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Abstract. Information retrieval plays an important role in everyday tasks, especially when it comes to
documentation. Retrieving information about private documentation used to build other software is very
challenging due to its absence on the internet, meaning there is no information about it beyond its own
documentation. Due to concerns about confidential data, using external proprietary systems is prohibited.
Motivated by this, in this study, we present Mycroft, a retrieval system that leverages the Retrieval Aug-
mented Generation technique to find a feasible approach that improves search and information retrieval
requested by users about the documentation. To implement this system, a dataset of questions and an-
swers about the documentation was generated for evaluation. The system was developed on-premise using
open-source Large Language Models and evaluated using Natural Language Processing metrics and human
evaluation to validate the generated answers. Following an extensive evaluation of the results, the proposed
retrieval system demonstrated satisfactory performance in addressing user queries and achieved favorable
outcomes in human evaluation, indicating its utility.
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1 Introduction

Information Retrieval has developed an important role in day-to-day tasks. It has become
part of daily routines for most people due to the need for rapid information and decision-
making [1, 2]. It is present in many forms, such as internet browsing, virtual assistants, and
chatbots [1]. With the advance of deep learning algorithms, information retrieval systems
have been significantly improved [3], especially with the rise of Large Language Models
(LLMSs), which have been revealed as suitable for question-answering applications [4].

With the capacity of LLMs in question answering, it is possible to reduce both time and
effort in information retrieval [3]. However, using cloud computing tools and commercial
LLM raises security concerns due to the possibility of data leaks. As an alternative, open-
source LLMs can be deployed on-premise server [3].

Large Language Models require prior knowledge acquired from training about a subject
to answer a query. When unaware of the subject, it hallucinates [5]. An approach for
building LLM applications without training them is the Retrieval-Augmented Generation
(RAG) [3], which addresses this limitation by using an external source of information as
context for response generation [6, 7].

RAG systems are considered a good choice for handling private information, as they
leverage the LLMs’ Natural Language Processing (NLP) capabilities without requiring
the computational power needed to train an LLM model [3]. RAG systems are being
implemented in various fields such as health, law, software, biology, and finance [8-12].

These systems are built on proprietary organizational documents that were not part of
the LLM training. These documents are extensive and vital for private and governmental
organizations, sometimes making it a time-consuming task to search and consult this
information in daily routines [3].

In this work, Mycroft (a RAG system) is proposed to answer user questions about
a private Software Development Kit (SDK) used internally in the organization. For this
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purpose, the documentation is used as a source of information by indexing it in a vector
store database and retrieve it for the LLM context to answer the user’s query.

This paper is organized as follows: Section 2 presents the background and related
works, listing similar contributions and results achieved. Section 3 outlines the methodol-
ogy, describing the approaches used to achieve the results. Section 4 reports the results,
Section 5 presents the lessons learned and threats to validity, while Section 6 concludes
by discussing the experimental outcomes.

2 Background

LLMs are trained with massive databases from different areas of knowledge, enabling them
to answer a wide range of questions across various subjects [13]. However, when it comes
to private data, they have a high probability of hallucinating in their responses [5], as they
have never encountered such data. One of the commonly used approaches to address this
issue it the RAG [6].

The RAG approach consists of a pipeline that first breaks down documents into small
pieces, then indexes these pieces in a vector database. This database is consulted when
a query about related documentation is made. The information relevant to the query is
retrieved and passed to the LLM as context to answer the user’s question [6]. To enhance
the LLM response, various strategies are employed in the RAG pipeline. These include
breaking down documents into different sizes, indexing information as metadata in the
database, utilizing entity graphs, and leveraging other LLMs to retrieve more refined data
for the LLM context. All these strategies are detailed in the Related Works subsection.

The RAG has been applied in various domain-specific areas and has demonstrated sig-
nificant efficiency with adjustments in the pipeline for specific tasks in knowledge domains.
Some authors modify the chunking strategy, the embedding model, the LLM’s prompt,
and the LLM model, as seen in the papers studied in the survey [14]. One advantage of
RAG is that it is easier to keep the LLM model response up-to-date, as it only requires
updating the external source of information. Consequently, the RAG system will use this
updated version to query and answer queries [15].

To evaluate the generated answers against ground truth, we employed the metrics
BLEU [16] and ROUGE [17], which are widely adopted in related works cited in this
paper. Human evaluation was used to assess the proposed RAG answers by verifying their
generated responses based on the evaluation method outlined in paper [10].

Additionally, we evaluated semantic similarity using the RAGAS! framework and
BERTScore [18]. These two metrics involve converting candidate and reference texts into
numeric vector representations and measuring their semantic proximity using cosine sim-
ilarity to calculate the angle between the two vectors [19].

2.1 Related Works

Recently, different types of RAG architectures have been applied in various domains, aim-
ing to achieve the best balance between answer generation and computational resources.
For this purpose, small open-source LLMs with 1, 3, 7, and 8 billion parameters have been
widely used across a variety of research fields, as described in the works [20,9, 10, 3,12]
where different small open-source LLMs are employed to generate answers. These models
differ in the specific domain knowledge applied by RAG and the pipeline used for infor-
mation retrieval and answer generation. To achieve better results, various adjustments are
made.

! https://docs.ragas.io/
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In the work [20] the authors used 12 different metrics to evaluate the LLM models’
responses. Mistral:7B achieved the best score in 10 of them, although the authors used
Mistral: 7B to generate answers and questions for experiments, which may have biased the
results.

The work [9] utilized Llama3.2:3B for chunk relevance checking and query refinement
and employed Mixtral8x7B, Llama3.1:8B, and Gemma2:9B for answer generation. The
authors compared the results using human evaluation and cosine similarity. Llama3.1:8B
secured the best scores in both evaluation types.

The study [10] the LLM models Gemma2:2B, Llama3.2:1B and Phi3-mini:3.8B were
utilized. The authors evaluated the context retrieval phase by calculating context recall
using the RAGAS framework and an LLM as a judge, comparing retrieved chunks with
the ground truth reference. The chosen LLM for this task was Llama3:8B, and to eval-
uate generated answers, they used Natural Language Processing metrics such as Bilin-
gual Evaluation Understudy(BLEU), Recall-Oriented Understudy for Gisting Evaluation
(ROUGE), and Metric for Evaluation of Translation with Explicit Ordering (METEOR).
The best embedding model was stella_v5, and the best LLM for generating answers was
Phi3-mini.

The work [3] proposed an entity tree, which is searched alongside relevant document
retrieval from the database. If a user query mentions an entity, it is searched in the tree
and added to the LLM context along with the retrieved documents. They experimented
with the Llama2:7B base model and a fine-tuned version answered 21 questions correctly.
However, the author also used Llama2:7B to generate questions and answers for validation.

The work [12] focused on how document chunks were split. They utilized a sentence
transformer trained on over 256M questions and answers to split documents into sizes of
128, 256, and 512 tokens. Texts smaller than 2048 characters were concatenated until this
limit was reached or a title or table was encountered in the document. They evaluated
retrieval accuracy using ROUGE and BLEU metrics by comparing retrieved chunks with
ground truth paragraphs. A chunk size of 512 yielded better results for answer generation,
as it captures more context. However, in some cases, it adds irrelevant information to the
context and misses important details.

3 Mycroft - Retrieval Augmented Generation for SDK Documentation

Coding scripts with an internally developed SDK tool is not always easy, even with its
documentation, it can take some time to find answers to the questions that arise during
the development phase.

In this regard, software engineers frequently consult technical documentation not only
to create new scripts but also to maintain existing scripts with new features that are
released and upgrade deprecations.

One concern is about confidential data [21], using external proprietary LLMs such as
ChatGPT?, Grok? and Claude* requires sending the data to external servers, which may
facilitate data leaks [22].

To mitigate this issue, open source LLMs on-premise can be used [23]. Another con-
cern is about computational capacity, as LLMs increase in size they also demand more
computational resources. Therefore, small models are more suitable for our resources.

2 https://openai.com/
3 https://x.ai/grok
* https://claude.ai/
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This section describes the methodology used to develop a RAG pipeline for retrieving
information about a private Python SDK documentation used internally within an orga-
nization. It outlines the creation of a dataset for test experiments and the RAG approach,
which includes documentation pre-processing, embedding generation, and evaluation met-
rics.

3.1 Dataset Creation

To validate RAG efficiency, a validation dataset is required. To create this dataset, the
SDK documentation was divided into 2000-character chunks and passed to the LLM
Qwen2.5:14B [24] with a prompt to generate relevant and concise questions with ground
truth answers for each chunk. Care was taken to exclude the LLM used for generating the
questions and answers dataset to avoid bias.

The questions and answers then underwent a human evaluation process to review
their correctness and relevance. Those deemed irrelevant or incorrect were enhanced using
additional relevant chunks to provide a more complete context for the LLM to regenerate
the question and answer.

A second human evaluation followed, ensuring no errors remained and classifying the
questions into three difficulty levels: easy, medium, and hard. Easy-level questions had
straightforward answers in the documentation, medium-level questions required combining
two different chunks for a complete answer, and hard-level questions needed more than two
relevant chunks and involved combining retrieved information with user-provided details.
By the end of this phase, 302 questions with verified ground truth answers were generated:
29 hard, 84 medium, and 189 easy.

3.2 RAG methodology

The objective of this study is to facilitate the process of retrieving information about SDK
documentation to assist software engineers in their development and maintenance tasks.
Therefore, it explored the combination of different techniques to extract relevant infor-
mation and used 4 LLMs to generate answers for domain-specific questions. We defined 3
research questions:

— RQ1: Which combination of documentation chunking and embedding model contributed
to the most accurate responses?

— RQ2: Which Large Language Model provided the best responses?

— RQ3: How good are the responses according to users’ opinion?

Documentation chunking. To enhance context information for generative LLMs, two
approaches for document chunking were tested. The first step involved dividing and iden-
tifying text and Python code within each document section, then separating them into
text and code sections.

One chunk approach used a text recursive splitter to break down the section’s text into
chunks of 500 characters with 100-character overlaps. Then, we used a Python recursive
splitter with the same number of characters as the text chunks to segment the Python
code, as illustrated in Figure 1.

The other approach involves directly using the documentation sections that contain
the class, its description, and code as a single chunk. This method keeps the entire section’s
information together within one chunk, while another chunk contains information about
a different section. This approach is illustrated in Figure 1.
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Segmenting the documentation into chunks improves contextual relevancy and prevents
the LLM context window from overflowing with large documents to process [25]. All chunks
are less than 1300 tokens, and all LLMs used in the experiments have context windows
up to 8k tokens. The objective of these two chunk approaches is to determine which type
(smaller or large) has a greater impact on the LLM answer.

Document Chunking

Chunks by sections

Section Section
Class Class
Descripfion. .| Descripfion. .|
Code. Code.

/17

- Embedding
Model
Document Division
Vector
Database

SDK Documentation

Chunks by text splitters

5 O

Recursive Character Python Code
Text Splitter Text Splitter

Fig. 1. Chunk strategies

Indexing. In this phase, the chunks extracted from the documentation undergo a process
to transform them into numeric vector representations called vector embeddings, which
are stored in a vector database [26]. Two embedding models, BGE-M3 [27] and nomic-
embed-text-v1.5 [28], were selected to generate the vector embeddings for indexing in the
Qdrant® vector database. The documentation chunking and indexing phases are executed
only once to store the documentation in the database. Consequently, this information is
consulted during information retrieval.

Retrieval After the documentation is divided into chunks and indexed by Qdrant, the
retrieval process is ready to start receiving queries about the SDK documentation. Qdrant
will convert the question into a vector embedding chunk using the same embedding model,
then it will search for similar vectors in the database using semantic similarity. By default,
the search will retrieve 4 documents that will be passed to the generative LLM, which will
use these documents as context to formulate an answer for the user query, as shown in
Figure 2.

Generation During the generation phase, the LLM is prompted to use the retrieved
documents from Qdrant and to answer the user’s query based on this domain-specific re-
trieved context. The prompt guides the LLM to act as an assistant providing explanations
on how to use a Python SDK according to the retrieved context.

If the retrieved context is insufficient to answer the query, the LLM is instructed to
state that it lacks information, which prevents hallucinations. At the end of the prompt, a
retrieved context field is included, populated with documents from the Qdrant database,
and a user query field. When the LLM is called, these fields are filled with actual data.

5 https://qdrant.tech/
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Fig. 2. Retrieval Augmented Generation - RAG

Once the prompt template is populated with the retrieved context, the LLM infers an
answer.

To select an LLM, four generative models were compared: qwen2.5:7b [24], qwen3:8b
[29], llama3.1:8b [30], and mistral:7b [31]. These models were chosen due to hardware
restrictions and organizational policies for cloud applications. Open-source and smaller
LLMs enabled on-premise deployment, ensuring private data security while balancing per-
formance and computational efficiency.

3.3 Evaluation metrics

A combination of each chunk strategy with an embedding model and a generative LLM
model has been implemented, resulting in 16 distinct experiments.

The Nomic embedding model was selected to generate vector embeddings for the LLM
answer and ground truths for comparison within the RAGAS framework for semantic
similarity. To compute BERTScore, the bertbase-uncased model was utilized.

The human evaluation consisted of 4 rounds, with only one round conducted per day
for 12 evaluators, who were end users from the organization. The criteria for evaluating
each generated answer were:

— Adequacy examines the quality of responses based on their completeness and richness;

— Usefulness judges the actual value of the answer helping to understand and perform
the task effectively;

— Relevance measures the LLM response accuracy to the ground truth.

Each criterion was evaluated by developers using five-point Likert scale: Incorrect if the
answer was totally incorrect; Inaccurate if the answer contained more wrong statements
than correct ones; Acceptable if most statements were correct; Good if all statements were
correct; Excellent if the answer was detailed and explained with examples beyond the
ground truth.

4 Results and Discussion

Table 1 presents the evaluation metrics, with scores ranging from 0 to 1, where 0 rep-
resents the lowest and 1 the highest value. Based on these, we selected the best model.
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LLama3.1:8B, Mistral:7B, and Qwen2.5:7B achieved their best scores using the split chunk-
ing type and the nomic-v1.5 embedding model, while Qwen3:8B performed best with the
chunking sections type and bge-m3 embedding model.

Table 1. Overall scores

LLM Embedding|Chunk| BLEU/ROUGE |Sem. Sim..BERTScore

BGE-M3 Split | 0.435 0.352 0.892 0.767

Mistral:7B BGE-M3 |Section| 0.442 0.347 0.884 0.765
Nomic-V1.5 | Split | 0.435 0.353 0.888 0.767

Nomic-V1.5 |[Section| 0.461 0.349 0.888 0.767

BGE-M3 Split | 0.409 0.357 0.886 0.774

Llama3.1:SB BGE-M3 |[Section| 0.414 0.357 0.883 0.775
Nomic-V1.5 | Split | 0.394 0.369 0.888 0.779

Nomic-V1.5 |Section| 0.407 0.354 0.882 0.770

BGE-M3 Split | 0.411 | 0.399 0.899 0.778

Qwen3:8B BGE-M3 |Section| 0.410 0.390 0.896 0.779
Nomic-V1.5 | Split | 0.413 0.398 0.900 0.778

Nomic-V1.5 |Section| 0.416 0.391 0.897 0.776

BGE-M3 Split | 0.470 0.383 0.897 0.784

Qwen2.5:7B BGE-M3 |[Section| 0.459 0.384 0.889 0.783
Nomic-V1.5 | Split | 0.473 0.389 0.902 0.788

Nomic-V1.5 |Section | 0.485 | 0.388 0.895 0.785

All models achieved higher BLEU scores using the section chunk method, while ROUGE
and semantic similarity performed better with split chunks. Qwen3:8B model obtained
its best score with section chunks for BERTScore, whereas the other three LLM models
performed better with split chunks.

Among the embedding models, nomic-v1.5 achieved better results than BGE-M3. This
indicates that, in the tested domain, the nomic-v1.5 vector of dimension 768 performed
better than BGE-M3, which generated vectors of dimension 1024.

The best BLEU score of 0.485 was achieved by Qwen2.5:7B using the section chunk
strategy and the nomic-v1.5 embedding model. Qwen3:8B, utilizing the bge-m3 embed-
ding model and split chunk, attained the highest ROUGE score of 0.399. Qwen2.5:7B,
with nomic-v1.5 and split chunk, secured the top score for semantic similarity 0.902 and
BERTScore of 0.788.

To address RQ1, we tested various document chunking and embedding techniques.
The combination of the split chunk method and the nomic-v1.5 embedding model slightly
outperformed others, achieving the best scores in 3 out of 4 LLMs. This result shows
that increasing the quantity of information per chunk does not always positively impact
the LLM’s response, as it may introduce irrelevant or redundant information, potentially
causing hallucinations. Conversely, providing smaller pieces of information adds variety
and enriches the LLM’s context for improved responses.

For RQ2, we evaluated four different LLM models. The Qwen2.5:7B model achieved
the highest scores in most metrics, except for the ROUGE score, where Qwen3:8B outper-
formed it with 0.39. However, Qwen2.5:7B excelled in BLEU (0.485), semantic similarity
(0.902), and BERTScore (0.788).

Table 2 shows the metrics obtained by the Qwen2.5:7B model, paired with the nomic-
v1.5 embedding model and split chunk method. Qwen2.5 achieved the highest scores in
most metrics. The easy level obtained better scores than the medium level, and the model
performed better for medium level questions than for hard level ones. The other three
models exhibited similar behavior, with scores decreasing as questions became more chal-
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lenging. This outcome was expected, as answering harder level questions required more
refined and combined chunks, necessitating greater refinement to generate better answers.

Table 2. Model Scores by Question Level

LLM Level |Embedding|Chunk |BLEU/ROUGE|Sem. Sim.|BERTScore
Easy |Nomic-V1.5| Split | 0.443 | 0.364 0.895 0.770
Mistral:7B  |Medium|Nomic-V1.5| Split | 0.427 | 0.340 0.886 0.766
Hard |Nomic-V1.5| Split |0.410 | 0.313 0.850 0.751
Easy |Nomic-V1.5| Split | 0.399 | 0.384 0.892 0.794
Llama3.1:8B |Medium|Nomic-V1.5| Split | 0.406 | 0.361 0.886 0.779
Hard [Nomic-V1.5| Split | 0.324| 0.298 0.861 0.746
Easy |Nomic-V1.5| Split | 0.490| 0.410 0.911 0.794
Qwen2.5:7B  |Medium|Nomic-V1.5| Split | 0.445| 0.368 0.891 0.783
Hard [Nomic-V1.5| Split | 0.446| 0.318 0.873 0.756
Easy | BGE-M3 |[Section| 0.425 | 0.411 0.905 0.789
Qwen3:8B Medium| BGE-M3 |Section| 0.394 | 0.366 0.886 0.774
Hard | BGE-M3 |Section| 0.351 | 0.315 0.865 0.734

The human evaluation average scores range from 1 to 5 and are presented in Table 3. This
evaluation aimed to assess the answers generated by the optimal combination of chunk
strategy and embedding model for each LLM model.

For human evaluation, we selected the combination that achieved the highest scores
across most metrics for each LLM. Therefore, the selected models were: Llamad.1, Mis-
tral, Qwen2.5 paired with split chunks and nomic-v1.5, and Qwen3 paired with section
chunks and BGE-M3. The Qwen2.5:7B model achieved the highest average score across all
three evaluated aspects, with the following average scores and their respective standard
deviations (std.): Adequacy 3.27 (1.24), Relevance 3.36 (1.24), and Usefulness 3.36 (1.23).

For RQ3, Qwen2.5:7B also was the best model evaluated during the human evalua-
tion phase, with a moderate standard deviation value, indicating that evaluators shared
different opinions about generated answers. For overall scores, an adequacy score of 3.27
suggests that the model’s answer was sufficient to address the query. A relevance score of
3.36 indicates that the answer aligns with the defined ground truth. A usefulness score of
3.36 demonstrates that the model’s answer helps to solve the problem and its solutions
are reasonable.

Table 4 shows Qwen2.5:7B human evaluation scores by question level. It is possible to
notice that as the difficulty level increases, the scores decrease. This behavior is observed
across all four models used in this experiment. This clarifies the tendency to reduce the
score as questions become more difficult, a trend already mentioned in the metrics results.

Table 3. Human Evaluation - Overall Scores

Model |Adequacy|Relevance|Usefulness

Qwen2.5:7B 3.27 3.36 3.36
Llama3.1:8B 3.20 3.22 3.22
Mistral:7B 3.02 3.05 3.04

Qwen3:8B 2.97 2.99 2.99
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Table 4. Human Evaluation - Model Scores by Question Level

LLM Level [Adequacy|Relevance|Usefulness
Easy 3.17 3.19 3.18
Mistral:7B Medium 2.81 2.83 2.81
Hard 2.71 2.72 2.74
Easy 3.56 3.67 3.66
Qwen2.5:7B  |Medium 2.82 2.85 2.90
Hard 2.70 2.79 2.78
Easy 3.24 3.26 3.26
Qwen3:8B Medium 2.42 2.44 2.45
Hard 2.81 2.85 2.86
Easy 3.37 3.37 3.37
Llama3.1:8B |Medium 3.04 3.05 3.06
Hard 2.64 2.68 2.68

5 Lessons Learned and Threats to Validity

During the human evaluation we did not measure the LLMs’ hallucinations in generated
answers due to the lack of volunteers to conduct this type of inspection manually. We were
limited by computational resources to use an LLM as a judge.

To overcome computational limitations in evaluation, we adopted the BLEU and
ROUGE metrics, which are widely used for NLP evaluations. However, they lack semantic
understanding, as evidenced by their scores all below 0.5. In contrast, semantic similar-
ity and BERTScore scores were all above 0.7. Therefore, adopting semantic similarity
and BERTScore metrics was a reasonable choice to address the limitations of BLEU and
ROUGE metrics.

The metrics values and human evaluation scores were very close to each other, indicat-
ing that the chunk strategies had no impact on embedding generation and, consequently,
on the generated answers in the proposed scenarios.

6 Conclusion and Future Work

This paper investigated the application of the RAG technique in an organizational envi-
ronment to assist software engineers to use a private SDK documentation for developing
and maintaining automation scripts. Two distinct chunk methods were used to extract
the documentation, which was then indexed in a vector database with two different em-
bedding models, paired with four LLMs to generate answers to documentation-related
questions. For each combination of chunk method, embedding model, and LLM, metrics
were calculated, and human evaluation was conducted to assess aspects of the generated
answers.

Given the limitations related to data privacy, organizational documentation, and com-
putational resources, we chose to use on-premise small open-source LLMs to implement
the RAG system. As shown in the results, a good perception of the generated answers was
achieved, which is considered suitable for practical use and its integration with a larger
system to provide this documentation assistance is also in course.

The split chunk method, combined with the nomic-v1.5 embedding model, performed
better for three out of four LLMs. The only exception was Qwen3:8B, which performed bet-
ter using BGE-M3 for ROUGE score and Qwen2.5:7B paired with section chunks achieved
the highest score for BLEU metric. Qwen2.5:7B, when paired with split chunks and nomic-
v1.5, achieved the highest scores for semantic similarity and BERTScore metrics. It also
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achieved the best scores in human evaluations for the overall score across question lev-
els, with scores tending to decrease as questions became more difficult. This necessitated
improved information refinement in the indexing, retrieval, and generation phases, which
will be addressed in future work.

For future work we intend to explore advanced RAG and modular RAG [6] techniques
to improve results, the intention is that the system correctly answers most of hard level
question. Additionally, tests with additional datasets to assess generalization for other
documentations is also being considered.
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