IMPROVING RELIABILITY OF THE
CROSSFIRE ELECTRONIC DATA
INTERCHANGE (EDI) SYSTEM By
DEPLOYING PLAYWRIGHT FOR
FUNCTIONAL TESTING

Michelle Mejos Belagtas and Shahid Ali

Department of Information Technology AGI Institute,
Auckland, New Zealand

ABSTRACT

This research study aimed at improving the testing process for the Crossfire EDI System.
The traditional manual functional testing experienced to be slow, repetitive, and at the
same time can be prone to human error. Following the structured Software Testing
Lifecycle (STLC) within the agile Scrum framework, this study sees Playwright as the
primary automation tool due to its modern capabilities for web app testing. The results
were significant that it shows automation dramatically reduced the manual effort without
compromising the accuracy.

KEYWORDS

Electronic data interchange, Agile, Software Testing Lifecycle, Playwright, Test
Automation Framework.

1. INTRODUCTION

Sandfield is a New Zealand-based software company that provides reliable solutions for its
clients. And one of its offered solutions is the Crossfire Electronic Data Interchange (EDI)
system. The EDI system helps business clients to exchange order-related documents, such as
invoices, purchase orders, and shipment details, in a digital format instead of paper. It works by
translating documents into the required file formats such as XML, CSV, JSON, and EDIFACT,
so that suppliers, retailers, logistics providers, and other partners can easily share information.

In simple term, the EDI system acts like a middleman between businesses, making sure that
transactions are sent and received correctly. All documents are automatically recorded and
categorized, which prevents them from being lost or duplicated. Research shows that EDI makes
business-to-business transactions much faster, what used to take hours or even days can now be
done in seconds [1]. This also reduces accidental human errors, such as incorrect invoice amounts
or missed orders. And also provides real-time tracking of orders, shipments, and product status,
giving businesses clear visibility into their supply chain.

The Crossfire EDI system is catering to hundreds of clients with different business requirements
and demands. This makes EDI powerful because it can customize the existing system based on

David C. Wyld et al. (Eds): MLNLP, ASOFT, CSITY, NWCOM, SIGPRO, AIFZ, ITCCMA — 2025
pp. 207-244, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152017

https://airccse.org/
https://airccse.org/csit/V15N20.html
https://doi.org/10.5121/csit.2025.152017

224 Computer Science & Information Technology (CS & IT)

the client's request. Simply, the Crossfire development team works by integrating code changes or
new features into the system regularly.

However, with the growing clients of the Crossfire EDI system, the manual approach to
functional testing of pre- and post-deployment makes it time-consuming for the developers.
Furthermore, a manual practice is prone to error, especially when dealing with a huge validation
checklist. A frequent customer service call and emails were evident after a deployment change,
because of incomplete and unreliable manual testing. Making the developers roll back changes
and produce more hours of work to fix the error. These errors could have been detected early with
automation testing. Automation is needed to ensure that changes to the system do not break
important functions and that issues are detected early.

Since the EDI system is continuously maintained and upgraded to support new business
requirements, integrate additional trading partners, and comply with changing industry standards,
every system release or update carries potential risks. Major partners, such as Woolworths,
Mitre10, and Mainfreight, rely heavily on Sandfield’s EDI system, so any failure, bug, or defect
can directly affect services, potentially delaying orders and invoices and disrupting the logistics
chain. Specific risks include failed message processing, misconfigured connection parameters,
system downtime, and undetected errors due to manual validation checks.

This EDI system issue isn’t just a technical hiccup; it impacts real people and real businesses.
Specifically, the developers and integration teams are being slowed down by the repetitive, time
consuming tasks, which reduces their ability to innovate. Also, business clients depend on the
EDI system for functional operations where failures can disrupt or delay business processes.
Lastly, the organisation risks work inefficiency and higher operational costs if validation remains
manual. Manual checks are a drag on speed and reliability. Automating the process makes testing
reliable because scripts can complete the checks in a more consistent way. It also helps find
problems before they affect the system and allows teams to spend more time on important tasks
instead of repeating the same checks.

Moreover, this research study focuses on automating pre- and post-deployment functional
validation testing for the Crossfire EDI system. The scope includes the five checklists mentioned
below:

e Test Design and Execution for the Crossfire EDI System Using Playwright: To design
and execute test scripts using Playwright automation tool. That is reusable and
maintainable for the EDI system, which reduces human error and saves testing time.

e Pre-Deployment Functional Testing for the Crossfire EDI System: To automate the
predeployment task that captures a list of log errors, errored messages, and errored
interchanges, to make sure that the system is stable before the actual system change
deployment.

e Post-Deployment Functional Testing for the Crossfire EDI System: To automate
functional testing tasks after deployment to confirm that any changes introduced to the
existing system will detect defects as soon as possible.

e Testing of the Crossfire EDI System: To make sure that all critical workflow
functionality, including the admin configuration is tested which can impact the major
system functions. This includes the message processing, core admin functions.

e Generating Automated Test Results on the Crossfire EDI System: To capture testing
report, and capture system log errors, which helps developers to identify and address
issues quickly.

Computer Science & Information Technology (CS & IT) 225

This research is organized as follows. Section 2 represents literature review. Section 3 presents
the methodology for this research. Section 4 covers the execution of this research study. Section 5
represents the results. Section 6 represents the discussion of the research; section 7 covers the
conclusion of the research study and in Section 8 future recommendations are covered.

2. LITERATURE REVIEW

Software testing is necessary for every existing system nowadays, because people rely on it to do
the work. Many studies have looked at different automation tools, testing methods, and
techniques to make the testing better. This review shows related research findings and points out
gaps at the end of the literature review that can help guide us in deploying Playwright as a
functional testing automation tool.

Testing software works best when there is a clear and organized approach. A research study [2]
was conducted on different testing methods to create a software testing methodology that follows
this structured approach. They have showed that using an organized test processes can help
improve software reliability and, specifically, makes it easier to find defects. Thus, using a testing
models can improve the overall software quality and make sure that the software runs as it is
expected to.

Building on structured testing, the study conducted [3] to investigate the role of testing
professionals in unit testing within Agile environments. They deployed survey-based research and
collaborated with developers to strengthen unit testing practices. The research finding shows that
integrating testers early improves software quality and fosters mutual learning between
developers and testers.

In a research study [4], they proposed a technique for software maintenance that uses test
classification, deletion, and selection algorithms. Using this proposed method, the study found
that the test suite size was reduced by about 28%, which worked better than random selection or
prioritization methods. Thus, the finding shows that organizing tests with a clear test method can
make testing faster and more efficient without losing the product quality.

A research study was conducted [5] and explored the Agile testing processes and its challenges.
They conducted literature reviews and industry analysis to understand testing integration in Agile.
In conclusion, the study shows that a testing should be iterative and aligned with development.
And also supported by a proper technique to make sure of the product quality.

In Agile methodologies, using Scrum has shown to be effective in a system development. In the
research study [6], they implemented a Scrum methodology in developing the Warehouse Receipt
System. With this, they have conducted system development and performed User Acceptance
Testing, which achieved a 100% test results. The research findings shows that Scrum
methodology can successfully implement and meet the user requirements.

According to research [7], they had comparison of effort estimation models including Cobb-
Douglas, Neuro Fuzzy, and Genetic algorithms. They applied these models to software project
estimation tasks. The research study concluded that Neuro Fuzzy has the highest accuracy for
effort estimation, thenfollowed by Genetic and Cobb-Douglas methods.

A structured planning enhances a task management. A recent research study [8] proposed
integrating the Work Breakdown Structure (WBS) with task completion forecasting by using a
linear regression. With this, the researchers analysed the construction project data to improve time

226 Computer Science & Information Technology (CS & IT)

and cost management. Overall, the study findings show that the WBS approach is effective that it
can predicts task completion with low error and high explanation percentage.

Selenium has been around for a long time and is one of the main tools people use to automate web
apps. [9] investigated at what happens when you use Selenium WebDriver with JUnit and ATF,
and they found it can basically run tests and generate reports on its own. In this setup it doesn’t
just save time, but it also makes the tests more reliable, with fewer failures, and even uses
memory better than the old manual ways of testing.

A recent research study [10] explored a VS Code extension that uses Selenium to simplify
sending code to a WebGPU cloud platform. With this system, students can write code locally and
then push it to the cloud with just a one click. Overall, the findings shown that this setup has cut
down the manual work and made the whole process smooth. It also proved that Selenium could
connect local coding environments with cloud platforms which help deployments happen faster
and with a fewer problem.

Despite the popularity of Selenium as favoured automation tool, there were new tools has been
released. In a research study [11], they compared Selenium and Playwright for automating
employee management applications. Automation scripts were written in Python and timed how
long each tool took to complete tasks. The study found that Playwright has handled the tasks in
simplicity, since it finishes faster and made the whole process feel much more efficient than
Selenium.

A recent research study [12] has developed a bug testing automation platform that uses
Playwright with a backend API. And the platform was deployed in a cloud environment to make
it handle the testing and also automated reporting. With this experiment, the research study found
that connecting Playwright with backend API has made the system more scalable and easier to
access. In addition, it has showed that this setup can really make testing more reliable and less
hassle.

In research study [13] they have studied the software testing strategies and life cycles that can
improve software quality. Also, they have reviewed the existing testing techniques and analysed
its effectiveness, then suggested improvements. The study findings showed that having a clear
testing plan and strategy do helps verify and validate software.

A study was conducted [14] to investigate challenges faced by most Agile testers in multinational
IT organizations. On this study, they have collected information through a surveys, forums, and
interviews. This collected information helps the study to understand common problems and best
practices. Moreover, the findings showed that using a team management tool, also planning an
effective sprint has reduced challenges in Agile testing.

Functional testing usually needs a multiple testing techniques just to make sure of a complete test
coverage. With a recent book [15] it has reviewed methods such as the equivalence partitioning,
boundary value analysis, and decision table testing, and that also analyzed how they are applied in
real testing world practice. The study found it is important to use a technique because provides
more quality testing which helps catch more potential issues in the software.

Regression testing can cost more time; thus, it works better when tests are organized and
automated. A research study [16] has explored orchestration strategies for regression test suites.
There were multiple testing techniques has been used to improve the regression testing. And the
research study concluded that orchestrated strategies help choose, prioritize, and reduce tests.
Thus, regression testing can be done faster and more efficiently in a real-world project.

Computer Science & Information Technology (CS & IT) 227

In a research study [17] they proposed a TestSage for large-scale web service regression test
selection. Also, they have collected function-level dependencies and make a test over a million
functions at Google. The research findings show that TestSage has reduced the testing time up to
50% while at the same time maintaining the test accuracy, which has supported large-scale
application testing.

Although many studies have examined automation tools such as Selenium, QTP, and UFT, most
of these tools focus on standard web applications and do not fully address the complexities of EDI
systems like Crossfire EDI. Previous research shows several limitations, but it also points to five
key areas where this study can contribute. Firstly, there is an opportunity to explore how the
system can be better prepared before an actual system update which is the post deployment
checking of system readiness, make sure that it is stable first and can reduce the risk of
unexpected issues. Secondly, there is potential to automate validation after deployment,
confirming that the system can function correctly and that important processes has been
unaffected. Thirdly, automating critical workflows and key features, which are necessary for the
system’s reliability. Fourthly, the test design and execution of consistent, reusable approaches for
automation. Which can enhance testing efficiency and accuracy that addresses a gap in previous
studies. Finally, reporting of results present an area where actionable insights for the developers
can be provided to support a timely response and a decision making.

Overall, these points show how the study pushes beyond the limits of previous research, taking on
challenges in testing the Crossfire EDI system that have not yet been fully explored. This work
seizes the opportunity to deploy Playwright as an automated testing tool and implement it using
C# within a .NET Framework environment, aiming to make automated testing more reliable,
efficient, and impactful. By embracing these challenges, this research report seeks to deliver
solutions that are practical, repeatable, and aligned with industry standards for EDI system
testing.

3. RESEARCH METHODOLOGY

This study applied the Agile Scrum framework together with the Software Testing Life Cycle
(STLC) to manage testing for the Crossfire EDI system. Scrum uses short, iterative cycles called
sprints, where the team plans tests, designs them, executes, reviews results, and reflects on
improvements. Moreover, STLC provides a clear, step-by-step process for testing, making sure
nothing is overlooked. By combining Scrum with STLC, the team stayed flexible, adapted
quickly to changes, and continuously improved testing practices.

Research supports [18] describe it as a practical and structured method to apply Agile principles.
[19] explained that integrating testing into Scrum helps catch defects early and reduces the risk of
breaking existing functionality. These studies show why Scrum is widely adopted in both
academic research and industry projects.

Scrum was particularly suitable for this study because the Crossfire EDI system is complex and
handles business-critical processes. Traditional testing approaches would have been slower and
less adaptable. Using Scrum, the team could prioritize tasks based on risk and importance, work
in manageable sprints, and get regular feedback from stakeholders. This approach kept testing
focused, efficient, and aligned with project goals.

228 Computer Science & Information Technology (CS & IT)

4. RESEARCH EXECUTION

The testing process for the Crossfire EDI system followed six defined phases. Namely, these are
Requirement Analysis, Test Planning, Test Case Design, Test Environment Setup, Test
Execution, and Test Closure. This is to structure the execution in alignment with the test lifecycle.
Firstly, in requirement analysis, there is a meeting with developers to understand what the system
needs, such as validating requirements for pre-deployment and postdeployment testing. Secondly,
test planning was conducted by selecting Playwright for automation with the XUnit framework
for execution. And also preparing a testing task schedule. Thirdly, test case designing is a phase
to design the test cases based on the provided deployment checklist and best practices. Next, the
test environment setup was prepared by installing Playwright, setting up local databases and a
local website. Fifth, the test execution where all test cases areexecuted. Finally, analysing results
based on the native reporting of Playwright with Xunit framework.

Figure 1: Software Testing Life Cycle for Crossfire EDI System

4.1.Test Plan for Crossfire EDI System

» crossfire

by sandfield
Test Plan
This test plan is designed to guide testing activities for the Crossfire EDI system. Its goal is to

make sure that all major functions are working correctly before and after deployment, and that
test results are clearly recorded and easy to compare.

Test Items
e Pre-deployment check automation scripts
e Post-deployment validation automation scripts
e Playwright-based execution and logging framework
e Automation Test Reporting

Computer Science & Information Technology (CS & IT) 229
Features to be Tested

1.Pre-Deployment Checks:

e Capture list of the errored messages and interchanges

e Check Max Pool Size and Encrypt parameters in connection strings

e .NET Standard/Core installation verification

2. Post-Deployment Checks:

e C(Crossfire Admin: General/Advanced tabs, partner creation, events creation, messages,
processes, functions, code lists, version updates, editor load verification, password
changes

e Top Navbar Tabs: Dashboard, system tests, bulk processing

e Messaging: WorkWith list, server/transport/route/certificate creation/update

Features Not to be Tested

e Non-critical modules unrelated to deployment
e Exploratory testing outside pre- and post-deployment tasks

Approach
e Automation using Playwright with XUnit framework and C# language

e Modularization of test scripts using Page Object Model
e Pre-deployment screenshot data captured for comparison

Automated screenshots, logs, and test reports for verification

Item Pass/Fail Criteria

Pass:All checks complete without errors and expected behavior confirmed
° Fail: Any error in functional workflow, logs, or configuration parameters

Suspension Criteria and Resumption Requirements

° If pre-deployment checks fail, deployment is suspended until issues are resolved.
° Failed post-deployment checks pause regression execution until fixed.

Test Deliverables

° Automated test scripts
° Test execution reports
° Defect reports
Testing Type
° Functional Testing: Verify that all system functionalities work as expected post-

deployment.

230 Computer Science & Information Technology (CS & IT)

Automation Testing Tool

° Playwright — chosen for its support of modern web applications, speed, and
NET compatibility
Test Design Approach
° Test cases are derived from pre- and post-deployment checklists.
° Critical functional paths are prioritized for automation.
° Logging, screenshots, and report generation are automated for traceability. Work

Breakdown Structure

Table 1: Test Estimation using Working Breakdown Structure (WBS)

Phases Features Task Description Estimated
Hours

All Testable

1. Test Planning Requirements Review company requirements 8
Literature
Review & Review existing studies and gather
Requirements requirements 12
Pre-
Deployment
Checks

2. Test Design Check exception logs for errors 2

Capture screenshots of errored
messages, interchanges, and failed
messages 2

Verify Max Pool Size and Encrypt
parameters 1

Ensure .NET Standard/Core is

installed 1
Post- Verify General tab loading;
Deployment create/update partners, events,
Checks — Crossfire messages, processes, functions, and
Admin code lists 4

Verify Advanced tab loading; update
module versions; verify TinyMCE&
ACE editor 3

Computer Science & Information Technology (CS & IT)

231

Verify user password changes and

production favicon 2
Top Navbar Tabs Verify dashboard tab, run system &
function tests 3
Verify bulk processing tab; run Bulk
Bulk Processing Export and Bulk Processing 2
Check WorkWithlists; create/update
Servers, Transport Types, Transports,
Messaging Routes, Certificates, and Schedules 6
Engine & Load Check logs, status, dashboard; verify
Balancer load balancer 5
Check FTP files and logs for missing
FTP / Serv-U users 3
Monitoring & Add-ins |Ensure monitors are green; check
add-ins including Excel transport 4
Reporting & Logging |Capture screenshots, logs, and
generate automated testing reports 3
3. Test
Environment Environment Setup testing environment for EDI
Setup Configuration system 5
Setup database, schemas, and
Constraints centralized management 8
Pre-
Deployment &
Post- Execute all test cases for pre- and
4. Test Execution |Deployment post-deployment validation 12
Performance &
Usability
Testing Run performance and usability tests 10
5. Defect Log, track, and retest defects found
Management All Features during test execution 10,
6. Test Closure & |Final
Report Regression & Regression testing, finalize report and
Preparation Reporting analysis 40

232 Computer Science & Information Technology (CS & IT)

Environmental Needs

OS: Windows 10/11

Browser: Chromium

Visual Studio Professional, .NET framework, XUnit
Crossfire EDI system and database access

Test Execution

o Pre-Deployment: Capture errored messages, interchanges, and
Pos-Deployment: Execute scripts for Crossfire Admin tabs, Top Navbar, and Messaging.

4.2. Test Cases

The test case is a detailed instruction that guides how to go step by step to create the test. It helps
to create test scripts that align with the expected results, which are based on the business
requirements. The test cases were created using the provided checklist for both pre-deployment
and post-deployment. Each requirement was reviewed and communicated to make sure the
correct test data and expected results were gathered. Few of the test cases are shown below in
Table 3.

Table 2: A test plan for the Crossfire EDI system

Pre- To verify the URL: All PASS
Deployment |presence of 1. Navigate to{http://localhost/ |exception
exception logs for |Crossfire Admin logs are checked and
any errors 2. Click known
predeployment |General Tab errors identified
3. Screenshot

exception logs exists

Pre- To verify the list Logged in based or Screensho PASS
Deployment |of Errored 1. Navigate tojlast user sessior|t saved for
Messages and save Crossfire Admin |state compariso n post-
an evidence to test|2. Click deployme
screenshot folder |General Tab nt
3. Click
Errored Mess+[ages
4. Take a

screenshot

Computer Science & Information Technology (CS & IT) 233
Pre- To verify list of 1 Navieate t Logged in based or Screensho PASS
Deployment |Check Errored C. AVIEAC LA 05t user sessiort saved for
rossfire Admin .
Interchanges) Click state compariso n post-
General Tab ﬂfployme
3. Click
Errored
Interchanges
4. Take a
screenshot
Pre- To verify list of Logged in based or Screensho PASS
Deployment |Check Failed 1. Navigate tojlast user sessiont saved for
Messages Crossfire Admin |state compariso
2. Click n post-
General Tab deployme
3. Click nt
Failed Messages
4, Take a
screenshot
Pre- To verify list of |1, Navigate tof Logged in based oryMax Pool PASS
Deployment |Check Max Pool |Crossfire Admin last user sessior Size and Encrypt
Size & Encrypt |2, Click state parameter
parameters Advanced tab s verified
3. Click
External
Connections
4. Assert that
Pre- To verify list of |1, Click on |Logged in based o M PASS
. . . ax Pool
Deployment [Max Pool Size Toll Connection last user session Size =
2. Validate [state 2048
Max Pool Size verified for
3. Click Toll,
Cancel Middlewar
c,
Message,
EDI Cloudconnectiq
ns
Pre- To verify that Logged in based or All PASS
Deployment |.NET 1. Click last user sessiorrequired
Standard/Core is |Advanced state componen
installed Tab — Assembly ts are installed
References
2. Verify
NET Standard/Core
and required DLLs

234 Computer Science & Information Technology (CS & IT)
Crossfire To verify that the 1 Click URL: Dashboard page PASS
Admin Dashboard tab ' http://localhost/ loads successfull y;
Navbar loads correctly Dashboard tgb counts exported
2. Verify pagg
fully loaded
3. Export
page load counts
Crossfire To verify that the Process: MBA System test PASS
Admin system is able to 1. Click completes
Navbar run a system test tq System Test successfull y; results
validate process |2 Fill out displayed
execution fields
3. Tick
checkbox
4. Run Test
5. Verify
results

Crossfire To verify that the

. 1. Click . .
Admin system can run a . last user sessior functions
. Function Test

Navbar function test ; state and shows test result]
2. Click a
function
3. Run the
test

Logged in based or| Systems runs the PASS

4.3. Solution Structure

The Crossfire EDI system needs a proper solution structure because it is connected with the real
system codebase. To make it organized, the framework used was the Page Object Model (POM).
This model separates the all the test data, the page selectors, and the test logic. Thus, the tests
become more organized, easier to maintain, and most especially, the test structure can be
understood by the next person.

Authentication: This is a global login setup that is created so that all created tests will use
the same authentication. This it to make the login process as one time process and be
applied to all tests to avoid repetitive scenarios.

Collection Fixture: The fixture gives a shared context for all tests. This helps to keep the
code clean and also makes it easier to reuse.

Test Data: The test data is stored in a dedicated test folder to compile it. This simply
makes the test data easy to find, update, and manage. Thus, making it separate from the
test data and pages.

Test Pages: All page elements, selectors, and Ul logic are saved in the Test Pages folder.
This separation makes the framework more flexible and easier to update.

Tests: The test folder contains the real test scripts. These scripts include the steps and
checks that Playwright uses to run the tests.

Computer Science & Information Technology (CS & IT) 235

Solution Explorer

#3 o-s A M (% K=
Search Solution Explorer (Ctri+;)

= Solution 'PlaywrightTests' (1 of 1 project)

4 + 57 PlaywrightTests

P && Dependencies

b a8 Authentication

b & @@ CollectionFixture

b & Helpers

b & [@ Sandfield.Crossfire.EDI.Admin.Test.Datas

b & B8 Sandfield.Crossfire.EDI.Messaging.Test.Datas
b & B8 Sandfield.Crossfire.EDl.Test.Pages

b & Bl Sandfield.Crossfire.EDl.Tests

+ [.env

+[

.gitignore

Figure 2: Page Object Model

Figure 2 shows the folder structure created for the Crossfire EDI system. The structure clearly
indicates the purpose of each folder, providing a solid foundation for maintaining clean and
organized scripts. This organization makes the scripts reusable and reliable for future testing
needs.

4.4. Test Script Writing

Test scripts are pieces of code that instruct the system on how a test case should run. The first
technique applied was to make each test independent. The Crossfire EDI system is a chain of
related entities, where tests could potentially rely on each other. However, if one partner or event
fails, all dependent tests could also fail, making it difficult to determine the root cause. To avoid
this, each test case is designed to be separated from the others. No test reads or writes data that
another test depends on. This makes sure that if one test fails, it does not cause other tests to fail,
making it easier to identify the root cause of issues.

4 & BB Sandfield.Crossfire.EDL.Tests
4 & [PostDeployment.Tests

P a Bl Admin

P & BB Advanced

4 5 @A Config
+ C=# CreateCodelistsTest.cs
+ C= EventsTest.cs
+ C=# FunctionsTest.cs
+ C=# MessageStandardsTest.cs
+ C= PartnersTest.cs
+ C= ProcessesTest.cs

P & Bl Messaging

P & Bl PreDeployment.Tests

Figure 3 Test Classes for Crossfire EDI System

236 Computer Science & Information Technology (CS & IT)
4.5.Test Data Handling

Handling test data is one of the most important parts of writing test scripts. The EDI system
contains a large amount of data that can be reused for testing. However, if this data is deleted or
changed in the future, tests that rely on it may fail. There are several ways to manage test data: it
can be hardcoded or stored in external files (JSON, CSV, and more formats). This is particularly
challenging for this system because automation deals with many different data types that need to
be reused. For example, creating a partner requires an entity, and creating a transport also requires
an entity.

wrightTests.Sandfield.Crossfire.EDI.Admin.Test.Datas.DataModels;

PlaywrightTests.Sandfield.Crossfire.EDI.Admin.Test.Datas.Common

CommonTe

EntityCommon = "Customer”;

NameCommon = "This is an automated test Name";
PartnerCommon = "SAL - Automated Test™;
GeneralCommon = "This is an automated test";
EventCommon = "This is an automated test event"”;

Figure 4: Common Test Data

PlaywrightTests.Sandfield.Crossfire.EDI.Admin.Test.Datas.Common;
PlaywrightTests.Sandfield.Crossfire.EDI.Admin.Test.Datas.DataModels;

PlaywrightTests.Helpers

2 CreateNewEvent()

return

{
Entity = monTestData.EntityCommon,
Code = "T B
General = mmonTestData.GeneralCommon,

ta CreateNewPartner()

return

{

Entity e TestData.EntityCommon,
Code = ~

Name = r t 1 . NameCommon ,
Contact = oo

Figure 5: Test Data Factory

To address this, a test data factory and common data file separation were created, as shown in
Figures 4 and 5. Each test remains independent, but data can be shared across tests. This reduces
repetition and makes scripts easier to maintain. The test data factory also organizes data in a way
that each test can access exactly what it needs.

Computer Science & Information Technology (CS & IT) 237

Login Authentication

Figure 6: Global Setup for Login

In Figure 6, instead of having multiple logins for each test, the class PlaywrightGlobalSetup.csis
used to manage authentication across all tests. This minimizes the need to log in every time a
browser session starts. Because tests run independently, they normally start from the very
beginning, including the login process. In addition, this script ensures that the username and
password are stored in a .env file, avoiding the security risks of hardcoded credentials.

4.6.Test Class and Test Page

The [Fact] attribute in XUnitis used to define a single test, similar to the [Test] attribute in other
testing frameworks. Figure 7 shows a test class for creating a new partner. The test script simply
calls a task named CreatePartnerTest(), which performs all the necessary actions. These actions
and the page selectors are implemented separately in a Page Class, as shown in Figure 8. This
shows that main test classes can be written in a way that is easy to maintain and understand by the
next person who is doing the test.

238 Computer Science & Information Technology (CS & IT)

PartnersTest.cs + X

£ PlaywrightTests ~ <AgPlaywrightTests.Sanc
{& | B4 Microsoft.Playwright;
PlaywrightTests.CollectionFixture;
PlaywrightTests.Helpers;

laywrightTests.Sandfield.Crossfire.EDI

Xunit;

PlaywrightTests.Sandfield.Crossfire.EDI.Tests.Config

n")]

IClassFixture<PageFixture

IPage _page;

sts(PageFixture fixture)

_page = fixture.Page;

Fact(DisplayName = "Create a new Partner®)]

k CreatePartnersTest()

partnersData = TestD ctory.CreateNewPartner()
partnersPage = = rsPage(_page);

await partnersPage.CreateNewPartnersAsync(partnersData);

Figure 7: Test Class for Partner Creation

In Figures 7 and 8, it is shown how XUnit framework assertions were mainly used in writing the
test scripts. Assertions like “await” and “async” has helped to reduce test flakiness, that usually
happens when locators, pages, or data are not fully loaded before moving to the next test step.
This is why the reliability of the tests has significantly improved. With XUnit framework, the
system makes sure that each step of the test is completed properly before the next one starts.
Although only the basic methods were applied in this research study, there are still many more
features available in XUnit that can be explored for future testing.

Figure 8: Test Page for Partner Creation

4.7.Headless vs Headed Test Execution

In headless mode, browsers do not open visually; instead, test scripts interact programmatically
with the application, filling forms, clicking buttons, and validating outputs just like a user would.
As shown in Figure 9, headless test execution for the Crossfire admin tabs took 23.5 seconds. By
comparison, headed execution took 30.7 seconds, as shown in Figure 10. Headless mode is faster

Computer Science & Information Technology (CS & IT) 239

because it does not render the browser UL reducing the resources and time required to perform
each action. Making Playwright headless execution meets Crossfire testing need of fast execution.

[xUnit.net 00:00:00.00] xUnit.net VSTest Adapter v2.8.1+ce9211e970 (64-bit .NET 9.0.9)
IxUnit.net 00:00:00.11] Discovering: PlaywrightTests

[xUnit.net 00:00:00.15] Discovered: PlaywrightTests

[xUnit.net 00:00:00.16] Starting: PlaywrightTests

USERNAME : Defaultl

PASSWORD: <set>
[xUnit.net 00:00:22.25] Finished: PlaywrightTests
PlaywrightTests test si (23.5s)

Test summary: total: 6, failed: 0, suc >d: 6, skipped: @, duration: 23.5s
Figure 9: Headless Test Execution for Crossfire Admin

.net 00:00:00.00] xUnit.net VSTest Adapter v2.8.1+ce9211e970 (64-bit .NET 9.
.net 00:00:00.10] Discovering: PlaywrightTests
.net 00:00:00.14] Discovered: PlaywrightTests
.net 00:00:00.14] Starting: PlaywrightTests

SERNAME: Defaultl

PASSWORD: <set>

[xUnit.net 00:00:29.49] Finished: PlaywrightTests

PlaywrightTests test suc ed (30.7s)

est summary: total: 6, failed: 0, st d: 6, skipped: 0, duration: 30.7s
Figure 10: Headed Test Execution for Crossfire Admin

4.8. Crossfire EDI System Test Execution

CROSSFIRE>ED| w1

‘ Crossfire Admin |

Work With | ‘ | ‘ ‘

General Config | Advanced Partners

e New Partner - Google Chrome = 0 X

® localhost/EDI/Object/Partner.aspx?ObjectType=EDL.Partn... &

General e Threads

Customer

TESTPR

(4L - Automated Test)]

New ofp Open 19 Refresn OK Cancel Apply

Reset ¢ || CloseWn Q) Export g

Figure 11: Headed test execution of post-deployment test

240 Computer Science & Information Technology (CS & IT)

Figure 11 shows the Crossfire EDI system automating the partner creation process. In headed
mode, the browser opens visually during test execution, allowing the tester to see the test running
in real time. This helps verify that the script matches the intended test flow and makes debugging
easier, as errors can be observed directly on the screen.

CROSSFIRE >EDI

ki

Figure 12: A screenshot of pre-deployment test

Figure 12 shows all errored interchanges captured during testing. Each failed message and its
corresponding log file are automatically saved in the designated test folders. This gives
developers and clients concrete evidence of the exact errors that occurred, including timestamps,
partner IDs, and message details. By storing this information, the team can verify what went
wrong, reproduce the issue if needed, and use it to improve or add new functionality in future.

5. RESULTS

This section shows the overall results from running the research’s test cases. The goal is to see
how well the system works under the planned tests and to give a clear view of the outcomes. The
following discussion explains the key points from the test run.

5.1. Native Log Reporting

Playwright reporting has built reporting based on the framework and language chosen. Currently,
the tests were conducted using the .NET framework with XUnit, and the results are presented
through simple command-line reporting. As illustrated in Figure 6, all 33 test cases passed with
no failures, indicating that the tested functionalities are performing as expected.

USERNAME: Defaultl

PASSWORD: <set>

[xUnit.net 00:00:00.11] Discovering: PlaywrightTests

[xUnit.net 00:00:00.15] Discovered: PlaywrightTests

[xUnit.net 00:02:18.50] Finished PlaywrightTests
PlaywrightTests test su d)

Test summary: total: 33, failed: @, su ded: 33, skipped: @, duration: 138s
PS C:\Projects.Git\SAL. Crossflre\PlaywrlghtTests>

Figure 13: Playwright summary test report

Computer Science & Information Technology (CS & IT) 241

While this reporting approach is straightforward and functional, it may lack the advanced
visualization and interactivity found in HTML-based or plugin reports using other language.
However, it still serves the essential purpose of confirming that the test suite executed
successfully and that no critical issues were encountered during the run. This simplicity also
makes it easy to integrate into automated pipelines without additional configuration or tools. Most
importantly, the result shows that the automated scripts have ran reliably that proves the research
objective of replacing repetitive manual testing with an automation was achieved.

6. DISCUSSION

The purpose of this discussion is to interpret the results from the automated test execution,
explain their significance, and show how the research met the target objectives of this research
report. The research aimed to deploy Playwright for testing the EDI Crossfire System, which
previously relied on manual testing.

6.1.Deploying Playwright as Testing Automation Tool

Playwright was chosen because it’s a new tool that shows favourable results based on recent
research. It compatible the modern browsers such as Chromium, Firefox and Webkit and at the
same time it has multi-language and framework support. Setting it up was surprisingly fast as
everything needed was included, so there was no long configuration phase. Such as installing
drivers, reporting and other plugins. This meant more time could be spent actually writing tests,
not taking more time over setup. Automating the repetitive work is a huge relief to traditional
manual testing; instead of manually checking long list of items, the system now did test reliably
in minutes.

6.2.Pre-Deployment Testing of Crossfire EDI System

Every system update brings a risk of errors, making the system pre-deployment testing a
necessary. Traditionally, the team manually capture a screenshot of logs, error messages, failed
interchanges, and key settings like Max Pool Size and encryption. While this is manually doable,
the process was slow and could possibly miss a single step. Using Playwright, all these validation
checklists were automated. The Playwright tool automatically captures a screenshot of errored list
of messages/interchanges. The captured evidence is then stored in the automatically created
directory, which compiles the test with the indicated test date and time, making it really helpful
for the developers to have. Because this pre-deployment evidence is used to compare against the
postdeployment evidence. Making debugging easier for the developers in times of defect or bug
detected.

6.3.Post-Deployment Testing of Crossfire EDI System

Once the Crossfire EDI system is confirmed stable; the developers can implement their change to
the system. Post-deployment testing had to make sure that new updates did not break any existing
functionality, especially Crossfire Admin functions. In practice, this was frustrating because
testing task requires the developer to interact to every component of the system. Also, manually
following the long checklists was very repetitive and will take a lot of time to finish. With
Playwright, the reusable scripts ran consistently across different platforms. Watching all the 33
test cases pass was a clear indicator that automation could reliably replace tedious manual checks.

242 Computer Science & Information Technology (CS & IT)

6.4.Automating the critical functionalities of the system

Automating the main functionality such as creating partners, transports, schedules, messages, and
processes was challenging because these are server-side changes rather than simple locator clicks.
Writing scripts and structured code was challenging at first, but once the framework was in place
using XUnit, errors were easily caught and detected, and it was easy to pinpoint exactly which
test had failed since reports shows them. For this test, a local database is freshly migrated to local
machine, where there is completely no data, thus there are no captured errors, although the test
correctly automates the function of capturing the list. And suggestions for this will be on the
recommendation section.

6.5.Reporting of Test Execution

The beauty of automation is getting to see the reporting result, and what test scenarios has passed
or failed. Playwright has a built-in reporter. However, the test runners differ depending on
language chosen because each language has different testing ecosystem. In this researchstudy
NET language is used with XUnit testing framework. The way it lays the report is
straightforward as it shows how many tests has passed, failed, and skipped.In this study, two
types of language were tested when studying the playwright. And it shows that Javascript has
HTML reporting because it uses Node.jstest runner. However, with XUnit , the terminal
command line is able to generate a very simple report that would straight away know how many
tests succeed, failed, and skipped.

6.6.Implication in Other Areas of Study

While automation significantly improves efficiency and accuracy, it is not a complete
replacement for a human wise judgment, The test scripts require maintenance, and some edge
cases may still need manual verification. However, automation has significant contribution in
improving the testing practice and this approach can be applied to other enterprise systems, such
as banking software, ecommerce websites where repetitive functional testing is common.

6.7.Contribution to the Study

This study addresses a manual testing of the Crossfire EDI system. By deploying Playwright, the
research study shows how modern automation tools can reliably cover complex workflows. Thus,
reducing errors and saving time for testing the system. Also, it contributes knowledge on applying
Playwright to EDI systems, which is less documented in current research.

6.8.Interpretation of the Study

The overall research findings show that automated testing using Playwright, it automates all the
33 test scenarios showing a complete test coverage. Also, it has demonstrated how powerful
XUnit library is. Because it runs the Playwright scripts inside the .NET framework and checks the
results with assertions, and at the same time generates a report whether each test passed or failed.
Generally, this research study has automated the Crossfire EDI system that reduced the manual
efforts of the Sandfield’s developers, which also minimizes the accidental human error when
testing. Thus, making deployment more reliable that benefits both developers and clients and the
organization.

http://node.js/

Computer Science & Information Technology (CS & IT) 243

7. CONCLUSION

This research began by understanding the testing practices for the Crossfire EDI system.
Currently, the main problem is the routinely manual testing for pre- and post-deployment
checklist validation. By understanding the pain points of the developers and how it affected their
clients, we started to propose automation of this testing workloads. Seeing how the developers
work with the long list of code, and then afterwards deal with the long list of testing is definitely a
tiresome work. With that, the main research points were developed, which is to design and
execute scripts using a new tool, Playwright, and then evaluate the system’s ability to handle it.
There are different automation tools out there, but following the recommendation based on recent
research, playwright has shown favourable results. And thus, applied and hope it will work also
on this research study. Automating testing does not only work make triple faster, but it makes
testing practice more reliable. One practical reason is because all these tests are designed and
written to follow instructions that a machine would certainly cover to run. This is important for
the complex workflow of Crossdire EDI system. By automating each process, it is definitely a
significant contribution in reducing manual testing.

Now, the problem of going through the long list of testing, which approximately would take hours
to finish has reduced to minutes of “you do not have to do anything” testing. This shows that
playwright powerfully increased the team’s productivity in different important things to work on.
This was achieved with a proper test planning and analysis of the requirements and following
through the Software Testing Lifecycle (STLC).

Overall, by deploying Playwright, we achieved our target of automating all testing of the
Crossfire EDI System functionalities. This not only solved the problem of manual effort and long
testing times but also improved the reliability of the tests.

8. RECOMMENDATIONS

In this section, the following recommendations are provided based on the challenges and
limitations encountered during the research execution. One significant challenge was
incorporating negative testing due to large testing coverage and timeframe. Negative testing
anticipates errors or unexpected inputs, making sure that the system behaves correctly under
failure conditions. By including these scenarios, the automation suite goes beyond simply
verifying positive flows where it actively catches potential failures before they impact operations.
The XUnit framework’s rich library of assertions and expectations provides the tools needed to
implement these tests efficiently. Another challenge was maintaining a consistent and clean local
database for tests. To address this, it is recommended seeding the database with test data before
execution and cleaning it afterward. This method guarantees that each test runs independently,
avoiding any domino effect of failures caused by leftover data. By implementing these, the team
can improve test coverage, system reliability, and the overall efficiency of automated testing.

REFERENCES

[1] Karatas, C., &Gultekin, M. (2021). EDI based secure design pattern for logistic and supply chain.
2021 9th International Symposium on Digital Forensics and Security (ISDFS), 1-5. Elazig, Turkey.

[2] Lopuha, O., Tsiutsiura, S., Poplavskyi, O., Lysytsin, O., Bondar, O., & Kruk, P. (2023). Test design
methodology for software verification. In 2023 IEEE International Conference on Smart Information
Systems and Technologies (SIST) (pp. 241-245). IEEE.

244
(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Computer Science & Information Technology (CS & IT)

L., Campos, O., Santos, R., Magalhaes, C., Santos, 1., & d. S. Santos, R. (2024). Elevating software
quality in agile environments: The role of testing professionals in unit testing. In 2024 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW)
(pp. 293-296). IEEE.

Lawanna, A. (2016). Test case design based technique for the improvement of test case selection in
software maintenance. In 2016 55th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE) (pp. 345-350). IEEE.

Pathak, K., Ninoria, S., &Bharadwaj, S. (2022). Scope of agile approach for software testing
process. In 2022 11th International Conference on System Modeling& Advancement in Research
Trends (SMART) (pp. 1079-1083). IEEE.

Suwarni, B. N., Indriyanto, E. R., Kaburuan, P., Parwito, E., Darwiyanto, E., &Simatupang, J. W.
(2018). Implementation SCRUM method in warehouse receipt system development. In 2018
International Conference on Orange Technologies (ICOT) (pp. 1-5). IEEE.

Jha, M., &Jha, R. (2020). Comparing the effort estimated by different models. In 2020 6th
International Conference on Advanced Computing and Communication Systems (ICACCS) (pp.
1148-1154). IEEE.

Kurniawati, A., &Wisena, S. (2023). Integrate WBS and forecast task completion in construction
projects using data analytics. In 2023 International Conference on Technology, Engineering, and
Computing Applications (ICTECA) (pp. 1-6). IEEE.

Sawant, K., Tiwari, R., Vyas, S., Sharma, P., Anand, A., &Soni, S. (2021). Implementation of
Selenium automation and report generation using Selenium WebDriver & ATF. In 2021
International Conference on Advances in Electrical, Computing, Communication and Sustainable
Technologies (ICAECT) (pp. 1-6). IEEE.

Bai, H. (2021). VSC-WebGPU: A Selenium-based VS Code Extension for local edit and cloud
compilation on WebGPU. In 2021 IEEE 3rd International Conference on Frontiers Technology of
Information and Computer (ICFTIC) (pp. 474—477). IEEE.

Apriansah, M. R., &Desanti, R. 1. (2024). Efficiency comparison of employee management
automation using Selenium and Playwright: A case study of technology consulting company. In
2024 International Conference on Information Technology Systems and Innovation (ICITSI) (pp.
419-425). IEEE.

Vadia, K., Thukrul, A., Mazumdar, P. G., Panda, N., &Sirsat, A. (2024). Bug testing automation
with Playwright and a backend API. In 2024 8th International Conference on I-SMAC (IoT in
Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 1867-1870). IEEE.

Joshi, S., &Kumari, I. (2022). Analyses of software testing approaches. In 2022 International
Interdisciplinary Humanitarian Conference for Sustainability (ITHC) (pp. 1276—1281). IEEE.
JeevaPadmini, K. V., Kankanamge, P. S., Bandara, H. M. N. D., &Perera, G. I. U. S. (2018).
Challenges faced by agile testers: A case study. In 2018 Moratuwa Engineering Research
Conference (MERCon) (pp. 431-436). IEEE.

Homes, B. (2022). Testing techniques. In Advanced Testing of Systems-of-Systems, Volume 1:
Theoretical Aspects (pp. 197-231). Wiley.

Greca, R., Miranda, B., &Bertolino, A. (2023). Orchestration strategies for regression test suites. In
2023 IEEE/ACM International Conference on Automation of Software Test (AST) (pp. 163-167).
IEEE.

Zhong, H., Zhang, L., &Khurshid, S. (2019). TestSage: Regression test selection for large-scale web
service testing. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST) (pp. 430-440). IEEE.

Srivastava, A., Bhardwaj, S., &Saraswat, S. (2017, May). SCRUM model for agile methodology. In
2017 International Conference on Computing, Communication and Automation (ICCCA) (pp. 864-
869). IEEE.

Kaur, S., Hooda, S., &Deo, H. (2023). Software quality management by Agile testing. In Agile
Software Development: Trends, Challenges and Applications (pp. 221-233).

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

