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Abstract. Convolutional Neural Network (CNN) architectures have achieved remarkable success in various
image analysis tasks. However, designing these architectures manually remains both labor-intensive and
computationally expensive. Neural Architecture Search (NAS) has emerged as a promising approach for
automating and optimizing network design. Among NAS methods, gradient-based techniques stand out for
their ability to reduce computational costs while maintaining competitive performance. Nevertheless, the
architectures they produce can still be demanding in terms of model size and inference time. To address
this challenge, we propose a comprehensive image-analysis pipeline that combines the PC-DARTS algorithm
with post-training 16-bit quantization and structured pruning. Experimental results show that our pipeline
achieves an accuracy of 99.10% and an Intersection over Union (IoU) of 72.03%, while reducing the model
size by up to 54%, making it well-suited for deployment in resource-constrained environments.

Keywords: Neural Architecture Search, Convolutional Neural Networks, Compression, Quantization, Prun-

ing, Segmentation.

1 Introduction

Convolutional Neural Networks (CNNs) have become central to image classification and
a wide range of deep learning tasks, with architectures such as AlexNet, VGG-Net, and
Inception serving as foundational models [1, 2]. Traditionally, designing these networks
relied on manual engineering and trial-and-error, a process that is both time-consuming and
computationally expensive [4, 5]. Given the vast search space of possible configurations,
exhaustive exploration is impractical [3].

Neural Architecture Search (NAS) was introduced to automate this process, enabling the
discovery of architectures tailored to specific tasks and datasets [3, 4, 5]. NAS methods
generally fall into three categories: reinforcement learning, evolutionary algorithms, and
gradient-based techniques [6, 7, 8]. Gradient-based NAS is particularly attractive due to its
lower computational cost and competitive accuracy. By relaxing the discrete search space
into a continuous one, it allows the use of gradient descent over architectural parameters, as
pioneered in DARTS [9] and further refined in P-DARTS [11], PC-DARTS [10], λ-DARTS
[12], and EM-DARTS [13].

Although NAS automates CNN design, the resulting architectures are often over-parameterized.
Model compression methods—such as structured pruning, quantization, and knowledge dis-
tillation—can reduce model size and computational complexity while preserving accuracy
[15, 16, 17].
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In this work, we present an end-to-end pipeline that combines gradient-based NAS with
a hybrid post-training compression strategy, aiming to produce compact, high-performance
models suitable for resource-constrained environments.

The remainder of this paper is organized as follows: Section 2 introduces core concepts;
Section 3 reviews related research; Section 4 details the proposed approach; Section 5 presents
experimental results; Section 6 discusses the findings; and Section 7 concludes with directions
for future work.

2 Basic Concepts

In this section, we introduce fundamental concepts essential for understanding the subsequent
discussions. We present the main components and history of Convolutional Neural Networks
(CNNs), Neural Architecture Search (NAS) with an emphasis on Differentiable Architecture
Search (DARTS) and its variants, and conclude with several model compression techniques.

2.1 Convolutional Neural Networks (CNNs)

Deep learning has emerged as the dominant solution in artificial intelligence, obtaining great
results in various scenarios like image classification, object detection, and super-resolution
[18, 19, 20]. Among its architectures, Convolutional Neural Networks (CNNs) are particu-
larly effective for computer vision due to their ability to learn hierarchical feature represen-
tations.

A typical CNN is composed of several key components:

• Convolutional layers: Apply learnable filters to extract local spatial patterns, pro-
ducing feature maps.

• Activation layers: Offers non-linearity (e.g., ReLU, Sigmoid, Tanh) to model complex
relationships.

• Pooling layers: Downsample feature maps (e.g., max or average pooling) to reduce
computational cost and retain salient information.

• Fully connected layers: Aggregate extracted features and map them to the output
space, commonly used for classification tasks.

• Output layer: Gives the final prediction, often using a softmax function to generate
class probabilities.

The first CNN, LeNet [21], established the foundation by combining convolution, pooling,
and backpropagation, demonstrating strong performance on handwritten digit recognition.
Significant progress followed with AlexNet [22], which increased network depth, adopted
ReLU activations, and leveraged GPU acceleration.

Subsequent architectures further refined CNN design. Network-in-Network (NiN) intro-
duced MLP convolutions and global average pooling to reduce parameters. VGGNet [23]
emphasized depth through stacks of 3×3 convolutions and max-pooling layers. ResNet [24]
addressed vanishing gradient issues with residual (skip) connections, enabling the training
of very deep networks.
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Inception networks [25] captured multi-scale features using parallel convolutions of dif-
ferent sizes, with Inception-V3 [26] improving efficiency through factorized and asymmetric
convolutions. Xception [27] extended this approach with depthwise separable convolutions,
reducing computation without sacrificing accuracy. HRNet [28] preserved high-resolution
feature representations via parallel branches that exchange information at multiple scales.

Collectively, these developments illustrate CNNs’ evolution towards greater depth, effi-
ciency, and flexibility, establishing them as the backbone of modern computer vision.

2.2 Neural Architecture Search (NAS)

Neural Architecture Search (NAS) automates the design of neural networks, replacing manual
trial-and-error with algorithmic optimization to discover efficient, high-performing architec-
tures.

A typical NAS framework consists of three main components:

• Search Space: Defines the set of candidate architectures and operations. This can be
global, covering the entire network, or local, as in cell-based approaches [14], where an
optimal cell is learned and then repeated to form the full model.

• Search Strategy: Determines how the search space is explored:

– Reinforcement learning : Models the search as a sequential decision process, reward-
ing architectures that achieve high performance [8].

– Evolutionary methods : Iteratively evolve populations of architectures using genetic
operators such as mutation and crossover [7].

– Gradient-based methods : Relax the discrete search space into a continuous one, rep-
resenting architectures as a directed acyclic graph (DAG) with weighted candidate
operations, optimized via gradient descent [9].

• Performance Estimation: Approximates model quality without fully training each
candidate, significantly reducing computational cost.

As illustrated in Figure 1, the search strategy explores the space, evaluates candidate
architectures A via a performance estimator, and iterates until convergence to an optimal
design.

Figure 1: General workflow of a Neural Architecture Search (NAS) pipeline, showing the search space
exploration, performance evaluation, and iterative optimization [5]

While all NAS approaches can yield high-performing models, reinforcement learning
and evolutionary strategies are computationally expensive—sometimes requiring 2000–3000
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GPU-days [7, 8]. Gradient-based NAS methods are far more efficient, leveraging continuous
relaxation and differentiable optimization to achieve faster convergence with lower compu-
tational resources [9, 10, 11, 12, 13].

2.3 Differentiable Architecture Search (DARTS)

DARTS is a gradient-based NAS method that represents architecture design as a bi-level
optimization problem within a cell-based search space [9]. It jointly learns:

• the architecture parameters α, which define the network structure

• the weights of the operations ω, which correspond to the candidate operations.

The optimization is expressed as:

min
α

Lval(w(α), α) (1)

s.t. w(α) = argmin
ω

Ltrain(w(α)) (2)

With Lval and Ltrain respectively being the validation loss and training loss. By relaxing the
discrete search space into a continuous one, DARTS allows gradient-based updates of α and
ω, greatly reducing computational cost as opposed to discrete NAS methods.

During the search phase, the network consists of 8 cells: six normal cells for feature
extraction and two reduction cells for downsampling. In the evaluation phase, 20 cells are
stacked (18 normal and 2 reduction), with reduction cells positioned at one-third and two-
thirds of the network depth.

Several extensions improve DARTS:

• P-DARTS [11] reduces the search-to-evaluation gap by progressively increasing the
number of cells during search (5 → 11 → 17), producing more stable architectures.

• PC-DARTS [10] lowers computational cost by applying candidate operations to only a
subset of input channels, concatenating transformed and untransformed features. This
allows larger batch sizes and more stable gradients.

• λ-DARTS [12] addresses the over-selection of skip connections by introducing a regu-
larization term that encourages balanced operation selection across layers:

Λ±(ω, α) =
1(
L
2

) ∑
ℓ<ℓ′

ℓgT ℓ′g

|ℓgT ℓ′g|
, g = ∇ℓpL(ω, α) (3)

The bi-level optimization objective becomes:

min
α

Lval(w(α), α), s.t. w(α) = argmin
ω

[
Ltrain(ω, α)− λΛtrain(ω, α)

]
(4)

where λ controls the regularization strength.

• EM-DARTS [13] introduces stochastic “edge mutation,” randomly selecting opera-
tions on some edges instead of always using weighted sums, improving exploration and
reducing the risk of premature convergence.

These refinements enhance DARTS’ efficiency, stability, and robustness, enabling the
discovery of competitive neural architectures.
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2.4 Compression Techniques

Model compression reduces the computational demands of deep neural networks while main-
taining predictive performance [15, 16]. The most commonly used techniques are pruning,
quantization, and knowledge distillation.

2.4.1 Pruning

Pruning removes redundant or low-impact components from a trained model, resulting in
a smaller, faster network [15, 16, 17]. It is typically classified into two types:

• Unstructured pruning: Eliminates individual weights irrespective of their location,
achieving high sparsity but generating irregular patterns that are difficult to accelerate
on standard hardware.

• Structured pruning: Removes entire filters, channels, or layers, producing hardware-
friendly models, though potentially incurring higher accuracy loss if not carefully ap-
plied.

Several studies have explored pruning techniques to reduce neural network size. Han et
al. [33] proposed removing all weights below a threshold from a trained model, followed by
retraining; this achieved compression factors of 9× for AlexNet and 13× for VGG16 on Im-
ageNet. Guo et al. [34] introduced Dynamic Network Surgery, combining iterative pruning
and “splicing,” allowing pruned connections to be restored if useful, achieving 108× com-
pression on LeNet and 17.7× on AlexNet. Carreira-Perpiñán et al. [35] formulated pruning
as an optimization problem, minimizing loss under pruning-cost constraints. Shiheb et al.
[37] presented an unstructured pruning framework for Mamba models, combining weight
magnitude, gradients, and global parameter allocation to remove up to 70% of parameters
without significant accuracy loss, though sparse matrices complicate deployment [36].

Structured pruning instead removes entire components (filters or feature maps). Li et al.
[38] pruned CNN filters via the L1 norm, cutting VGGNet/ResNet inference cost by 30%.
He et al. [39] proposed “soft” L2-based pruning, where removed filters can be reactivated,
improving ResNet inference speed by 30% on ImageNet. Ye et al. [40] used BatchNorm scal-
ing factors to prune ResNet filters on CIFAR-10, reducing model size by 39% with minimal
accuracy loss. Li et al. [41] applied reinforcement learning (TD3) to adaptively prune filter
groups using a multi-objective reward balancing accuracy, FLOPs, and parameter count.

Structured pruning accelerates inference by fully removing filters but may degrade accu-
racy if applied too aggressively.

2.4.2 Quantization

Quantization reduces the quality of the representation of model parameters , reducing
memory usage and accelerating inference [15, 16]. While networks are typically stored in
32-bit floating-point format, many tasks tolerate lower precision (e.g., 16-, 8-, or 4-bit) with
minimal accuracy loss. This enables simpler arithmetic operations, lower power consump-
tion, and efficient deployment on resource-constrained devices. Many studies have explored
quantization as a way to reduce model size. Zhou et al. [43] and Chen et al. [44] focused
on weight quantization, which lowers memory requirements with little impact on inference
cost. Jacob et al. [42] proposed quantizing both weights and activations, enabling full 8-bit
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(INT8) inference; for instance, an INT8 ResNet loses only 2% accuracy on ImageNet while
cutting memory use by 4×. Other work investigates even lower precisions [45, 46]. Zhou
et al. [47] showed that 4-bit quantization can halve memory consumption with negligible
accuracy loss, whereas going below 4 bits (e.g., 2-bit) causes a sharp performance drop.

In short, quantization is an effective way to shrink models and ease deployment on
resource-limited devices, but overly aggressive precision reduction can significantly degrade
performance.

2.4.3 Knowledge Distillation

Knowledge Distillation transfers the learned behavior of a large teacher model to a smaller
student model [15], preserving accuracy while reducing memory requirements. The main
paradigms include:

• Offline: A pre-trained teacher provides soft targets or intermediate features to guide
the student.

• Online: Teacher and student are trained simultaneously, enabling dynamic knowledge
exchange.

• Self-distillation: A single model uses its deeper layers to supervise its shallower layers,
simplifying training while retaining the benefits of distillation.

Early work in this area dates back to Buciluǎ et al. [48], who introduced the concept
of knowledge transfer. Their method trained a small model on data labeled by a larger
one, allowing the student to approximate the teacher’s performance with shorter training
time than learning directly from the raw data. The term knowledge distillation was later
popularized by Hinton et al. [49]. Ba et al. [50] proposed using logits—the outputs of the
softmax layer—as the transfer signal, with the distillation loss measuring the gap between
teacher and student predictions. Romero et al. [51] extended this idea by transferring
intermediate feature representations, aligning the student’s internal outputs with those of
the teacher. This approach achieved a 10.4× compression on CIFAR-10 while improving
accuracy.

The choice of what to distill must be paired with an appropriate strategy. Offline distilla-
tion trains the teacher first and then transfers its knowledge [49, 51], while online distillation
trains teacher and student jointly [52]. Self-distillation uses a single model that plays both
roles [53].

Overall, knowledge distillation is a promising technique for building lightweight neural
networks that retain strong classification performance while significantly reducing computa-
tional cost.

These techniques are critical for creating compact, energy-efficient networks suitable for
real-time and low-power applications.

3 Related Work

Neural Architecture Search (NAS) has been extensively investigated in the literature [7, 8, 9],
with numerous algorithms exploring different families of optimization techniques. This work
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focuses primarily on gradient-based NAS methods. Among these, the DARTS algorithm [9]
is a foundational approach that applies bi-level optimization within a one-shot architecture
framework [14].

Several studies have addressed the limitations of the original DARTS formulation. For
instance, P-DARTS [11] tackles the discrepancy between the search and evaluation phases.
PC-DARTS [10] reduces computational cost by constraining the number of channels used
during the search process. Furthermore, λ-DARTS [12] and EM-DARTS [13] enhance the
fairness of operation selection—achieved through layer alignment in the former and edge
mutation in the latter.

To the best of our knowledge, no other work tries to combine NAS algorithms with com-
pression techniques aimed at reducing the size of the resulting model. LMD-DARTS [30] is
the only method that integrates a differentiable architecture search (NAS) algorithm with a
form of pruning. In this approach, pruning is not applied to the final network to reduce its
size; rather, it is embedded directly into the search process. During the optimization of the
architecture, a learned sampling mechanism progressively eliminates operations deemed less
relevant, thereby shrinking the search space and accelerating convergence. The goal is to
make the NAS procedure more efficient, not to compress the resulting model. Nevertheless,
LMD-DARTS demonstrates the potential of coupling NAS techniques with pruning strate-
gies, hinting at opportunities for future work aimed at jointly optimizing model size and
performance.

4 Proposed Approach

This section presents our work. The study begins with a comparative evaluation of five
Neural Architecture Search (NAS) algorithms. We then describe the adopted search space,
followed by an overview of the model compression techniques and their configurations.

4.1 Search Strategy

We compare five gradient-based NAS algorithms: DARTS, P-DARTS, PC-DARTS, λ-DARTS,
and EM-DARTS. Based on the results, the algorithm with the best performance will be used
in the final experiments.

4.2 Search Space

Our search space follows the original DARTS design [9, 14]. The candidate operations in
the operation set O include: 3×3 and 5×5 depthwise separable convolutions, 3×3 and 5×5
dilated depthwise separable convolutions, 3×3 max pooling, 3×3 average pooling, identity,
and zero operations (applied with stride 1 where applicable).

Each cell contains seven nodes separated into 2 input nodes that pass their outputs to 4
intermediate nodes. This is then followed with 1 output node. The output node aggregates
the outputs of all intermediate nodes via depthwise concatenation. The final network is
constructed by stacking multiple cells, with reduction cells positioned at one-third and two-
thirds of the network depth, and all other cells being normal. Figure 2 illustrates the structure
of a single cell.
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Figure 2: Structure of a cell in the DARTS search space. Each directed edge represents a candidate operation
from O, and the output node concatenates all intermediate outputs [9]

For the final architecture, we stack a total of 20 cells separated into 18 normal cells used
in tandem with 2 reduction cells, placed at one-third and two-thirds of the network depth.

4.3 Compression Methods

4.3.1 Individual Compression Techniques

To reduce computational complexity and model size, we evaluated several state-of-the-art
compression strategies, each configured with carefully selected hyperparameters to balance
compression rate and predictive performance.

• Pruning: Structured pruning was applied to convolutional layers at three sparsity lev-
els: 40%, 60%, and 80%, exploring a range from conservative to aggressive compression:

– 40%: moderate compression with minimal risk of accuracy loss.

– 60%: balanced reduction, achieving substantial parameter savings while maintain-
ing performance.

– 80%: aggressive pruning to evaluate the maximum feasible compression before per-
formance degrades significantly.

Filters were ranked by their L1-norm, which reflects their contribution to the out-
put—higher L1-norm filters are preserved. To prevent severe accuracy loss, pruning
was not applied to:

– Depthwise convolution layers, as they are lightweight and crucial for feature repre-
sentation.

– Layers with few output channels, where aggressive pruning could cause under-
parameterization.

These sparsity levels allow a systematic exploration of the trade-off between compression
and performance.

• Quantization: We adopted uniform 16-bit quantization to reduce memory footprint
and accelerate inference while maintaining sufficient numerical precision. This bit-width
offers a practical balance between storage efficiency and computational accuracy:
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– Compared to 32-bit floating-point, 16-bit reduces memory usage by roughly half and
lowers bandwidth demands, enabling faster inference on resource-limited hardware.

– Unlike lower-precision formats (e.g., 8-bit), 16-bit preserves a wide dynamic range,
accurately representing both small and large weights, minimizing underflow, over-
flow, and rounding errors.

– Modern accelerators (GPUs, TPUs) provide optimized support for 16-bit opera-
tions, allowing higher throughput without compromising training or inference sta-
bility.

Overall, 16-bit quantization strikes a balance between compression and precision, mak-
ing it a practical choice for resource-constrained deep learning deployments.

• Knowledge Distillation: To transfer knowledge from a high-capacity teacher model
to smaller student networks, we investigated four configurations varying along two di-
mensions:

– Initial number of channels: 16 or 36

– Number of layers: 8 or 14

These choices explore the trade-off between model width (channels) and depth (layers),
affecting representational capacity and computational cost:

– Init. Channels = 16: Lightweight, reducing model size and inference cost while
preserving essential feature extraction.

– Init. Channels = 36: Wider configuration to capture more complex patterns,
closer to the teacher’s capacity.

– Layers = 8: Shallow architecture for low latency and memory usage, matching
the minimal depth from the NAS search phase.

– Layers = 14: Deeper model enhancing hierarchical feature representation, poten-
tially improving accuracy at slightly higher computational cost.

Combining these dimensions yields four student architectures, allowing systematic eval-
uation of how width and depth affect knowledge transfer.

Distillation uses two complementary loss components:

– Hard Loss: Standard loss comparing student predictions to ground-truth labels.

– Soft Loss: Encourages the student to mimic the teacher’s softened outputs, ob-
tained by scaling logits with a temperature T .

The overall objective, applied to update only the student weights, is:

L = α · losssoft + (1− α) · losshard, (5)

where α balances imitation of the teacher and learning from ground truth, with values
chosen empirically.
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4.3.2 Hybridization Process

In a second phase, we explore the combination of pruning and quantization to maximize
model compression while minimizing accuracy loss. Pruning reduces the number of active
weights, and quantization further compresses their numerical representation.

The optimal configuration (e.g., pruning sparsity level and quantization bit width) is
determined based on the results of the individual techniques, allowing selection of the best
trade-off between model size and predictive performance.

We will analyze the effectiveness of each method individually and in combination to
evaluate the performance of combining these techniques, aiming to reduce model size while
keeping accuracy and generalization.

5 Experiments and Results

In this section, we present the results of applying various NAS algorithms on the CIFAR10
dataset. We then report the performance of the best-performing algorithm on the ISSLIDE
dataset. Finally, we discuss the impact of different compression techniques on the selected
model.

5.1 CIFAR10 Dataset

CIFAR10 serves as a benchmark dataset to evaluate which DARTS variant performs best on
our hardware setup. It consists of 60,000 images of size 32×32 pixels [31], distributed across
10 classes with 6,000 images per class. The dataset is split into 50,000 training images and
10,000 test images.

5.2 Algorithm Performance on CIFAR10

We applied the five NAS algorithms to CIFAR10 and evaluated them using the following
performance metrics:

• Accuracy: The proportion of correct predictions out of all predictions, providing an
overall measure of model performance across classes.

• Recall: Measures the ability of the model to correctly identify all positive samples,
calculated as the ratio of true positives to total actual positives.

• F1-Score: Balances precision and recall by taking their harmonic mean. Particularly
useful for imbalanced datasets, it penalizes extreme values and provides a more reliable
performance measure than accuracy alone.

• Number of Parameters: The count of learnable parameters, indicating the model’s
size and computational complexity during training and inference.

• Training Time: The duration required to update the model, influenced by hyperpa-
rameters such as epochs, batch size, and learning rate.

Table 1 summarizes the results obtained for the different NAS algorithms.
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Used Algorithm Accuracy Recall F1-score
Nb. of
Parame-
ters

Training
Time (in S)

DARTS 96.99 96.98 96.85 2.8 M 99 092
P-DARTS 97.20 96.96 96.89 3.34 M 56 456
PC-DARTS 97.15 97.11 96.99 2.9 M 115 510
λ-DARTS 94.66 94.6 94.33 0.7 M 44 893

EM-DARTS 96.92 75.00 75.00 4.81 M 84 824

Table 1: Comparative performance of DARTS and its variants on CIFAR-10

The results indicate that, while the overall performance of the algorithms is broadly
similar, PC-DARTS achieves the highest Recall and F1-score, with its Accuracy surpassed
only by P-DARTS. Furthermore, PC-DARTS maintains a competitive parameter count,
exceeded only by DARTS and λ-DARTS, both of which exhibit lower predictive performance.

Several intrinsic characteristics of PC-DARTS further support its selection:

• By processing only a subset of input channels for each operation, PC-DARTS signif-
icantly reduces the computational cost of the architecture search compared to other
methods.

• This computational efficiency allows for increased hyperparameter settings—most no-
tably, the batch size, which was raised from 64 to 256 without exceeding hardware
limitations. A larger batch size improves training stability by reducing fluctuations in
gradient updates.

• The larger batch size also enables more effective processing of diverse datasets, enhanc-
ing the algorithm’s generalization across a wide variety of images.

Considering these factors, we adopt PC-DARTS for experiments on our final dataset,
ISSLIDE, which is introduced in the following section.

5.3 ISSLIDE: InSAR Dataset for Slow Sliding Area Detection

In this work, we apply the PC-DARTS algorithm to the ISSLIDE dataset, a curated col-
lection of satellite imagery designed for segmentation tasks related to terrain displacement.
The dataset comprises over 200 documented ground movement events across various regions
in France [32]. A key strength of ISSLIDE is its high-quality annotations, prepared in col-
laboration with geomorphological experts, which enhance its suitability for deep learning
applications.

The dataset contains 13,230 samples, each acquired over temporal baselines of 6, 12, and
18 days, evenly distributed across these intervals. Each sample consists of three 100×100
pixel grayscale images:

• Coherence: Quantifies spatial coherence between two radar acquisitions, ranging from
0 (low coherence, indicating significant scene changes) to 1 (high coherence, indicating
temporal stability). High coherence typically corresponds to stable terrain, while low
coherence may suggest potential movement or land cover changes.

• Phase: Encodes phase information from the interferogram, with values between−π and
+π. Variations in grayscale provide insights into surface displacement patterns. Regions
with poor coherence may exhibit noise or phase decorrelation, limiting interpretability.
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• Segmentation (Ground Truth): The segmentation mask serves as the ground truth
label for training and evaluation. Pixels labeled as 1 (white) indicate identified terrain
movement, while pixels labeled as 0 (black) represent the background. These annota-
tions were validated by geomorphology experts, ensuring accuracy and relevance.

An illustrative example of a sample triplet from ISSLIDE is shown in Figure 3.

Figure 3: Example sample from the ISSLIDE dataset, showing Coherence, Phase, and Segmentation images

5.4 Results on the ISSLIDE Dataset

Table 2 summarizes the performance of the PC-DARTS algorithm on the ISSLIDE dataset.
To further evaluate segmentation performance, we report the Intersection over Union (IoU)
metric alongside the already mentioned metrics.

This new metric describes the common part between the predicted segmentation and the
ground truth, offering a more precise assessment of pixel-wise classification performance. It
is defined as:

IoU =
Intersection

Union
(6)

Where:

• Intersection: the number of pixels in the segmented class correctly predicted.

• Union: the total number of pixels present in either the predicted segmentation, the
ground truth, or both.

Figures 4 and 5 illustrate the basic building blocks used to construct the final architecture,
namely the normal and reduction cells.
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Figure 4: Normal cell proposed after applying the PC-DARTS algorithm on the ISSLIDE dataset

Figure 5: Reduction cell proposed after applying the PC-DARTS algorithm on the ISSLIDE dataset

Used Algorithm Accuracy Recall F1-score IOU
Nb. of
Parame-
ters

Training Time (in
S)

PC-DARTS 99.44 96.44 93.73 83.01 1.56 M 70 732

Table 2: Performance metrics for PC-DARTS on the ISSLIDE dataset

The results demonstrate the strong generalization and segmentation capabilities of the
PC-DARTS architecture on the ISSLIDE dataset. In particular, the model achieves an
IoU of 83.01%, indicating that over 80% of the pixels corresponding to terrain displacement
regions were correctly identified. These findings highlight the effectiveness and transferability
of PC-DARTS for satellite image-based segmentation tasks. Figure 6 illustrates sample
segmentation results obtained using the PC-DARTS model.
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Figure 6: Segmentation output of the PC-DARTS architecture on a sample from the ISSLIDE dataset,
illustrating accurate identification of terrain-displacement regions

5.5 Compression Results

We present through the following tables the results of application of the compression tech-
niques presented in section 4.3.

5.5.1 Pruning

Percentage
of Prun-
ing

Accuracy Recall IOU
Nb. of
Parame-
ters

Model Size (en MB)

0.4 99.37 94.98 80.8 1.44 M 5.9 (Reduction of 9%)
0.6 99.10 90.48 72.04 1.375 M 5.7 (Reduction of 12%)
0.8 97.52 72.14 37.33 1.305 M 5.5 (Reduction of 15%)

Table 3: Performance of the PC-DARTS model on the ISSLIDE dataset under different pruning levels

As shown in Table 3, pruning up to 60% of the filters still maintains acceptable performance,
with only a 0.34% decrease in accuracy, a 6% reduction in recall, and roughly a 10% drop in
IoU, while also reducing the model size by 12%. These results suggest that a large portion
of the filters in the baseline network are redundant or contribute minimally to the final
prediction. By removing up to 60% of them, the model retains most of its discriminative
power, as the remaining filters preserve the essential feature representations required for
accurate segmentation. However, when sparsity becomes too high (e.g., 80%), pruning begins
to remove filters that capture fine-grained spatial or boundary information, causing a sharp
decline in IoU despite only modest additional storage savings. This trade-off underscores the
importance of selecting a pruning threshold that balances compression with the preservation
of critical feature structures.

5.5.2 Quantization

Accuracy Recall IOU
Nb. of
Parame-
ters

Model Size (en MB)

99.44 96.43 83.00 1.56 M 3.3 (Reduction of 50%)

Table 4: Performance of the PC-DARTS model after 16-bit quantization
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As shown in Table 4, applying 16-bit quantization reduced the model size by approximately
50% while nearly preserving the accuracy, recall, and IoU of the original network. These
results indicate that the model’s parameters and activations do not require the full precision
of 32-bit floating-point representation to maintain high predictive performance. Encoding
them in 16-bit format is sufficient to capture the essential information with minimal nu-
merical error, enabling the network to operate more efficiently without compromising its
ability to detect fine details or maintain stable boundaries. This demonstrates that half-
precision arithmetic is well-suited for resource-constrained environments, where reducing
memory footprint and accelerating inference are critical, and highlights that quantization
can be effectively lossless or near-lossless when the bit-width is carefully selected.

5.5.3 Knowledge Distillation

Init.
Channels

Nb. of
Layers

Accuracy Recall IOU
Nb. of
Parame-
ters

Model Size (in MB)

16 8 97.83 75.83 41.62 115 042 0.5
16 14 97.88 76.59 42.90 218 754 0.98
36 8 97.68 71.91 36.05 557 642 2.3
36 14 97.98 80.58 47.05 1.1 M 4.4

Table 5: Performance of the distilled PC-DARTS model under various configurations of initial channels and
network depth

As shown in Table 5, knowledge distillation allowed substantial reductions in the number of
parameters and model size — around 91% compared to the original network — while causing
only a modest drop in accuracy (approximately 2%). However, the IoU metric reveals a
pronounced deterioration in segmentation performance, with the best student configuration
achieving only around 47–50%, far below the baseline.

These results highlight a key trade-off: while the student network can approximate the
teacher’s global decision boundaries and preserve high classification accuracy, it struggles
to replicate the fine-grained spatial information necessary for dense prediction tasks like
segmentation. This limitation is exacerbated by the mismatch between the NAS-optimized
teacher architecture and the simpler student models. The PC-DARTS teacher generates
rich, high-dimensional feature maps with complex dependencies, whereas the student — es-
pecially configurations with only 16 channels and 8 layers — lacks sufficient representational
capacity. Even the largest student configuration (36 channels, 14 layers) partially recovers
segmentation ability but still falls short of the desired performance.

These findings indicate that, under the tested settings, knowledge distillation alone is
insufficient for our objectives. More advanced approaches, such as attention transfer, feature-
level alignment, or increasing the student’s capacity, would be required to improve IoU while
retaining compression benefits.

5.5.4 Hybrid approach

We found that the most effective techniques in our case are, in order of impact: quantization,
pruning, and finally knowledge distillation. We therefore explored a hybrid approach that
combines the two best techniques — quantization and pruning — to maximize model size
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reduction while ensuring that performance remains within acceptable limits. The results of
this hybrid strategy are presented in Table 6.

Used Al-
gorithm

Percentage
of Prun-
ing

Applied
Quantiza-
tion

Accuracy Recall IOU
Nb. of
Parame-
ters

Model Size (in MB)

PC-
DARTS

0.6 16-bit 99.10 90.47 72.03 1.375 M 3.0 (Reduction of 54%)

Table 6: Performance of the PC-DARTS model after combining pruning (60%) and 16-bit quantization on
the ISSLIDE dataset

Qualitatively, these results demonstrate the effectiveness of combining pruning and quan-
tization for model compression. The hybrid strategy achieves a 54% reduction in model
size while preserving most of the predictive performance: the drop in accuracy is minimal
(0.34%), and the reductions in recall (6%) and IoU (10%) remain moderate. This indicates
that pruning and quantization complement each other effectively: pruning eliminates re-
dundant filters, while quantization optimizes the numerical representation of the remaining
weights without compromising their expressiveness. Overall, this hybrid approach strikes
a practical balance between compression and segmentation quality, making it well-suited
for resource-constrained environments where maintaining acceptable pixel-wise precision is
essential.

6 Discussion

The original PC-DARTS model achieved strong performance on the ISSLIDE dataset, with
an accuracy of 90% and approximately 80% of segmented pixels correctly identified. While
other evaluated NAS algorithms produced comparable results, PC-DARTS demonstrated
superior effectiveness for segmentation tasks involving grayscale input images and shows
promise for application to similar remote sensing datasets.

Regarding the compression techniques explored, 16-bit quantization reduced the model
size by approximately 50% with negligible impact on accuracy, recall, or IoU. Structured
pruning also proved effective, removing redundant convolutional filters and reducing the
model size by around 12%, with only minor decreases in accuracy (-0.34%), recall (-6%),
and IoU (-10%).

The combination of quantization and pruning—the hybrid approach—achieved the most
significant reduction in model size while maintaining a modest performance degradation sim-
ilar to that of pruning alone. Notably, the order of applying these two techniques did not
affect the final outcome, highlighting the robustness and efficiency of post-training compres-
sion methods.

In contrast, knowledge distillation did not yield satisfactory results. Reducing the model
to the smaller architecture used during the NAS search phase led to a substantial decline in
segmentation performance, well beyond acceptable limits. This emphasizes that, for dense
prediction tasks such as segmentation, student models must retain sufficient capacity to
capture fine-grained spatial information.

Figure 7 provides an overview of the proposed solution pipeline, summarizing the main
stages from architecture search to compression and deployment.
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Figure 7: Overview of the proposed solution pipeline, summarizing the main stages from architecture search
to compression and deployment.

7 Conclusion

This work investigated various techniques in neural architecture search (NAS), with a partic-
ular focus on gradient-based algorithms due to their reduced computational cost. Our main
contributions were conducting a comparative evaluation of several gradient-based methods,
including DARTS, P-DARTS, PC-DARTS, λ-DARTS, and EM-DARTS. Another contri-
bution was examining multiple model compression techniques—pruning, quantization, and
knowledge distillation—to reduce model size while preserving performance. These analy-
ses led to the achievement of our main goal: the design of our proposed pipeline, which
integrates NAS with post-training compression to achieve optimized, compact, and high-
performing models.

For future work, it would be valuable to explore the transferability of this pipeline to other
datasets and application domains, thereby demonstrating its broader applicability. Further,
modifying or extending the pipeline could open avenues for more innovative approaches,
potentially enhancing both efficiency and predictive performance across diverse tasks.
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