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ABSTRACT 
 
Hyperparameter tuning plays a critical role in reinforcement learning (RL), particularly in 

safety-critical domains such as autonomous driving. In this work, we conduct a large-scale 

empirical analysis of hyperparameter sensitivity for two of the most widely used RL — 

Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) — using 

theCommonRoad-RL framework and the highD dataset. Functional analysis of variance 

(FANOVA) is employed to quantify main and interaction effects. Results show that 

performance variation in both algorithms is dominated by hyperparameter interactions, 

accounting for over 90% in PPO and nearly 88% in SAC, contrasting prior findings in 

simpler RL benchmarks. PPO is most sensitive to value learning and gradient stability, 

whereas SAC is driven by replay and training parameters. These findings highlight the 

need for interaction-aware tuning strategies to ensure robust RL deployment in complex 

driving tasks. 
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1. INTRODUCTION 
 

Reinforcement learning (RL) has demonstrated remarkable potential in tackling complex 

decision-making problems, such as autonomous driving[1-3]. However, the performance of RL 

algorithms is highly sensitive to hyperparameter choices, with even seemingly minor changes 

often leading to drastic differences in learning stability and final performance[4-6].This issue is 

especially pronounced in real-world, safety-critical domains such as autonomous driving, where 

robust and efficient learning is essential. 

 

While extensive work has analysed hyperparameter sensitivity in synthetic or simulated 

environments[7,8],a notable gap remains in systematic studies of RL for autonomous driving. In 

such settings, the challenges of high-dimensional sensory input and sparse rewards can amplify 

the effects of hyperparameter choices. Despite progress in automated reinforcement learning 

(AutoRL) and hyperparameter optimization (HPO) techniques [9-13], These tools have seen 

limited adoption in the autonomous driving domain, and practitioners often rely on default 

settings or manual tuning. 

 

In this work, we present a comprehensive empirical study of hyperparameter sensitivity for two 

widely used continuous-action reinforcement learning algorithms—Proximal Policy Optimization 

(PPO)[14], a stable and simple on-policy method, and Soft Actor-Critic (SAC)[15], an off-policy 
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algorithm known for sample efficiency and robust exploration. We use the CommonRoad-RL 

framework [16], a benchmark for motion planning in complex driving scenarios, and the highD 

dataset[17], a real-world highway driving dataset containing high-resolution vehicle trajectory 

data. To efficiently explore the hyperparameter space, we leverage Optuna[18], a state-of-the-art 

hyperparameter optimization framework, running multiple trials across different random seeds to 

ensure robust evaluation. Using functional ANOVA [19], we quantify both main and interaction 

effects of hyperparameters. 

 

We find that in complex driving tasks, interaction effects dominate performance variation, 

significantly outweighing individual (univariate) influences, challenging assumptions from prior 

studies in simpler RL benchmarks [7], [19]. Furthermore, we identify the most influential 

hyperparameters and investigate the impact of random seed variation on performance and 

sensitivity outcomes.By focusing on a real-world autonomous driving benchmark, our study 

reveals key patterns in hyperparameter influenceand highlights the importance of developing 

robust, interaction-aware tuning strategies for high-stakes RL applications. 

 

2. EXPERIMENTAL SETUP 
 

2.1. Environment and RL Setup 
 

We conduct our experiments using CommonRoad-RL[16], an open-source benchmark for 

autonomous driving built on top of Gym and Stable-Baselines. CommonRoad data converter, a 

tool included in the CommonRoad framework,transforms raw data from real-world traffic 

datasets into standardized CommonRoad scenarios, each defined by an ego vehicle, surrounding 

traffic, and a motion planning task with a specified goal region. We use the highD dataset[17].It 

provides 16.5 hours of highway vehicle trajectories recorded at 25 Hz (Δt = 0.04 s). Each 

trajectory is transformed into a 40-second CommonRoad scenario. The observation space 

includes information about the ego vehicle’s state, nearby dynamic obstacles, road network 

geometry, nearby traffic participants, and task-specific indicators and goal region. 

 

We employ continuous action spaces,enabling direct control of acceleration and steering. The ego 

vehicle's dynamics are defined by the point-mass vehicle model from CommonRoad-RL, which 

offers a computationally efficient approximation of motion while preserving essential kinematic 

properties for high-level planning.We adopt the CommonRoad-RL sparse, termination-based 

reward. At each step, a single event—goal reached, collision, off-road, or timeout—may occur; 

otherwise, the reward is zero(We disable the optional safe-distance term from CommonRoad-

RL).Let 1𝑔𝑜𝑎𝑙,𝑡 , 1𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,𝑡 , 1𝑜𝑓𝑓𝑟𝑜𝑎𝑑,𝑡 , 1𝑡𝑖𝑚𝑒𝑜𝑢𝑡,𝑡 ∈ {0 , 1} denote binary indicators that are 1 at 

time𝑡if the corresponding termination event occurs and 0 otherwise (events are mutually 

exclusive). With coefficients 𝑐𝑔𝑜𝑎𝑙 , 𝑐𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 , 𝑐𝑜𝑓𝑓𝑟𝑜𝑎𝑑 , 𝑐𝑡𝑖𝑚𝑒𝑜𝑢𝑡 given in Table 1,the per-step 

reward is 

 

𝑟𝑡 = 𝑐𝑔𝑜𝑎𝑙  . 1𝑔𝑜𝑎𝑙,𝑡 + 𝑐𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 . 1𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛,𝑡 + 𝑐𝑜𝑓𝑓𝑟𝑜𝑎𝑑  . 1𝑜𝑓𝑓𝑟𝑜𝑎𝑑,𝑡 +  𝑐𝑡𝑖𝑚𝑒𝑜𝑢𝑡  . 1𝑡𝑖𝑚𝑒𝑜𝑢𝑡,𝑡 (1) 

 

Table 1. Reward configurations 

 
Reward Term  Coefficient  

Goal Reached (𝑐𝑔𝑜𝑎𝑙) 50.0 

Collision(𝑐𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) -50.0 

Off-Road(𝑐𝑜𝑓𝑓𝑟𝑜𝑎𝑑) -20.0 

Time-Out(𝑐𝑡𝑖𝑚𝑒𝑜𝑢𝑡) -10.0 
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For training the Reinforcement Learning agent, we employ two of the most widely used RL 

algorithms in autonomous driving: Proximal Policy Optimization (PPO)[14] and Soft Actor-

Critic (SAC) [15].PPO is an on-policy actor-critic method known for its stability and sample 

efficiency, achieved through a clipped surrogate objective that constrains policy updates and 

prevents destructive shifts during training. SAC, in contrast, is an off-policy algorithm that 

combines entropy maximization with actor-critic learning to encourage robust exploration and 

improve sample efficiency. We utilize the implementations of both algorithms provided by the 

Stable-Baselines library, which is built upon OpenAI Baselines and integrates with the 

CommonRoad-RL environment. 

 

2.2. Hyperparameters Optimization Methodology 
 

To study the effect of different hyperparameter configurations on reinforcement learning 

performance, we employ Optuna[18], a flexible and efficient hyperparameter optimization 

framework. We use random search as the sampling strategydisable pruning to obtain complete 

trials for fair comparison. 

 

For each algorithm, we run 500 complete Optuna trials, using five different training seeds(100 

trials per seed). Each trial is trained for 100,000 timesteps with no early stopping or 

pruning.Every 10,000 steps, the callback pauses learning and evaluates the current policy on a 

separate evaluation environment for five full episodes.For each episode, we compute the episodic 

return using the per-step sparse reward defined inSection 2.1.At each checkpoint, we average the 

five episodic returns to obtain the mean evaluation reward, and we keep the running maximum 

across all checkpoints within the trial (the best mean evaluation reward).The Optuna objective 

returns a cost defined as 𝑐𝑜𝑠𝑡 =  − 𝑏𝑒𝑠𝑡_𝑚𝑒𝑎𝑛_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑤𝑎𝑟𝑑 (direction: minimize); for 

reporting, we convert back to𝑏𝑒𝑠𝑡_𝑚𝑒𝑎𝑛_𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑤𝑎𝑟𝑑 = − 𝑡𝑟𝑖𝑎𝑙. 𝑣𝑎𝑙𝑢𝑒. 

 

Throughout all trials, we maintain a consistent environment setup, including the vehicle model 

(point-mass), reward design, observation and action space, and we ensure that evaluation 

episodes are distinct from training rollouts (separate environment instance).Wetune a subset of 

PPO and SAC hyperparameters that are widely recognized to influence performance.The 

hyperparameter search spaces for PPO and SAC are provided in Table 2 (PPO) and Table 3 

(SAC). 

 
Table 2. PPO Hyperparameters Search Space 

 

Hyperparameter Search Space Type 

batch_size [8, 16, 32, 64, 128, 256, 512] Categorical 

n_steps [8, 16, 32, 64, 128, 256, 512, 1024, 2048] Categorical 

gamma [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999] Categorical 

learning_rate [1e-5, 1]  LogUniform Float 

ent_coef [1e-8, 0.1]  LogUniform Float 

cliprange [0.1, 0.2, 0.3, 0.4] Categorical 

noptepochs [1, 5, 10, 20, 30, 50] Categorical 

lam (λ) [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0] Categorical 

max_grad_norm [0.0, 1.0] Uniform Float 

vf_coef [0.0, 1.0] Uniform Float 

cliprange_vf [0.0, 0.5] Uniform Float 
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Table 3. SAC Hyperparameters Search Space 

 

Hyperparameter Search Space Type 

gamma [0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999] Categorical 
 

learning_rate (lr) 
 

[1e-5, 1] Log-Uniform Float 
 

tau 
 

[1e-4,1.0] Log-UniformFloat 
 

batch_size 
 

[16, 32, 64, 128, 256, 512] Categorical 

buffer_size [1e4, 1e5, 1e6] Categorical 

learning_starts 
 

[0, 10000] 
 

Uniform Integer 

train_freq 
 

[1, 1000] 
 

Uniform Integer 

gradient_steps [1, 10, 100, 300] 
 

Categorical 

 

3. RESULTS AND ANALYSIS 
 

3.1. Hyperparameters Sensitivity Across Seeds 
 

To evaluate the impact of hyperparameter choices and random seeds, we first examine the 

distribution of the best mean evaluation rewards across five random seeds, using 100 Optuna 

trials per seed (500 trials for each algorithm), as shown in Figure 1. 

 

For PPO, distributions are tightly clustered and centred near zero. Median rewards range from 

approximately −0.7 to +3.3, with upper quartiles between +4.5 and +7.2 and maximum values 

consistently around +10. Although some configurations perform below zero (minimum rewards 

around −7.7 to −9.2), the overall spread is limited, and Interquartile ranges are compact (6.2–9.6 

points) and overlap heavily across seeds.This indicates that PPO exhibits a relatively stable 

behaviour across hyperparameter configurations and weak seed sensitivity. 

 

In contrast, SAC displays a much wider reward range. Median rewards span from −20 to −9 

across seeds, with lower quartiles consistently near −26 and upper quartiles ranging from −6 up 

to +12. While SAC can achieve very high performance (maximum rewards up to +50), it also 

produces frequent failures, with minimum rewards often at −50. The wide interquartile range 

(20.5–38points) indicates a strong dependence on hyperparameter choices and moderate seed 

sensitivity; strong policies do occur, but they are relatively rare. 
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Figure 1.Best mean evaluation reward by random seed for (a) PPO and (b) SAC. For each algorithm we ran 

5 seeds × 100 Optuna trials per seed (total 500 trials). At each seed, the box shows the interquartile range 

across trials, the horizontal line is the median, whiskers extend to 1.5×IQR, and points denote outliers. 

 

These findings suggest that in highway autonomous driving scenarios, PPO could be more robust 

to hyperparameter choices, whereas SAC’s performance varies more with seed and 

hyperparameters. In both cases, the within-seed spread dominates the between-seed shift, 

motivating the fANOVA analysis in the next section. 

 

3.2. FANOVA Results  
 

To assess the importance of each hyperparameter, we apply functional ANOVA[19]to the 500 

completedoptimization trials for each algorithm. FANOVA maps hyperparameter configurations 

to performance using a random forest, then decomposes the total variance into main effects and 

higher-order interactions. To produce reliable importance estimates, we mitigate the randomness 

in the surrogate model (random forest) by repeating the FANOVA analysis using multiple 

random seeds (0, 42, 123, 999) and averaging the resulting importance values across runs. For 

both algorithms,we present the main effects in Figure 2 and the interaction effects in Figure 3. 

These plots illustrate how performance variance is attributed to individual hyperparameters and 

their combinations. 
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Figure 2.  FANOVA main effects (mean ± standard deviation across five seeds) for (a) PPO and (b) SAC. 

Each bar shows the proportion of performance variance explained by a single hyperparameter. 

 

Our analysis of Main and Interaction effects reveals distinct patterns of hyperparameter 

sensitivity for PPO and SAC, reflecting differences in their learning dynamics. PPO is most 

sensitive to hyperparameters related to value function learning and gradient stability, namely 

cliprange_vf,vf_coef, and max_grad_norm, emphasizing the importance of stable critic updates 

and controlled policy improvement. Moderate influence is observed for noptepochs and n_steps, 

while other parameters have relatively minor effects, indicating robustness to these settings 

within typical ranges.In contrast, SAC’s performance is predominantly influenced by 

hyperparameters controlling experience usage and network update timing, specifically 

learning_starts and train_freq. The soft update rate tau and learning rate lr have moderate 

effects, whereas other hyperparameters exhibit minimal influence, highlighting SAC’s relative 

robustness to network and buffer configurations. Overall, while PPO is highly sensitive to factors 

affecting stability and value learning, SAC is more sensitive to when and how experience is 

applied during training, reflecting the differing mechanisms underlying policy optimization in the 

two algorithms. 
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Figure 3. Top 20 FANOVA interaction effects (mean ± standard deviation over five seeds) for (a) PPO and 

(b) SAC. Bars indicate the magnitude of each interaction’s contribution to performance variability. 

 

A key finding of this analysis is that interaction effects overwhelmingly dominate the explained 

variance for both PPO and SAC. For PPO, the main effects account for only 0.0880 ± 0.0003 of 

variance, while interaction effects contribute 0.9120 ± 0.0003. Similarly, for SAC, main effects 

explain 0.117939 ± 0.000743 ofvariance, with interaction effects accounting for 

0.882061 ± 0.000743. These results indicate that performance variability is primarily governed by 

complex interdependencies among hyperparameters, rather than isolated effects of individual 

parameters.To further illustrate the dominance of interaction effects, we present selected pairwise 

(2D) marginal plots produced by FANOVA for PPO in Figure 4 and for SAC in Figure 5.These 

plots depict how combinations of two hyperparameters jointly influence performance, revealing 

complex patterns that cannot be explained by main effects alone. 
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Figure 3.FANOVA pairwise marginal plots for PPO illustrating the four most influential hyperparameter 

interactions. The colour gradients depict the joint impact of each pair on expected reward. The pronounced 

non-linear patterns across plots highlight the strong and dominant role of interaction effects. 

 

This finding contrasts with prior work conducted in other reinforcement learning environments. 

In [19], the authors observed that main effects explained between 20% and 88% of performance 

variance, while pairwise interactions reached at most 45%. Likewise, the study in[7] reported that 

one or two hyperparameters typically dominate, with little evidence of complex interaction 

patterns.This difference is likely due to the complex, high-dimensional nature of autonomous 

driving scenarios examined in our study which involves richer sensory inputs, and a greater need 

for coordination between learning components — all of which can amplify hyperparameter 

interdependencies and result in dominant interaction effects. 
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Figure 4.  FANOVA pairwise marginal plots for SAC illustrating the four most influential hyperparameter 

interactions. The colour gradients depict the joint impact of each pair on expected reward The pronounced 

non-linear patterns across plots highlight the strong and dominant role of interaction effects.  

 

3.3. Practical Implications for AutoRL  
 

The dominance of interaction effects implies that tuning actor–critic RL algorithms such as PPO 

and SAC in autonomous-driving settings should go beyond univariate analyses and prioritize 

joint rather than one-at-a-time adjustments.In practice, for hyperparameter optimization this 

means: (i) jointly searching over the hyperparameter pairs/groups highlighted by FANOVA; (ii) 

using model-based search that can learn effects of hyperparameter combinations—for example, 

tree-based TPE/Random-Forest or Bayesian optimization with pairwise kernels—to propose new 

trials; (iii) optimizing a robust objective, e.g., the median return across multiple seeds and held-

out scenarios (and reporting spread such as IQR), rather than a single best run; and (iv) turning 

the FANOVA interaction maps into lightweight joint-range guidelines (simple “keep-in” boxes 

covering the broad high-performance regions and excluding clearly poor/unstable areas) to guide 

future AutoRL pipelines toward well-behaved parts of the search space.(and, since interaction-

heavy settings can learn slowly, apply pruning/early stopping only after consistent improvements 

across checkpoints and seeds). 

 

 

This study is conducted in the CommonRoad-RL benchmark using a simplified point-mass 

vehicle model and the highD dataset, which—while realistic—primarily captures structured 

highway traffic. This setup offers control and reproducibility but does not fully reflect the 

complexity of urban or mixed-traffic conditions. Although we evaluate 500 Optuna trials across 
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five seeds per algorithm, the hyperparameter space for PPO and SAC is high-dimensional, so we 

focus on a widely recognized subset of influential parameters for tractability. For SAC 

specifically, ent_coef and target_entropy are excluded from FANOVA because they introduce 

mixed/conditional variable types (e.g., automatic vs. fixed temperature), complicating variance 

attribution under our protocol. Fixed training budgets (100,000 steps per trial) may limit 

exploration of slower-converging configurations. Finally, our FANOVA decomposition 

emphasizes main and pairwise effects and may underrepresent higher-order dependencies among 

hyperparameters. 

 

4. CONCLUSIONS 
 

This study provides a comprehensive empirical evaluation of hyperparameter sensitivity for PPO 

and SAC in autonomous driving tasks using the CommonRoad-RL framework and the highD 

dataset. Our analysis demonstrates that performance variability in both algorithms is 

overwhelmingly dominated by hyperparameter interactions, accounting for over 91% of variance 

in PPO and 88% in SAC, while main effects contribute only marginally. This highlights that the 

impact of hyperparameters cannot be understood in isolation; rather, complex interdependencies 

between parameters drive learning outcomes in high-dimensional, safety-critical environments. 

 

PPO performance is driven by value function learning and gradient stability (cliprange_vf, 

vf_coef, max_grad_norm), with moderate influence from hyperparameters such asnoptepochs and 

n_steps. In contrast, SAC is most sensitive to experience usage and training schedule 

(learning_starts, train_freq), with moderate effects from hyperparameters such astau and lr. This 

contrast reflects their differing optimization mechanisms, where PPO depends on stable value 

updates, while SAC relies on effective use of collected experience. 

 

The significant dominance of interaction effects in both algorithms highlights the importance of 

moving beyond univariate analyses when studying hyperparameter sensitivity and optimization in 

real-world, safety-critical RL domains. Practically, this calls for interaction-aware tuning: (i) joint 

search over the pairs/groups surfaced by FANOVA, (ii) model-based HPO that can learn effects 

of hyperparameter combinations (e.g., TPE/Random-Forest or BO with pairwise kernels), (iii) 

robust objectives (median across multiple seeds and held-out scenarios, with spread such as IQR), 

and (iv) lightweight joint-range guidelines derived from FANOVA interaction maps to steer 

AutoRL away from brittle regions. Future work will extend the analysis beyond highways to 

richer, more complex settings (e.g., urban driving and intersections), compare on-policy and off-

policy methods, broaden the algorithmic scope (e.g., TRPO, A2C, TD3/DDPG, DQN, and 

model-based RL), and progress from simulation benchmarks to real-world evaluations, while 

integrating interaction-aware tuning with safety constraints and online adaptation.  
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