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ABSTRACT

Hyperparameter tuning plays a critical role in reinforcement learning (RL), particularly in
safety-critical domains such as autonomous driving. In this work, we conduct a large-scale
empirical analysis of hyperparameter sensitivity for two of the most widely used RL —
Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) — using
theCommonRoad-RL framework and the highD dataset. Functional analysis of variance
(FANOVA) is employed to quantify main and interaction effects. Results show that
performance variation in both algorithms is dominated by hyperparameter interactions,
accounting for over 90% in PPO and nearly 88% in SAC, contrasting prior findings in
simpler RL benchmarks. PPO is most sensitive to value learning and gradient stability,
whereas SAC is driven by replay and training parameters. These findings highlight the
need for interaction-aware tuning strategies to ensure robust RL deployment in complex
driving tasks.
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1. INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable potential in tackling complex
decision-making problems, such as autonomous driving[1-3]. However, the performance of RL
algorithms is highly sensitive to hyperparameter choices, with even seemingly minor changes
often leading to drastic differences in learning stability and final performance[4-6].This issue is
especially pronounced in real-world, safety-critical domains such as autonomous driving, where
robust and efficient learning is essential.

While extensive work has analysed hyperparameter sensitivity in synthetic or simulated
environments[7,8],a notable gap remains in systematic studies of RL for autonomous driving. In
such settings, the challenges of high-dimensional sensory input and sparse rewards can amplify
the effects of hyperparameter choices. Despite progress in automated reinforcement learning
(AutoRL) and hyperparameter optimization (HPO) techniques [9-13], These tools have seen
limited adoption in the autonomous driving domain, and practitioners often rely on default
settings or manual tuning.

In this work, we present a comprehensive empirical study of hyperparameter sensitivity for two
widely used continuous-action reinforcement learning algorithms—Proximal Policy Optimization
(PPO)[14], a stable and simple on-policy method, and Soft Actor-Critic (SAC)[15], an off-policy
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algorithm known for sample efficiency and robust exploration. We use the CommonRoad-RL
framework [16], a benchmark for motion planning in complex driving scenarios, and the highD
dataset[17], a real-world highway driving dataset containing high-resolution vehicle trajectory
data. To efficiently explore the hyperparameter space, we leverage Optuna[18], a state-of-the-art
hyperparameter optimization framework, running multiple trials across different random seeds to
ensure robust evaluation. Using functional ANOVA [19], we quantify both main and interaction
effects of hyperparameters.

We find that in complex driving tasks, interaction effects dominate performance variation,
significantly outweighing individual (univariate) influences, challenging assumptions from prior
studies in simpler RL benchmarks [7], [19]. Furthermore, we identify the most influential
hyperparameters and investigate the impact of random seed variation on performance and
sensitivity outcomes.By focusing on a real-world autonomous driving benchmark, our study
reveals key patterns in hyperparameter influenceand highlights the importance of developing
robust, interaction-aware tuning strategies for high-stakes RL applications.

2. EXPERIMENTAL SETUP

2.1. Environment and RL Setup

We conduct our experiments using CommonRoad-RL[16], an open-source benchmark for
autonomous driving built on top of Gym and Stable-Baselines. CommonRoad data converter, a
tool included in the CommonRoad framework,transforms raw data from real-world traffic
datasets into standardized CommonRoad scenarios, each defined by an ego vehicle, surrounding
traffic, and a motion planning task with a specified goal region. We use the highD dataset[17].1t
provides 16.5 hours of highway vehicle trajectories recorded at 25 Hz (At = 0.04 s). Each
trajectory is transformed into a 40-second CommonRoad scenario. The observation space
includes information about the ego vehicle’s state, nearby dynamic obstacles, road network
geometry, nearby traffic participants, and task-specific indicators and goal region.

We employ continuous action spaces,enabling direct control of acceleration and steering. The ego
vehicle's dynamics are defined by the point-mass vehicle model from CommonRoad-RL, which
offers a computationally efficient approximation of motion while preserving essential kinematic
properties for high-level planning.We adopt the CommonRoad-RL sparse, termination-based
reward. At each step, a single event—goal reached, collision, off-road, or timeout—may occur;
otherwise, the reward is zero(We disable the optional safe-distance term from CommonRoad-
RL).Let 1041t Lcouisionts Loffroad,ts Leimeoutrt € {0,1} denote binary indicators that are 1 at
timetif the corresponding termination event occurs and O otherwise (events are mutually
exclusive). With coefficients Cgoai, Cottisions Cof froads Ctimeout €iven in Table 1,the per-step
reward is

Tt = Cgoal . 1goal,t + Ceollision- 1colli5ion,t + Coffroad . 1offroad,t + Ctimeout - 1timeout,t (1)

Table 1. Reward configurations

Reward Term Coefficient
Goal Reached (¢g0q1) 50.0
Collision(C¢ouision) -50.0
Off-Road(¢yffroad) -20.0
Time-Out(Ctimeout) -10.0
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For training the Reinforcement Learning agent, we employ two of the most widely used RL
algorithms in autonomous driving: Proximal Policy Optimization (PPO)[14] and Soft Actor-
Critic (SAC) [15].PPO is an on-policy actor-critic method known for its stability and sample
efficiency, achieved through a clipped surrogate objective that constrains policy updates and
prevents destructive shifts during training. SAC, in contrast, is an off-policy algorithm that
combines entropy maximization with actor-critic learning to encourage robust exploration and
improve sample efficiency. We utilize the implementations of both algorithms provided by the
Stable-Baselines library, which is built upon OpenAl Baselines and integrates with the
CommonRoad-RL environment.

2.2. Hyperparameters Optimization Methodology

To study the effect of different hyperparameter configurations on reinforcement learning
performance, we employ Optuna[18], a flexible and efficient hyperparameter optimization
framework. We use random search as the sampling strategydisable pruning to obtain complete
trials for fair comparison.

For each algorithm, we run 500 complete Optuna trials, using five different training seeds(100
trials per seed). Each trial is trained for 100,000 timesteps with no early stopping or
pruning.Every 10,000 steps, the callback pauses learning and evaluates the current policy on a
separate evaluation environment for five full episodes.For each episode, we compute the episodic
return using the per-step sparse reward defined inSection 2.1.At each checkpoint, we average the
five episodic returns to obtain the mean evaluation reward, and we keep the running maximum
across all checkpoints within the trial (the best mean evaluation reward).The Optuna objective
returns a cost defined as cost = — best_mean_evaluation_reward (direction: minimize); for
reporting, we convert back tobest_mean_evaluation_reward = — trial. value.

Throughout all trials, we maintain a consistent environment setup, including the vehicle model
(point-mass), reward design, observation and action space, and we ensure that evaluation
episodes are distinct from training rollouts (separate environment instance).Wetune a subset of
PPO and SAC hyperparameters that are widely recognized to influence performance.The
hyperparameter search spaces for PPO and SAC are provided in Table 2 (PPO) and Table 3
(SAQ).

Table 2. PPO Hyperparameters Search Space

Hyperparameter | Search Space Type

batch_size [8, 16, 32, 64, 128,256, 512] Categorical
n_steps [8, 16, 32, 64, 128, 256, 512, 1024, 2048] Categorical
gamma [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999] Categorical
learning_rate [le-5, 1] LogUniform Float
ent_coef [1e-8,0.1] LogUniform Float
cliprange [0.1,0.2,0.3, 0.4] Categorical
noptepochs [1,5, 10,20, 30, 50] Categorical

lam (A) [0.8,0.9,0.92, 0.95, 0.98, 0.99, 1.0] Categorical
max_grad norm | [0.0, 1.0] Uniform Float

vf coef [0.0, 1.0] Uniform Float
cliprange vf [0.0, 0.5] Uniform Float
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Table 3. SAC Hyperparameters Search Space

Hyperparameter Search Space Type

gamma [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999] | Categorical
learning_rate (Ir) [le-5, 1] Log-Uniform Float
tau [le-4,1.0] Log-UniformFloat
batch_size [16, 32, 64, 128, 256, 512] Categorical

buffer size [led, 1e5, 1e6] Categorical
learning_starts [0, 10000] Uniform Integer
train_freq [1, 1000] Uniform Integer
gradient_steps [1, 10, 100, 300] Categorical

3. RESULTS AND ANALYSIS

3.1. Hyperparameters Sensitivity Across Seeds

To evaluate the impact of hyperparameter choices and random seeds, we first examine the
distribution of the best mean evaluation rewards across five random seeds, using 100 Optuna
trials per seed (500 trials for each algorithm), as shown in Figure 1.

For PPO, distributions are tightly clustered and centred near zero. Median rewards range from
approximately —0.7 to +3.3, with upper quartiles between +4.5 and +7.2 and maximum values
consistently around +10. Although some configurations perform below zero (minimum rewards
around —7.7 to —9.2), the overall spread is limited, and Interquartile ranges are compact (6.2-9.6
points) and overlap heavily across seeds.This indicates that PPO exhibits a relatively stable
behaviour across hyperparameter configurations and weak seed sensitivity.

In contrast, SAC displays a much wider reward range. Median rewards span from —20 to —9
across seeds, with lower quartiles consistently near —26 and upper quartiles ranging from —6 up
to +12. While SAC can achieve very high performance (maximum rewards up to +50), it also
produces frequent failures, with minimum rewards often at —50. The wide interquartile range
(20.5-38points) indicates a strong dependence on hyperparameter choices and moderate seed
sensitivity; strong policies do occur, but they are relatively rare.
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Figure 1.Best mean evaluation reward by random seed for (a) PPO and (b) SAC. For each algorithm we ran
5 seeds % 100 Optuna trials per seed (total 500 trials). At each seed, the box shows the interquartile range
across trials, the horizontal line is the median, whiskers extend to 1.5xIQR, and points denote outliers.

These findings suggest that in highway autonomous driving scenarios, PPO could be more robust
to hyperparameter choices, whereas SAC’s performance varies more with seed and
hyperparameters. In both cases, the within-seed spread dominates the between-seed shift,
motivating the fANOVA analysis in the next section.

3.2. FANOVA Results

To assess the importance of each hyperparameter, we apply functional ANOVA[19]to the 500
completedoptimization trials for each algorithm. FANOVA maps hyperparameter configurations
to performance using a random forest, then decomposes the total variance into main effects and
higher-order interactions. To produce reliable importance estimates, we mitigate the randomness
in the surrogate model (random forest) by repeating the FANOVA analysis using multiple
random seeds (0, 42, 123, 999) and averaging the resulting importance values across runs. For
both algorithms,we present the main effects in Figure 2 and the interaction effects in Figure 3.
These plots illustrate how performance variance is attributed to individual hyperparameters and
their combinations.
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(a) FANOVA Main Effects for PPO (Mean £ Std across seeds)
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Figure 2. FANOVA main effects (mean =+ standard deviation across five seeds) for (a) PPO and (b) SAC.
Each bar shows the proportion of performance variance explained by a single hyperparameter.

Our analysis of Main and Interaction effects reveals distinct patterns of hyperparameter
sensitivity for PPO and SAC, reflecting differences in their learning dynamics. PPO is most
sensitive to hyperparameters related to value function learning and gradient stability, namely
cliprange vf,vf coef, and max_grad norm, emphasizing the importance of stable critic updates
and controlled policy improvement. Moderate influence is observed for noptepochs and n_steps,
while other parameters have relatively minor effects, indicating robustness to these settings
within typical ranges.In contrast, SAC’s performance is predominantly influenced by
hyperparameters controlling experience usage and network update timing, specifically
learning starts and train_freq. The soft update rate tau and learning rate /r have moderate
effects, whereas other hyperparameters exhibit minimal influence, highlighting SAC’s relative
robustness to network and buffer configurations. Overall, while PPO is highly sensitive to factors
affecting stability and value learning, SAC is more sensitive to when and how experience is
applied during training, reflecting the differing mechanisms underlying policy optimization in the
two algorithms.
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(a) Top 20 FANOVA Interaction Effects for PPO (Mean + Std across seeds)

035
030

@

@ 025

[ =

© 0.20

S

gos

Eow

0.00

N Y L Y e L e B N
s E @ £ % £ 4 @ B8 2 8 @ E & @ S S E @ G
©c 5 o ¢ © U o © o v ®m © & E o I 1 5 o o
o © 0O g O § & O o 8 ¢ 2 £ ¢© ¢ o O O O
o 5 g a o a o g v o a £ 1S 5 o o £
9 5 2 % 2 % g8 S o 5% 55 g E S
> = - ) oy
5 £ E 8 £ 8 s &8 E g5 &2 8§ s 28 858 § ¢ &
¢ F s 2 8 2 o g 5 5 J T A 5% 9 5 @
23 oS s EENLEdBE T EE g Y
T E ® J £ 5§ § “ ¥ g s ° E g ° N 2 E £ E
ss 528 s ER: 55 gk
T J X 8 5 T T o= T 2 T S & E =
e g = 5 g E g% E°
© o] i £ o o
Hed >
a ©
5 £
(b) Top 20 FANOVA Interaction Effects for SAC (Mean + Std across seeds)
0.5
@ %4
v
Sos
=
Qo2
E
0.1
00
f 3 F 5 £ 5L £gF 8L ERERE 55
E 02 E £ 8B & 8 8 & £ & s & £ 2 2 04 24 g
oy o0 5 o8 o2 g T T Ty D= @ o4 g g o
e £t £ 82 %% c 7 % c £ £ 5 c E g X E £ "
T & f ©» © T © © T ® T © © E = Y & I £
5 B &5 o £ 5 £ £ £ 5 5 £ 5 s N = © £ £
M o 3 £ E £ E £ @ v o E a o < g g ®
t € @8 £ ® T ® £ 92 N g N g ® 5 =
£ E 5 9 L 9 g Z 5 &Y 5 “ g
Y5 9 o v o 8 N £ 9 5 © o
o o £ a N o 2 8 N & 5
c - [T S @ 0 o
£ € = Y 1 3
= 2 2 o 1 3
E [ 05 2 (]
© o c = g £
@
= o B3 o 3
= a2
©
—
(=]

Figure 3. Top 20 FANOVA interaction effects (mean + standard deviation over five seeds) for (a) PPO and
(b) SAC. Bars indicate the magnitude of each interaction’s contribution to performance variability.

A key finding of this analysis is that interaction effects overwhelmingly dominate the explained
variance for both PPO and SAC. For PPO, the main effects account for only 0.0880 = 0.0003 of
variance, while interaction effects contribute 0.9120 + 0.0003. Similarly, for SAC, main effects
explain  0.1179394+0.000743  ofvariance, with interaction effects accounting for
0.882061 +0.000743. These results indicate that performance variability is primarily governed by
complex interdependencies among hyperparameters, rather than isolated effects of individual
parameters.To further illustrate the dominance of interaction effects, we present selected pairwise
(2D) marginal plots produced by FANOVA for PPO in Figure 4 and for SAC in Figure 5.These
plots depict how combinations of two hyperparameters jointly influence performance, revealing
complex patterns that cannot be explained by main effects alone.



60 Computer Science & Information Technology (CS & IT)

- 3.00

- 2.75

-2.50
-2.25

- 2.00

- 175
- 1.50
1.25

performance

@
<o
=
=
E
=

£
—
)
=3

- 3.00
=275
-2.50
-2.25

- 2.00

!

~

o
performance

'
'
-
=)

- 1.75
- 1.50

- 1.25

0.0 >
0.1 , < 20 R
&'
.02 > T\
Cipry,, 03 < 10 QQQ
”ge 0.4
~VF o5 O

Figure 3.FANOVA pairwise marginal plots for PPO illustrating the four most influential hyperparameter
interactions. The colour gradients depict the joint impact of each pair on expected reward. The pronounced
non-linear patterns across plots highlight the strong and dominant role of interaction effects.

This finding contrasts with prior work conducted in other reinforcement learning environments.
In [19], the authors observed that main effects explained between 20% and 88% of performance
variance, while pairwise interactions reached at most 45%. Likewise, the study in[7] reported that
one or two hyperparameters typically dominate, with little evidence of complex interaction
patterns.This difference is likely due to the complex, high-dimensional nature of autonomous
driving scenarios examined in our study which involves richer sensory inputs, and a greater need
for coordination between learning components — all of which can amplify hyperparameter
interdependencies and result in dominant interaction effects.
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Figure 4. FANOVA pairwise marginal plots for SAC illustrating the four most influential hyperparameter
interactions. The colour gradients depict the joint impact of each pair on expected reward The pronounced
non-linear patterns across plots highlight the strong and dominant role of interaction effects.

3.3. Practical Implications for AutoRL

The dominance of interaction effects implies that tuning actor—critic RL algorithms such as PPO
and SAC in autonomous-driving settings should go beyond univariate analyses and prioritize
joint rather than one-at-a-time adjustments.In practice, for hyperparameter optimization this
means: (i) jointly searching over the hyperparameter pairs/groups highlighted by FANOVA; (ii)
using model-based search that can learn effects of hyperparameter combinations—for example,
tree-based TPE/Random-Forest or Bayesian optimization with pairwise kernels—to propose new
trials; (iii) optimizing a robust objective, e.g., the median return across multiple seeds and held-
out scenarios (and reporting spread such as IQR), rather than a single best run; and (iv) turning
the FANOVA interaction maps into lightweight joint-range guidelines (simple “keep-in” boxes
covering the broad high-performance regions and excluding clearly poor/unstable areas) to guide
future AutoRL pipelines toward well-behaved parts of the search space.(and, since interaction-
heavy settings can learn slowly, apply pruning/early stopping only after consistent improvements
across checkpoints and seeds).

This study is conducted in the CommonRoad-RL benchmark using a simplified point-mass
vehicle model and the highD dataset, which—while realistic—primarily captures structured
highway traffic. This setup offers control and reproducibility but does not fully reflect the
complexity of urban or mixed-traffic conditions. Although we evaluate 500 Optuna trials across
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five seeds per algorithm, the hyperparameter space for PPO and SAC is high-dimensional, so we
focus on a widely recognized subset of influential parameters for tractability. For SAC
specifically, ent coef and farget entropy are excluded from FANOVA because they introduce
mixed/conditional variable types (e.g., automatic vs. fixed temperature), complicating variance
attribution under our protocol. Fixed training budgets (100,000 steps per trial) may limit
exploration of slower-converging configurations. Finally, our FANOVA decomposition
emphasizes main and pairwise effects and may underrepresent higher-order dependencies among
hyperparameters.

4. CONCLUSIONS

This study provides a comprehensive empirical evaluation of hyperparameter sensitivity for PPO
and SAC in autonomous driving tasks using the CommonRoad-RL framework and the highD
dataset. Our analysis demonstrates that performance variability in both algorithms is
overwhelmingly dominated by hyperparameter interactions, accounting for over 91% of variance
in PPO and 88% in SAC, while main effects contribute only marginally. This highlights that the
impact of hyperparameters cannot be understood in isolation; rather, complex interdependencies
between parameters drive learning outcomes in high-dimensional, safety-critical environments.

PPO performance is driven by value function learning and gradient stability (cliprange Vf,
vf coef, max_grad norm), with moderate influence from hyperparameters such asnoptepochs and
n_steps. In contrast, SAC is most sensitive to experience usage and training schedule
(learning starts, train_freq), with moderate effects from hyperparameters such astau and /r. This
contrast reflects their differing optimization mechanisms, where PPO depends on stable value
updates, while SAC relies on effective use of collected experience.

The significant dominance of interaction effects in both algorithms highlights the importance of
moving beyond univariate analyses when studying hyperparameter sensitivity and optimization in
real-world, safety-critical RL domains. Practically, this calls for interaction-aware tuning: (i) joint
search over the pairs/groups surfaced by FANOVA, (ii) model-based HPO that can learn effects
of hyperparameter combinations (e.g., TPE/Random-Forest or BO with pairwise kernels), (iii)
robust objectives (median across multiple seeds and held-out scenarios, with spread such as IQR),
and (iv) lightweight joint-range guidelines derived from FANOVA interaction maps to steer
AutoRL away from brittle regions. Future work will extend the analysis beyond highways to
richer, more complex settings (e.g., urban driving and intersections), compare on-policy and off-
policy methods, broaden the algorithmic scope (e.g., TRPO, A2C, TD3/DDPG, DQN, and
model-based RL), and progress from simulation benchmarks to real-world evaluations, while
integrating interaction-aware tuning with safety constraints and online adaptation.
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