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ABSTRACT 
 

Understanding metaphors remains a core challenge for NLP systems, especially when 

metaphorical meaning depends on perceptual grounding. This paper explores whether 

injecting perceptual color features into a T5-based language model can enhance metaphor 

explanation generation. We propose a low-cost, interpretable approach by mapping 12-

dimensional color vectors (JzAzBz space) into prefix embeddings that condition the model 

during fine-tuning. Evaluation on held-out test sets shows that the color-injected model 

outperforms the text-only baseline in both automatic metrics (BLEU +144%, ROUGE-L F1 

+150%) and human ratings of correctness and general quality. However, a significant drop 

in comprehensiveness is observed, suggesting a trade-off between precision and coverage. 

Rater agreement analyses reveal high within-item agreement but modest inter-rater 

consistency, underscoring the subjective difficulty of metaphor evaluation. Our findings 

demonstrate the utility of perceptual grounding for figurative language generation and 

offer insights into balancing accuracy and elaboration in metaphor explanation tasks. 
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1. INTRODUCTION 
 

Metaphor is a pervasive and powerful mechanism in human language, enabling abstract concepts 

to be understood through more concrete, embodied experiences. Yet for neural language models, 

understanding and explaining metaphors remains challenging, especially when figurative 

meaning cannot be inferred purely from textual context. Inspired by cognitive theories of 

embodied meaning, this study investigates whether injecting perceptual cues, specifically, visual 

color features, can improve a language model’s ability to generate plausible metaphor 

explanations. 

 

Recent advances in grounded and multimodal NLP suggest that perceptual features (e.g., vision, 

sensorimotor norms, affect) can help disambiguate figurative expressions and provide cognitively 

meaningful structure. Color, in particular, encodes rich affective and conceptual associations 

across cultures and languages. Prior research has shown that color terms, even in metaphorical 

use, activate visual processing regions in the brain, supporting the idea that metaphor 

comprehension is not purely symbolic but grounded in perceptual simulation. 

 

To operationalize this perspective in NLP, we propose a simple yet effective method: injecting 

JzAzBz color features into a T5 model via prefix-tuning. By projecting low-dimensional 
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perceptual cues into prefix embeddings, we enable the model to jointly attend to textual and 

color-derived information during explanation generation. We compare this color-injected system 

to a text-only baseline across both automatic metrics (BLEU, ROUGE-L F1) and human 

evaluations of interpretive quality. Our findings demonstrate that perceptual grounding enhances 

metaphor interpretation but also reveals trade-offs that prompt deeper questions about the role of 

multimodal priors in generative NLP. 

 

2. LITERATURE REVIEW 
 

2.1. Embodied Cognition Theory 
 

Early theories of meaning in formal semantics and cognitive psychology are grounded in the 

Symbolic Model of Meaning. This model holds that concepts are represented in the mind as 

abstract, amodal symbols, detached from perception or bodily experience [1] [2]. Understanding 

a term such as red involves accessing a symbolic node within a semantic network, not simulating 

its perceptual qualities. Semantic processing operates through rule-based mechanisms acting on 

taxonomic structures [3]. Metaphorical language is treated as lexical extension or polysemy. 

However, such models have been criticized for failing to explain how abstract concepts are 

acquired or grounded in human experience [4]. 

 

As a paradigm shift, Embodied Cognition proposes that cognitive representations are grounded in 

the body’s sensorimotor and affective systems. Meaning is constructed through the reenactment 

of perceptual, emotional, and motor experiences [5] [6] [7]. This framework underlies two 

influential theories: Conceptual Metaphor Theory (CMT) and Perceptual Simulation Theory 

(PST). 

 

CMT, developed by Lakoff and Johnson [8], argues that abstract concepts are structured by 

metaphorical mappings from concrete bodily experiences. Common metaphors such as ‘time is 

money,” ‘anger is heat,” and ‘up is good” show how sensorimotor interactions provide cognitive 

scaffolding for abstract reasoning. These metaphors are not just rhetorical expressions, but 

cognitive tools embedded in everyday thought and language. 

 

Building on CMT, Barsalou’s Perceptual Simulation Theory [5] and subsequent work [9] propose 

that conceptual understanding involves simulating sensory and motor experiences associated with 

the referent. For example, even in metaphorical contexts, the word ‘red” can activate visual 

regions in the brain. Neuroscientific evidence supports this view. Modality-specific regions, such 

as those related to motion and vision, are activated during language comprehension of sensory-

related words [10] [11]. Thus, language understanding is suggested to not be separate from 

perception but intimately linked through simulation mechanisms. 

 

Situated Conceptualization Theory further refines embodiment by emphasizing that concepts are 

not static but are dynamically constructed in context. When a concept is activated, it triggers a 

situated simulation that re-enacts perceptual, motor, and affective experiences relevant to the 

situation [12]. Therefore, meaning is context-dependent and rooted in prior embodied 

interactions. 

 

Extending this view, gradient embodiment models propose that concepts vary in the degree of 

sensorimotor grounding they involve. Connell & Lynott [13] showed that perceptual strength 

ratings better predict word processing behavior than traditional concreteness measures. Villani et 

al. [14] demonstrated that even abstract words differ in how much they engage perceptual 

systems, reinforcing a continuum of embodiment rather than a binary classification. 
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Complementing embodied theories, Dual Coding Theory [15] proposed that cognition involves 

two interacting systems, a verbal system for linguistic processing and a non-verbal system for 

sensory-based representations such as imagery. Words with strong perceptual grounding can 

activate both systems simultaneously, leading to more robust comprehension and memory. In the 

context of color metaphors, this dual activation mechanism explains the enhanced processing of 

abstract terms like ‘red alert” or ‘white lie”, where both symbolic and perceptual codes are 

engaged. 

 

To reconcile symbolic and embodied perspectives, recent research has proposed hybrid models 

that integrate both. Andrews et al. [16] and Dove [17] argue that while core semantic structures 

may be symbolic, they are dynamically enriched by perceptual, affective, and contextual 

information. For instance, white may function as a symbol of purity in one context while evoking 

visual experiences of brightness or emptiness in another. These models provide a more flexible 

account of meaning, bridging compositional semantics with experiential grounding. 

 

Empirical research provides strong evidence for embodied cognition. Neuroimaging studies 

corroborate this view: language comprehension activates sensory and motor areas, with 

Pulvermüller [10] reporting motor activation for action words and Simmons et al.[11] showing 

that even reading color terms activates the brain’s color-processing region. 

 

While early research primarily examined concrete concepts, recent work has extended 

embodiment to abstract domains such as emotion, morality, and social cognition. Connell et al. 

[18] showed that abstract concepts vary in their reliance on different perceptual modalities. For 

example, moral concepts tend to engage motion systems, while numerical concepts often rely on 

visual simulations. Similarly, Lynott et al. [19] provided large-scale evidence that abstract and 

concrete words both evoke modality-specific sensory responses, which is consistent with 

Barsalou [12] view of grounded abstraction. Studies by Villani et al. [14] and Kousta et al. [20] 

highlight that affective valence, interoception, and social context can serve as grounding 

mechanisms for abstract concepts when direct perceptual simulation is limited. 

 

Among perceptual domains, color has proven especially useful for testing theories of visual 

grounding. Simmons et al. [11] found that reading color terms, even metaphorically, activates the 

brain’s color-processing area, underscoring the embodied nature of color-language links. Lupyan 

[21] proposed the Label-Feedback Hypothesis, which further suggests that linguistic labels 

actively shape perceptual expectations. Evidence from cross-linguistic studies [22] and 

developmental research shows that language can modulate visual grouping. 

 

Building on this foundation, researchers have explored multimodal and image-based approaches 

to embodiment. Guilbeault et al. [23] demonstrated that abstract concepts are systematically 

associated with specific visual features in corresponding images, such as hue, brightness, entropy, 

and shape irregularity. These visual regularities were shown to align with affective and 

conceptual similarity, offering strong evidence for visual simulation in abstract conceptualization. 

This image-based embodiment perspective has been extended to Chinese. Hui et al. [24] found 

that color-emotion congruence facilitated faster semantic judgments among Chinese speakers, 

suggesting that visual-emotional mappings influence real-time language processing. Their 

findings further support the idea that perceptual cues like color are not only cognitively active but 

also culturally embedded. 

 

Recent research in embodied cognition has increasingly highlighted the role of visual information 

in shaping conceptual understanding. Studies in information visualization have shown that visual 

representations are not only tools for representing abstract data but also play an active role in how 

information is perceived, processed, and semantically interpreted [25][26]. Schloss et al. [27] 
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demonstrated that concept-color mappings are systematically structured in cognition, suggesting 

that viewers intuitively associate specific hues with abstract ideas like threat or purity. The 

semantic discriminability of visual stimuli supports the idea that perceptual clarity and feature 

salience contribute to concept recognition and cognitive efficiency [27]. Interaction-based views 

reinforce this, emphasizing that 3D visualization environments with embodied controls foster 

intuitive spatial reasoning by engaging motor schemas [28] [29]. As such, visual semantics are 

not limited to surface features but involve deeply embodied interpretations grounded in 

perceptual and interactional experience. The findings across visualization design, perceptual 

cognition, and metaphor theory underscore the relevance of visual grounding in meaning 

construction. 

 

2.2. Metaphor Prediction in NLP 
 

Early computational treatments of metaphor framed the task as detection: determining whether a 

token or phrase is used metaphorically in context. This line of work relied on carefully specified 

manual protocols such as the Metaphor Identification Procedure (MIP) and its successor MIPVU, 

which standardized annotation criteria and seeded later supervised models [30] [31]. These 

protocols remain the basis of widely used corpora and shared tasks.  

 

Benchmark datasets then catalyzed progress. The VU Amsterdam Metaphor Corpus (VUA) 

underpinned the 2018 shared task, which evaluated systems on word-level metaphor 

identification across genres; VUA helped establish common train/test splits and metrics and 

revealed difficulties such as class imbalance and cross-genre robustness [32]. Complementary 

resources include MOH-X (verb-focused, high metaphor ratio) and TroFi (literal vs. figurative 

verb usages from WSJ), often used for in-context classification or sequence labeling [33]. 

 

Modeling evolved from feature-engineered SVM/CRF baselines to neural architectures. Early 

neural systems used BiLSTMs over contextual windows or sequence tagging; as pre-trained 

contextual encoders arrived, BERT-based models became dominant in shared tasks and follow-

up studies (e.g., reports noting neural dominance at VUA) [34].  

 

Specialized architectures then embedded metaphor-theoretic biases into transformers. MelBERT, 

for example, employs a late-interaction mechanism over BERT informed by identification 

theories, achieving strong performance on VUA, MOH-X, and TroFi [35]. Such designs illustrate 

how inductive bias plus large pre-training can outperform naive fine-tuning for figurative 

language.  

 

Parallel to purely textual modeling, researchers showed that non-textual cues can help. Shutova et 

al. [36] incorporated visual features to detect metaphor, demonstrating that multimodal signals 

boost accuracy when linguistic context is ambiguous, an insight that motivates structured 

perceptual cues (e.g., affect or color) as auxiliary inputs even in text-only pipelines.  

 

A second shift reframed tasks from detection to generation: producing literal explanations or 

paraphrases of metaphorical language. Text-to-text models like T5 unify classification, tagging, 

and generation by casting problems as string-to-string mapping, enabling “explain the metaphor” 

prompts and multi-task training within a single architecture [37]. 

  

Current challenges include variable inter-annotator agreement (even with MIP/MIPVU), domain 

shift across genres, and limited coverage for non-English metaphors. Recent work addresses 

these via better annotation protocols, domain adaptation, and multilingual pre-training; 

nevertheless, careful evaluation on both automatic metrics and human judgments remains crucial 

for explanation tasks, not just detection [38].  
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Finally, there is growing interest in grounded or knowledge-augmented approaches that inject 

structured cues tied to conceptual mappings (e.g., affect, concreteness, or color priors) or 

leverage multimodal encoders. These align with cognitive accounts that treat metaphor as 

systematic mapping rather than noise, and they complement the strong baselines provided by 

general-purpose text-to-text transformers [36].  

 

2.3. Grounded and Multimodal LLMs 
 

Large language models (LLMs) increasingly go beyond text-only inputs to incorporate grounded 

signals, perceptual, affective, or world-knowledge cues that humans routinely exploit when 

interpreting meaning. This move is motivated by embodied cognition: many linguistic meanings, 

including metaphors, are systematically tied to sensorimotor experience [4] [5]. If abstract 

language draws on concrete experience, then LLMs should benefit from multimodal inputs 

(vision, sound, touch) or structured proxies of perception (e.g., color, sensorimotor norms) when 

tasked with nuanced semantic understanding and figurative interpretation. 

 

Vision as grounding. Early grounding efforts fused text with image features to overcome the 

limits of purely distributional semantics. Multimodal distributional semantics showed that adding 

visual descriptors improves concept similarity and lexical inference over text alone [39]. In 

figurative language, visual features have been used to sharpen metaphor detection, improving 

disambiguation when context is underspecified [36]. Follow-up work constructed “visibility” or 

image-derived representations and combined them with textual encoders, yielding gains on 

benchmark metaphor datasets relative to text-only models [40]. More broadly, modern vision–

language systems like CLIP-style pipelines [34] demonstrate how image embeddings can be 

aligned with text encoders, offering a template for grounded LLM design even when the 

downstream task is text generation. 

 

Beyond vision: sensorimotor and affective cues. Grounding does not require raw pixels. Human 

sensorimotor norms, ratings of how words are experienced via sight, sound, touch, taste, smell, or 

action, provide compact, cognitively meaningful features. Injecting such vectors into neural 

models improves metaphor identification and yields more interpretable decisions that track 

human intuitions [41] [42]. Similarly, combining visually grounded word vectors with 

sensorimotor norms enriches transformer representations on semantic tasks related to figurative 

meaning [43]. These results suggest that structured, low-dimensional proxies of perception can 

serve as effective grounding signals without the engineering overhead of full multimodal 

pretraining. 

 

Color as an embodied prior. Color semantics are psychologically salient and culturally pervasive 

(e.g., “feeling blue,” “in the red”). Large-scale lexicons show stable word–color associations, 

even for abstract concepts, providing priors that can be turned into features [44] [45]. 

Perceptually grounded embeddings like comp-syn represent a concept by the distribution of 

colors in its images, using a uniform color space to produce 8–16 dimensional descriptors [46]. 

These embeddings complement text: they better predict human concreteness and help separate 

metaphorical from literal adjective–noun pairs, revealing regularities that text-only models often 

miss. Color thus offers a lightweight embodied cue well suited to conditioning LLMs for 

metaphor explanation. 

 

Parameter-efficient grounding for LLMs. Rather than retraining an LLM end-to-end, parameter-

efficient methods insert small learnable modules while keeping the backbone largely frozen. 

Adapters [47], LoRA [48], and prefix/prompt-tuning [49] are especially attractive for integrating 

grounded signals: a tiny network maps a perceptual vector (e.g., color or sensorimotor features) 

into continuous prompts/prefixes that the transformer attends to during encoding and generation. 
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This strategy preserves general linguistic competence while injecting task-relevant grounding. 

 

Proof of concept with “frozen” LMs. Tsimpoukelli [50] showed that a frozen language model can 

be endowed with visual understanding by learning a vision encoder that outputs a prefix sequence 

consumable by the LM, enabling few-shot multimodal tasks. Analogously, vision–language 

variants of T5 (e.g., VL-T5 families) encode images as token-like embeddings fed to the text 

encoder. These designs validate a general recipe: keep the LM mostly intact, learn a small bridge 

from perceptual cues to the LM’s hidden space, and let attention do the fusion. 

 

Implications for metaphor understanding. Figurative language often hinges on embodied 

contrasts (temperature, brightness, heaviness, vividness). Grounded LLMs, augmented with 

visual, sensorimotor, or color priors, are better positioned to choose the intended non-literal sense 

and to produce literal explanations aligned with human intuitions. In generation, low-dimensional 

cues stabilize decoding (reducing generic glosses) and bias the model toward interpretations 

consistent with common embodied mappings. 

 

Positioning of the present study. In this landscape, conditioning a T5 model on compact color 

vectors via a learned prefix encoder is a principled, low-cost instantiation of grounded LLM 

design. It operationalizes embodied theory with interpretable, language-agnostic cues, avoids 

heavy multimodal pretraining, and supports clear ablations (text-only vs. shuffled/zeroed color 

features). The broader literature on grounded and multimodal LLMs thus motivates and 

contextualizes our approach to metaphor explanation. 

 

3. METHODOLOGY 
 

3.1. Data 
 

The annotated metaphor data from previous research [51] is used in this research. The dataset is 

divided into three parts. First, a pretraining corpus of 21,871 metaphorical sentence instances was 

assembled, in which each instance was paired with an explanatory expression for the target 

metaphorical word; this corpus was used to induce general mappings from metaphor-in-context 

to literal explanation. Second, a color-augmented fine-tuning set of 800 instances was curated, 

where each sentence contained a metaphorical word annotated with perceptual color features and 

was paired with an explanatory output; this set was used to enable incorporation of visual priors 

during generation. Finally, two evaluation sets of 200 instances each were prepared: (i) a text-

only set, containing sentences with metaphorical words but without color features or gold 

explanations, by which the baseline model was assessed; and (ii) a multimodal set, containing 

sentences with metaphorical words and associated color features but no references, by which the 

color-injected model was assessed. 

 

3.2. Finetuning the Models 
 

An T5-small encoder–decoder model was fine-tuned on a metaphor-explanation dataset to 

establish a text-only baseline. Training was run for five epochs (batch size = 8; max input length 

= 128; max output length = 64; learning rate = 5×10⁻⁵). The resulting checkpoint 

(t5_finetuned_metaphor) served as the baseline for subsequent comparisons. 

 

To assess whether color-related perceptual information could enhance explanation quality, a 

Color Prefix Encoder was introduced to project 12-dimensional JzAzBz color features into a 

sequence of prefix embeddings. These embeddings were concatenated with the token embeddings 

at the encoder input so that textual and perceptual cues could be jointly attended. Joint 
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optimization was performed over both the prefix encoder and the T5 backbone during finetuning 

(five epochs; batch size = 8; learning rate = 2×10⁻⁴). The trained multimodal system 

(joint_model) and its prefix weights (color_prefix_encoder.pt) were saved as the color-injected 

model. 

 

3.3. Prediction Generation 
 

For the text-only baseline, held-out metaphorical sentences were tokenized and decoded with 

greedy or beam search (maximum length = 50), and the outputs were saved to 

baseline_predictions.csv. 

For the color-injected model, the same items were paired with their color feature vectors. Each 

feature vector was mapped by the Color Prefix Encoder to prefix embeddings, concatenated with 

token embeddings, and then processed by the backbone to generate explanations. Decoded 

outputs were saved to color_injected_predictions.csv. This protocol enabled a controlled 

comparison between text-only and color-informed generations. 

 

3.4. Evaluation of Model Outputs 
 

Automatic evaluation was conducted using sentence-level BLEU (with smoothing for short 

sequences) and ROUGE-L F1, computed against human reference explanations where available, 

and then averaged to obtain corpus-level scores for each model. 

 

A complementary human evaluation was implemented using a balanced paired-questionnaire 

design. The 34 test sentences were split into two halves; in Questionnaire A, baseline outputs for 

one half and color-injected outputs for the other were presented, with the assignments reversed in 

Questionnaire B. In this way, coverage of all sentences was ensured while direct A/B exposure 

per item was avoided. Eligible participants (≥ 18 years) completed exactly one questionnaire (≈ 

10–15 minutes) and rated each explanation on correctness, grammaticality, naturalness, and 

comprehensiveness using a five-point Likert scale. Quality-control items were embedded to 

safeguard response validity. 

 

Human ratings were summarized with descriptive statistics for each model and dimension. Paired 

comparisons between baseline and color-injected outputs were performed at the sentence level 

using paired t-tests and Wilcoxon signed-rank tests; Cohen’s d was reported to quantify effect 

sizes. Rater consistency was examined via Cronbach’s α (internal consistency within each rater 

group), within-group agreement (rwg) computed per item, and quadratic-weighted Cohen’s κ 

across rater pairs. Through these analyses, the automatic metrics were validated with human 

judgments and the impact of color-feature injection on perceived explanation quality was 

assessed. 

 

4. RESULTS 
 

We evaluate metaphor explanation on two held-out test sets: a text-only set for assessing the 

baseline and a color-augmented set for assessing the multimodal system. The compared systems 

are (i) a Baseline model, T5-small fine-tuned on text only, and (ii) a Color-Injected model, the 

same backbone jointly fine-tuned with a learned color-prefix that conditions on 12-D color 

features. We report corpus-level BLEU and ROUGE-L F1 for automatic evaluation, and human 

ratings on five dimensions (correctness, grammaticality, naturalness, comprehensiveness, general 

quality) using a 5-point Likert scale with 6 raters × 34 items per form. For significance, sentence-

paired t-tests and Wilcoxon signed-rank tests are applied, and Cohen’s d is provided to quantify 

effect size. 
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4.1. Automatic Metrics 
 

Table 1.  Automatic metrics on the metaphor-explanation test set. 

 

Model BLEU ROUGE-L (F1) 

Baseline (text-only) 0.0018 0.0100 

Color-Injected 0.0044 0.0250 

 

The color-injected model outperforms the text-only baseline on both metrics: BLEU +144% 

(0.0044 vs. 0.0018) and ROUGE-L F1 +150% (0.0250 vs. 0.0100). While absolute scores are 

low, typical for open-ended explanation generation, the consistent relative gains indicate that 

conditioning on compact color features helps the model better align with reference explanations 

under the same decoding setup described in Methods (sentence-level BLEU with smoothing; 

ROUGE-L F1). 

 

4.2. Human Evaluation 
 

4.2.1. Descriptive Statistics (All Ratings) 

 

Each model/dimension has N = 204 judgments (34 sentences × 6 raters). Means and standard 

deviations (SD) are summarized below. 

 
Table 2. Summary of human ratings  

 

Dimension Baseline Mean Baseline SD Color-Injected Mean Color-Injected SD 

Comprehensiveness 3.75 1.17 3.17 1.09 

Correctness 3.73 1.29 4.01 1 

General quality 3.48 1.45 3.82 1.06 

Grammaticality 3.62 1.02 3.73 0.81 

Naturalness 3.68 1.15 3.67 1.09 

 

These results offer an initial overview of the perceived quality of metaphor explanations. On 

Correctness, the color-injected model shows a noticeable improvement over the baseline (mean: 

4.01 vs. 3.73), suggesting that the injected perceptual cues helped produce more semantically 

accurate outputs. A similar pattern emerges for General quality, where the multimodal system 

achieved a higher mean (3.82 vs. 3.48), indicating that raters generally preferred these 

explanations overall. 

 

For Grammaticality and Naturalness, the two models performed comparably, with slight 

differences that fall within the range of standard deviation, suggesting that color conditioning did 

not negatively impact fluency or syntactic well-formedness. 

 

Interestingly, the Comprehensiveness dimension saw a moderate decline in ratings for the color-

injected model (3.17 vs. 3.75), indicating that while the generated explanations may have become 

more accurate or natural, they might have been perceived as less detailed or holistic in covering 

the metaphor's meaning. 

4.2.2. Sentence-Paired Significance Tests 

 

To assess whether differences between the two systems were statistically meaningful, we 

conducted sentence-level paired significance tests across all five human rating dimensions. Each 
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of the 34 test sentences received ratings from six participants per model, and mean scores were 

aggregated per sentence, resulting in 34 paired observations for each model-dimension 

comparison. Two statistical tests were applied per dimension: (i) paired t-tests to assess mean 

differences, and (ii) Wilcoxon signed-rank tests for robustness against non-normality. Cohen’s d 

was reported to indicate effect size. 

 
Table 3. Sentence-level paired test results. 

 

Dimension 
Mean  

(Base) 

Mean  

(Fine) 
Δ (Fine–Base) t p (t) Wilcoxon W p (W) Cohen’s d 

Comprehensiveness 3.75  3.17  −0.58 −5.10 0.00  55.00  0.00  −0.87 

Correctness 3.73  4.02  0.28  2.73  0.01  131.50  0.01  0.47  

General quality 3.48  3.82  0.35  3.40  0.00  125.00  0.00  0.58  

Grammaticality 3.62  3.73  0.11  1.28  0.21  225.00  0.26  0.22  

Naturalness 3.68  3.67  −0.02 −0.14 0.89  290.00  0.91  −0.02 

 

The color-injected model significantly outperformed the baseline on Correctness (p < 0.01, d = 

0.47) and General quality (p < 0.005, d = 0.58), with medium effect sizes. These results suggest 

that perceptual color cues helped the model choose more appropriate interpretations for 

metaphorical expressions and improved the overall perceived quality of explanations. 

 

No statistically significant differences were found in Grammaticality or Naturalness, with small 

effect sizes (|d| < 0.25). This indicates that the incorporation of color features did not compromise 

fluency or syntactic well-formedness, maintaining linguistic plausibility at a level similar to the 

text-only baseline. 

 

In contrast, the model showed a significant decline in Comprehensiveness (p < 0.001, d = −0.87), 

with a large negative effect size. This suggests that although the color-injected model generated 

more accurate and well-received explanations, these outputs may have covered a narrower scope 

of meaning or omitted details, likely due to the model’s stronger anchoring on the dominant 

perceptual cue (color). 

 

Together, these findings highlight a tradeoff: color conditioning boosts interpretive precision and 

global acceptability but may reduce the breadth of the explanation. This mirrors prior findings in 

multimodal NLP where perceptual features strengthen grounding but may also bias attention 

toward more concrete aspects of meaning. 

 

4.2.3. Rater Reliability and Agreement 

 

Rater consistency was examined with three complementary indicators, Cronbach’s α (internal 

consistency within each six-rater group), r_wg (within-group agreement per item under a uniform 

5-point null), and quadratic-weighted Cohen’s κ averaged across all rater pairs. Because the study 

used two balanced forms, results are reported separately for Questionnaire A and Questionnaire B 

to respect the split-by-side design. 

 

 

 

 

 (a) Questionnaire A 

 
Table 4. Reliability of questionnaire A. 
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Dimension α Base α Fine r_wg Mean Base r_wg Mean Fine 

Comprehensiveness 0.48 0.49 0.54 0.41 

Correctness −0.40 −0.22 0.29 0.2 

General quality −0.50 −0.16 −0.05 0.14 

Grammaticality −0.44 −0.57 0.58 0.5 

Naturalness −0.07 −0.08 0.46 0.4 

 

Table 3A (above) summarizes three complementary indices: Cronbach’s α (internal consistency 

across the six raters), r_wg (within-group agreement per item under a uniform 5-point null; 

higher is better), and the mean quadratic-weighted Cohen’s κ across all rater pairs (agreement 

beyond chance). 

 

First, comprehensiveness shows the most stable internal consistency in Form A: α ≈ 0.48 

(Baseline) and 0.49 (Color-Injected), i.e., approaching the conventional “moderate” region for 

small panels. At the same time, within-item agreement (r_wg) is higher for Baseline (0.543) than 

for Color-Injected (0.409). This pattern suggests that the six raters behaved relatively coherently 

as a group across items (reasonable α) and, on average, converged more tightly on the Baseline 

outputs than on the Color-Injected ones for this scale. 

 

Correctness exhibits low consensus: α is negative for both systems (−0.400, −0.223), and r_wg is 

modest (0.286, 0.199). Negative α signals weak or inconsistent co-movement among raters 

across items, often a sign that raters applied heterogeneous criteria (e.g., emphasis on literal 

fidelity vs. interpretive plausibility) or that the construct blends subfacets. The low r_wg mirrors 

this, indicating notable dispersion within items. 

 

General quality shows the starkest divergence: α is negative in both systems (−0.503, −0.162), 

and the Baseline even has a slightly negative mean r_wg (−0.051), meaning dispersion 

sometimes exceeded what would be expected by chance on a 5-point scale. The Color-Injected 

condition rises to a small positive r_wg (0.141), but agreement remains weak. This is typical for 

broad “overall” scales that bundle multiple cues (correctness, coverage, fluency), inviting rater 

idiosyncrasies. 

 

Grammaticality achieves the strongest within-item agreement of the five dimensions (r_wg ≈ 

0.58 Baseline; 0.50 Color-Injected), consistent with raters more easily aligning on surface well-

formedness. Yet α remains negative in both systems (−0.436, −0.570), implying that, although 

raters tend to agree within each item, they do not track each other consistently across different 

items (e.g., a rater can be strict on one subset and lenient on another in ways that do not align 

with peers). This “high r_wg but low α” pattern occurs when item-to-item rater rank orders are 

unstable. 

 

Naturalness falls between these extremes: r_wg is moderate (0.455, 0.402), but α hovers near 

zero (−0.069, −0.077). As with grammaticality, raters can often align within a given item on how 

“native-like” an explanation feels, yet their across-item rating profiles diverge. 

 

 

Finally, κ (weighted, averaged over all rater pairs) sits near zero across dimensions in Form A 

(e.g., comprehensiveness 0.097 for Baseline, 0.114 for Color-Injected; other dimensions near or 

slightly below zero). This indicates that, despite acceptable within-item agreement on some 

dimensions (especially grammaticality and sometimes comprehensiveness), individual rater pairs 

did not exhibit strong beyond-chance alignment on absolute category choices. In practice, that 
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means group means are usable (supported by r_wg), but any single rater’s labels are noisy 

relative to another’s. 

 

(b) Questionnaire B 

 
Table 5. Reliability of questionnaire B. 

 

Dimension α Base α Fine r_wg Mean Base r_wg Mean Fine 

Comprehensiveness −0.01 −0.04 0.39 0.53 

Correctness −0.26 0.27 0.61 0.53 

General quality 0.19 −0.45 0.52 0.50 

Grammaticality −0.20 −0.22 0.72 0.72 

Naturalness −0.43 −0.01 0.47 0.51 

 

Comprehensiveness shows a notable shift compared with Form A: within-group agreement 

(r_wg) is higher for the color-injected system (0.531) than for the baseline (0.390), suggesting 

raters converged more on how fully the color-conditioned outputs covered the intended meaning. 

Cronbach’s α remains near zero for both systems (−0.008, −0.037), pointing to weak inter-rater 

covariance across items, i.e., raters’ profiles vary from item to item even when they agree 

within a given item. 

 

Correctness exhibits the clearest reliability gain for the color-injected system in Form B. Internal 

consistency rises to a small positive α (0.271) from a negative baseline (−0.262), and r_wg 

remains strong for both systems (0.614 baseline; 0.533 color-injected). This pattern suggests that 

while both systems produced outputs on which raters could agree per item, the color-injected 

outputs yielded more consistent rater rank-ordering across items (higher α), possibly because 

color cues stabilized judgments of literal/interpretive fidelity. 

 

General quality presents mixed evidence. Within-group agreement is solid and similar across 

systems (r_wg ≈ 0.51 vs. 0.50), yet α is positive for the baseline (0.193) and negative for the 

color-injected system (−0.447). This indicates that, although raters converged within items for 

both systems, their across-item co-movement diverged more under the color-injected condition, 

consistent with “ overall quality ”  being a composite construct where individual raters 

emphasize different facets (coverage, fluency, faithfulness). 

 

Grammaticality again shows the strongest within-item consensus of all dimensions (r_wg ≈ 0.72 

for both systems), reflecting that surface well-formedness is relatively easy to align on. Yet α 

remains slightly negative for both, implying that raters’ strictness varies across items in ways that 

do not tightly track one another (high r_wg, low α). 

 

Naturalness achieves moderate r_wg for both systems, with a small advantage for color-injected 

(0.508 vs. 0.471). α improves from strongly negative for baseline (−0.430) to near zero for color-

injected (−0.013), again hinting that color conditioning may reduce idiosyncratic variation in how 

“native-like” an explanation feels across items. 

 

Finally, the consistently near-zero κ values confirm that individual rater pairs did not agree far 

beyond chance on absolute category choices, even when r_wg indicated good within-group 

convergence. Practically, this supports our use of aggregated per-item means and sentence-paired 

tests (rather than single-rater decisions) and motivates two follow-ups for future data collection: 

provide tighter rubric anchors and short calibration examples per dimension, and consider many-
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facet models (e.g., Rasch/GLMM) to absorb rater-severity differences. 

 

5. DISCUSSION 
 

This study explored whether injecting perceptual color features into a T5 model improves 

performance on the metaphor explanation task. Automatic metrics showed consistent gains: the 

color-injected model outperformed the baseline with over 2× improvement in both BLEU and 

ROUGE-L F1. Human evaluations echoed these gains, with color-injected outputs rated 

significantly higher in correctness and general quality, and exhibiting moderate effect sizes 

(Cohen’s d ≈ 0.5). However, a notable trade-off emerged: comprehensiveness ratings dropped 

significantly under color conditioning. Grammaticality and naturalness showed no reliable 

differences. 

 

5.1. Interpretation and Implications 
 

The improvements in correctness and general quality suggest that color features help steer the 

model toward more accurate and coherent interpretations of metaphorical meanings. This aligns 

with the hypothesis that perceptual grounding, in this case via color priors, can aid in metaphor 

understanding by reinforcing likely conceptual mappings. The moderate effect sizes observed in 

human ratings, despite small training sets and low-dimensional features, highlight the promise of 

low-cost, interpretable multimodal cues for generation tasks. 

 

The comprehensiveness drop is revealing. It suggests that while color features may anchor the 

model’s attention to salient conceptual associations, they may also constrain the breadth of 

interpretation, leading to narrower, more specific (but less elaborative) explanations. This finding 

resonates with cognitive theories of embodiment: grounding can enhance relevance but reduce 

generality. In generative terms, conditioning on perceptual priors may increase precision at the 

expense of recall over interpretive possibilities. Moreover, interpreting these trade-offs is 

complicated by variability in human evaluation. Although within-item agreement was moderate, 

overall rater consistency was limited. Future work should therefore include improved rater 

training protocols or a larger rater pool to strengthen the robustness of human evaluation. 

 

5.2. Rater Behaviour and Evaluation Methodology 
 

Rater agreement patterns help contextualize the results. Across both questionnaires, r_wg values 

(within-item agreement) were moderate-to-high for dimensions like grammaticality and 

correctness, supporting the reliability of mean scores. However, Cronbach’s α was often near or 

below zero, indicating inconsistent rank ordering across items, and Cohen’s κ hovered near 

chance. These patterns suggest that while raters can converge on judgments within a sentence, 

their overall rating styles vary widely. 

 

This heterogeneity reflects the difficulty of the task: evaluating metaphor explanations involves 

balancing multiple criteria (interpretive fidelity, elaboration, fluency), and individual raters likely 

weigh these differently. The findings underscore the need for improved annotation protocols in 

figurative language evaluation, such as rubric anchoring, calibration items, or facet-based rating 

models. 

 

 

 

5.3. Limitations 
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Several limitations temper the findings. First, the training and test sets are relatively small, which 

may limit generalizability. Second, the perceptual grounding is based solely on color features; 

other embodied cues (e.g., sensorimotor, affective, situational) remain unexplored in this setup. 

Third, while the prefix-injection mechanism is interpretable and efficient, it introduces additional 

parameters and training complexity that may not scale well to larger models or more diverse 

metaphors. Finally, our human evaluation relied on a relatively small panel of six raters without 

extensive calibration. Although within-item agreement was moderate, future work should 

incorporate more rigorous rater training or a larger pool of annotators to improve consistency and 

reliability of judgments. 

 

5.4. Future Directions 
 

Future work can expand in several directions. One avenue is to scale up multimodal metaphor 

datasets, incorporating a wider range of grounded features (e.g., sensorimotor norms, visual 

entropy, emotion associations). Another is to compare alternative grounding methods, such as 

image-conditioned decoders or attention-based fusion. From an evaluation perspective, it would 

be fruitful to combine human ratings with retrieval-based or discriminative probes, testing 

whether grounded explanations align more closely with human interpretations across diverse 

metaphor types and domains. Finally, the broader implications of grounding for generative 

controllability and explainability in LLMs merit systematic exploration. 

 

6. CONCLUSION 
 

This study presents a parameter-efficient method for injecting perceptual color features into a T5 

model to improve metaphor explanation. The results show that color-injected models achieve 

meaningful gains in both automatic and human evaluation metrics, particularly in correctness and 

general quality. These improvements suggest that perceptual grounding, here instantiated via 

compact color vectors, can steer generative models toward more accurate interpretations of 

metaphorical language. 

 

At the same time, the observed drop in comprehensiveness points to a trade-off: color cues help 

constrain interpretations but may limit elaboration. This finding aligns with theories of embodied 

cognition that highlight both the benefits and limitations of grounding in perceptual experience. 

Our rater agreement analysis further reveals the complexity of evaluating figurative explanations, 

underscoring the need for more structured annotation protocols. 

 

Looking forward, this work lays a foundation for broader integration of grounded signals into 

LLMs, beyond color to affect, sensorimotor norms, and visual semantics. It also raises important 

questions about the balance between precision and generative diversity in explainable NLP. By 

embedding perceptual priors into text-generation pipelines, we take a step toward cognitively 

plausible models of figurative understanding. 
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