;
x = angles.y;
y = angles.x;

Update()

(target == null) {

£ (Input.GetKeyDown(KeyCode.F)) {
resetCamera();

}

currentZoom -= Input.GetAxis(“Mouse Scrollk) * zoomSpeed;
Mathf.Clamp(currentZoom, minZoom, maxZoom);

£ (Input.GetMouseButton(@)) {
x += Input.GetAxis(“"Mouse X") * xSpeed * ©.02f;
y -= Input.GetAxis("Mouse Y") * ySpeed * 8.02f;
}

Quaternion rotation = Quaternion.Euler(y, X, ©);
Vector3 position = rotation * Vector3(@, @, -currentZoom) + target.position + offset;

transform.rotation = rotation;
transform.posit = tion;

resetCamera()

x = initialX;

y = initialy;

currentZoom = initialZoom;
xSpeed = initialXSpeed;
ySpeed = initialyspe:
zoomSpeed = initialZoomSpeed;
minZoom = initialMinZoom;
maxZoom = initialMaxZoom;
offset = initialoffset;

Quaternion rotation = Quaternion.Euler(y, x, ©);
Vector3 ion = rotation * Vector3(@, @, -currentZoom) + target.

transforn.rotation = rotation;
transform.position =

Figure 7. Screenshot of code 2

‘Update()” executes once per rendered frame. The loop first checks if there is a valid target to
observe and prevents the remainder of the code from running if there is not one. Then, it proceeds
to check if the user pressed 'F" to reset the camera before proceeding to the general control logic.
The value assigned to the current zoom is attached to the scroll wheel input within predefined

216 Computer Science & Information Technology (CS & IT)

bounds. The left-mouse drag is captured to rotate the spherical coordinates stored in the x
(azimuth) and y (elevation) variables. The "Quaternion.Euler’ method converts these angles into a
rotation, then multiplies it by a negative-z vector derived from the current zoom value to obtain
the camera offset before being applied to the target’s world position. Given that this script runs
independently of the ML-loop, it imposes zero overhead on training speed, even when
‘time_scale’ is elevated.

4. EXPERIMENT

4.1. Experiment 1

The first element of the system we need to test is the impact of extrinsic factors from the
environment, such as gravity and drag, on the Agent’s accuracy.

As independent variables, gravity and drug must each be isolated to their own set of tests to avoid
interference from one another. For each set, Earth-like parameters that have been used during the
entire training phase are used as the control, while notable values higher and lower are chosen to
be tested and compared against the control. Each value is tested against 300 runs to filter outliers
and get a reasonable average.

For gravity, we selected values based on several different celestial bodies in the Solar System. On
the lower end we have the Moon, followed by the planets Mars and Venus, which are closer to
the control of gravity. As an extra bonus, we also included the gravity of Jupiter to observe how
the system reacts to a dramatically larger stressor.

Drag values were selected in intervals of 0.001 with the exception of 0, 0.01, and 0.05 in order to
observe more drastic changes as well.

Control Results:

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666%

Crashes: 15, Misses: 7, Fars: 0, Rises: 0, Average Height at Rise: 0 m
Gravity values: control = -9.81 m/s"2,

moon = -1.625 m/s"2:

No run complete, however, the rockets all sit suspended a few inches above the platform,
suggesting that they would succeed, but at the expense of using up all theoretical fuel before
doing so.

mars = -3.728 m/s"2:

Successes: 300, Failures: 0, Total: 300, Accuracy: 100%

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m

venus = -8.87 m/s"2:

Successes: 290, Failures: 10, Total: 300, Accuracy: 96.66666%

Crashes: 4, Misses: 6, Fars: 0, Rises: 0, Average Height at Rise: 0 m
jupiter = -24.79 m/s"2:

Successes: 84, Failures: 216, Total: 300, Accuracy: 28%

Crashes: 79, Misses: 137, Fars: 0, Rises: 0, Average Height at Rise: 0 m
Drag: control = 0.001293 (density of air at sea level in kg/m?), other values:
0:

Successes: 274, Failures: 26, Total: 300, Accuracy: 91.33334%

Crashes: 15, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m
0.000293:

Successes: 275, Failures: 25, Total: 300, Accuracy: 91.66666%

Computer Science & Information Technology (CS & IT) 217

Crashes: 14, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m
0.002293:

Successes: 281, Failures: 19, Total: 300, Accuracy: 93.66666%
Crashes: 8, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m
0.003293:

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666%
Crashes: 11, Misses: 11, Fars: 0, Rises: 0, Average Height at Rise: 0 m
0.01:

Successes: 286, Failures: 14, Total: 300, Accuracy: 95.33334%
Crashes: 8, Misses: 6, Fars: 0, Rises: 0, Average Height at Rise: 0 m
0.05:

Successes: 300, Failures: 0, Total: 300, Accuracy: 100%

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m
Highest accuracy, but likely excessive fuel consumption

Gravity Impact
B Successes [B Failures [Crashes [l Misses

300

200

100

Moon Mars Venus Control (Earth) Jupiter

Drag Impact
B Successes [Failures [Crashes [l Misses

300

200

100

0
0 0.0002¢3 Control 0.002283 0.003293 0.01 0.05
(0.001293)

Figure 8. Figure of experiment 1

Generally speaking, the performance of the rocket agents were better, the lower the gravity likely
due to easier maneuverability as less force was required to make the necessary adjustments.
Compared to the control success rate of 92.67%, in Venus it rose to 96.67% and then achieved a
100% success rate for Mars. However, a weird behavior was observed once we got to Moon
gravity as no run was able to complete at all; the rocket would instead just perpetually hover a
couple inches above the platform. This is likely due to the amount of force the agent exerted
through the thrusters being too strong relative to the gravitational force thus preventing it from

218 Computer Science & Information Technology (CS & IT)

making progress towards the ground. On the other hand, when testing a gravity value higher than
Earth, we observed a significant drop in the performance. When simulating Jupiter’s gravity, the
rocket was only able to succeed 28% of the time with around % of the failures being attributed to
“misses” and the remainder to “crashes.” Misses are defined as when the rocket reaches ground
level but fails to touch the target platform. The fact that the majority of failures were in this
category indicates that the gravity was too strong for the lateral thrusters to have enough time to
move the rocket into position. Crashes are when the rocket does manage to touch the platform but
is still doing so at a velocity that would incur damage. In the case of drag, the general accuracy
trended higher as more drag was introduced to the system. The implication here is that the rocket
became less prone to drifting, allowing for the rocket to make more precise adjustments.
However, it should be noted that higher drag does force more time and fuel expenditure required
to land. Between the two extrinsic variables, changes in gravity were much more significant.

4.2. Experiment 2

Another group of elements we tested for the system are intrinsic properties, such as different
rocket masses and primary thruster power.

Much like the previous experiment, the rocket mass and thrust must also each be isolated to
properly measure their impact. The same control results are able to be used for this set of
scenarios. Two values in either direction are tested to the control value are tested. We continue to
test each value against 300 runs to filter outliers and get a reasonable average.

For mass, increments of 100,000 kg were explored in either direction while thruster force values
were changed in increments of 1,000,000 to observe the optimal ranges.

Control Results:

Successes: 278, Failures: 22, Total: 300, Accuracy: 92.66666%
Crashes: 15, Misses: 7, Fars: 0, Rises: 0, Average Height at Rise: 0 m
Masses: control = 549054 kg, two increments of 100,000 kg in either direction
349054 kg:

Successes: 300, Failures: 0, Total: 300, Accuracy: 100%

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m
449054 kg:

Successes: 300, Failures: 0, Total: 300, Accuracy: 100%

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m
649054 kg:

Successes: 248, Failures: 52, Total: 300, Accuracy: 82.66666%
Crashes: 38, Misses: 14, Fars: 0, Rises: 0, Average Height at Rise: 0 m
749054 kg:

Successes: 195, Failures: 105, Total: 300, Accuracy: 65%

Crashes: 74, Misses: 31, Fars: 0, Rises: 0, Average Height at Rise: 0 m
Thrust: control = 10,000,000 two increments of a million newtons in either direction
8,000,000 N:

Successes: 234, Failures: 66, Total: 300, Accuracy: 78%

Crashes: 37, Misses: 29, Fars: 0, Rises: 0, Average Height at Rise: 0 m
9,000,000 N:

Successes: 253, Failures: 47, Total: 300, Accuracy: 84.33334%
Crashes: 27, Misses: 20, Fars: 0, Rises: 0, Average Height at Rise: 0 m
11,000,000 N:

Successes: 292, Failures: 8, Total: 300, Accuracy: 97.33334%

Computer Science & Information Technology (CS & IT) 219

Crashes: 7, Misses: 1, Fars: 0, Rises: 0, Average Height at Rise: 0 m
12,000,000 N:

Successes: 300, Failures: 0, Total: 300, Accuracy: 100%

Crashes: 0, Misses: 0, Fars: 0, Rises: 0, Average Height at Rise: 0 m

Rocket Mass Impact
B Successes [l Failures [Crashes [l Misses

300

200

100

349054 449054 Control (543054) 649054 749054

Rocket Thrust Impact
B Successes [Failures [l Crashes [l Misses
300

200

8000000 9000000 Control (10000000) 11000000 12000000

Figure 9. Figure of experiment 2

Both the mass and thruster tests yielded a clear trend in the general performance of the rocket
agents. In the case of mass, accuracy only started to suffer once the rocket started to get heavier
than the control weight, dropping from 92.67% success to 82.67% and 65% at each larger
increment respectively. On the flipside, there was a consistent increase in success rising to 100%
in the lower mass increments.This is a good sign, as generally rockets do not increase in weight
throughout a flight. The lower mass means the rocket has less inertia to overcome. As for the
thrust, the trend went in the opposite direction. When it continued to increase, the rocket got
progressively more accurate, which is likely due to tighter control over drifting afforded to the
rocket by the stronger thruster. However, at higher values, the rocket would have to be switching
between on/off incredibly fast, which is impractical in real real-life applications. Both trends
coincide with one another as decreasing the mass or increasing the thruster power, both result in a
rocket that is easier to maneuver.

5. RELATED WORK

Yusef Savid et al. also put together a system under the Unity ML-Agents framework, but to teach
agents how to drive race karts around a track [5]. Their implementation achieved a reasonable
performance, hitting a mean reward of 0.761 without obstacles and 0.0681 with. While there is a

220 Computer Science & Information Technology (CS & IT)

significant drop in the mean reward upon the introduction of foreign obstacles, the fact that
adding behavioral cloning as a pre-training option allowed the agents to still achieve a positive
mean reward, which aligns with the effectiveness we observed when providing the same
references to our own agents. Their conclusion that Proximal Policy Optimization, particularly
with behavioral cloning, provided the best results matches the evolution we observed in the
rocket agents. One potential risk acknowledged by the authors is the current lack of
randomization in the initial spawn position and orientation of the car, which could lead to
overfitting issues. Our rocket agents expand on the application of using Unity’s ML agent system
to drive vehicles by introducing a vertical axis to the environment and also implementing a range
of initial starting conditions to better avoid the risk of overfitting.

The simulation created by Rathod, A. et al. bore a much more similar resemblance to the system
we designed as both are focused on teaching PPO-based rocket agents within the Unity engine
how to safely land [6]. Their implementation achieved a very high success rate of 95% which was
heavily boosted by the presence of curriculum and imitation learning, further corroborating the
effectiveness of PPO-based solutions backed up with human references. With that being said, the
lack of atmospheric effects and an unrealistic assumption of engines being able to instantly turn
on and off via a discrete control system means that further testing is required before any real-
world deployment. While our system shares the same control limitations and works under a
smaller elevation range, we expand on the concept through the introduction of variable
environmental factors such as gravity and drag in addition to intrinsic variables like the rocket’s
mass and thruster power. We were also able to squeeze out a similar success rate in spite of these
conditions by also leveraging some tweaks to the model architecture such as tuning up the size of
each layer of the neural network as well as the number of layers. From a thematic standpoint, we
also placed a greater emphasis on visual elements like the skybox which would normally be
superfluous but serves to provide a more polished experience as the program is also intended to
be directly downloaded by others and interacted with to promote accessibility and engagement
with space media.

Hicham Bouchana et al. also approaches the task of teaching Unity agents to land a rocket, but
with the added component of Thrust Vector Control (TVC) to augment maneuverability [7]. They
also incorporate Cold Gas Thrusters (CGT), which are essentially side thrusters located near the
first stage of the rocket much like the ones we integrated into our own agents to facilitate lateral
movement and stability. Their solution achieved a very high success rate of 99.6% which mirrors
the high success rates observed across the board for PPO-based agent solutions. This system,
however, also has the limitation of assuming discrete controls which does not fully translate to
real life conditions at this time. Our solution expands on the incentive structure of the rocket
agent to more explicitly factor in landing time and precision into the rewards the agents can
achieve; progress reward formulas were tuned into the desired curve. Figure 10 illustrates the
“bullseye bonus,” which is the exponential reward given the closer the rocket is to the center of
the platform upon a successful landing. Figure 11 is the additional time bonus provided based on
the amount of time it took to complete the operation. Higher starting points were tuned to give a
slightly higher reward yield to further push the agents to prefer faster runs. Given that we are
operating within the 300-700 meter elevation band, the curve was structured to only give a
meaningful reward within about 70 seconds.

Computer Science & Information Technology (CS & IT) 221

+ L & «
+ L2 a « | A"‘
¥, Lo
@y - oy - *
I ’ w0
Q-0 B =70
Q-1 “ o -)
Q =10
‘ "
. Lo

Figure 10. Figure of paper 3

6. CONCLUSIONS

The general scope of the Al model’s utility still has significant room to grow. While the rocket is
capable of performing spins and rotations, the agents themselves were not trained enough to
properly take advantage of these controls which limit the conditions it can adapt to. The current
agent’s focus is on the final vertical landing phase but can also be expanded to perform the earlier
stages of descent starting at reentry to form a more complete solution. This would require a
significant increase to the starting height at around 4.6 km for the final vertical landing phase and
a separate model to handle the reentry phase which begins at around 60-70 km. The increased
difficulty of such an expansion can be improved through the introduction of more adaptable
controls like TVC.

Machine learning algorithms play a pivotal role in enabling safe and precise rocket descent and
landing by optimizing trajectory control, predicting dynamic conditions, and adapting in real
time. Their integration enhances reliability, reduces risk, and supports sustainable space
exploration, marking a critical advancement in aerospace engineering and autonomous flight
systems.

REFERENCES

[1] Savid, Yusef, et al. "Simulated autonomous driving using reinforcement learning: A comparative
study on unity’s ML-agents framework." Information 14.5 (2023): 290.

[2] Xue, Shuai, et al. "Research on intelligent control method of launch vehicle landing based on deep
reinforcement learning." Mathematics 11.20 (2023): 4276.

[3] Bouchana!, Hicham, et al. "AI-Guided Rocket Landing: Navigating Precision Descent Strategies."
Proceedings of the International Conference on Emerging Intelligent Systems for Sustainable
Development (ICEIS 2024). Vol. 184. Springer Nature, 2024.

[4] Kennedy, Brian, and Alec Tyson. "Americans’ views of space: US role, NASA priorities and impact
of private companies." (2023).

[5] Bergstrom, Zoey, Philip Sadler, and Gerhard Sonnert. "Evolution and Persistence of Students'
Astronomy Career Interests: A Gender Study." Journal of Astronomy & Earth Sciences Education
3.1 (2016): 77-92.

222
(6]

(7]
(8]
(9]

[10]

[11]
[12]

[13]
[14]

[15]

Computer Science & Information Technology (CS & IT)

Pyrkosz-Pacyna, Joanna, Katarzyna Cieslak, and Marcin Zwierzdzynski. "Space Exploration
Perception and Engagement Intention Among STEM University Students—Results from a Mixed
Method Study." The New Educational Review 69.3 (2022): 191-205.

Freeman, Scott, et al. "Active learning increases student performance in science, engineering, and
mathematics." Proceedings of the national academy of sciences 111.23 (2014): 8410-8415.

Wang, Yuhui, Hao He, and Xiaoyang Tan. "Truly proximal policy optimization." Uncertainty in
artificial intelligence. PMLR, 2020.

Yang, Chi-Wen, et al. "Unity 3D production and environmental perception vehicle simulation
platform." 2016 International Conference on Advanced Materials for Science and Engineering
(ICAMSE). IEEE, 2016.

McLennan, Stuart, et al. "An embedded ethics approach for Al development." Nature Machine
Intelligence 2.9 (2020): 488-490.

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural
information processing systems 29 (2016).

Hu, Benyi, et al. "PyRetri: A PyTorch-based library for unsupervised image retrieval by Deep
Convolutional Neural Networks." Proceedings of the 28th ACM International Conference on
Multimedia. 2020.

Raut, Umesh, et al. "Unity ML-Agents: Revolutionizing Gaming Through Reinforcement
Learning." 2024 2nd World Conference on Communication & Computing (WCONF). IEEE, 2024.
Wu, Zifan, et al. "Coordinated proximal policy optimization." Advances in Neural Information
Processing Systems 34 (2021): 26437-26448.

Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects."
Science 349.6245 (2015): 255-260.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

