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Abstract. Producing a defect-free, lightweight, high-performance and complex geometry metal compo-
nents is a highly challenging task. In this paper, we focused on High Pressure Die Casting (HPDC),
proposing a hybrid AI model for non-destructive, in-line, and non-process-interrupting defect prediction,
using thermal images. For that, a deep neural network model is used to extract features, which are then
classified by a Fuzzy Cognitive Map (FCM). Experimental results show that the method improves predic-
tion performance.
The main contributions of this research include: (i) a novel hybrid model architecture for processing thermal
images, (ii) a feature extractor for a FCM-based classifier, (iii) extension of FCM via three clustering
techniques to enhance classification accuracy, (iv) a modular design, allowing easy addition of other data
sources and classes without retraining, (v) a thorough evaluation through model comparisons and an
ablation study, and (vi) to the best of our knowledge, first usage of FCM for this problem.
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1 Introduction

Nowadays, demand for lightweight, high-performance, and complex geometry components
is growing rapidly, e.g., due to the enriching automotive or aerospace industry. However, ob-
taining high-quality elements is a very tough process with many challenges. The metaFac-
turing project, funded by the Horizon Europe program, concentrates on some of them,
preparing a digitalized tool-chain with a focus on reduction of operator cost and effort,
as well as waste, and incorporating more sustainable use of raw materials. The project
considers two use-cases: welding and casting.

One of the problems in quality assurance in High Pressure Die Casting (HPDC) are
time-consuming parts tests and destructive nature of some of them. However, for prelim-
inary evaluation, in order to reduce the number of parts to examine, some inline, non-
destructive methods can be used. For example, process parameters or thermal images can
be used, which is described more in the next section.

Despite the current advancement in applying machine learning and AI to HPDC area
and thermal image acquisition methods, there are still some challenges. Acquiring proper
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thermal data is problematic due to high influence of external factors like e.g. reflections or
additional light source on the reliability. Additionally, proper camera calibration is crucial.
Another problem which most often occurs is the imbalance of dataset used for training,
when using real production samples.

In this paper, we focus on HPDC, proposing a hybrid AI model for non-destructive
defects prediction in produced parts, which can be applied in-line, without process inter-
ruption and waste production. For that purpose, thermal imaging is incorporated, using
images before and after mold spraying. All images are processed by a deep neural model
in order to extract features, which are then classified using Fuzzy Cognitive Map (FCM).

The motivation for this work was a need of explainable and scalable HPDC defect
prediction classifier, which can be deployed in a real manufacturing environment. The
proposed approach tries to overcome limitations of existing methods by incorporating real-
life data both for training and testing, as well as providing modularity and scalability,
allowing for the easy addition of new data sources and classes without requiring retrain-
ing. Additionally, explainability is improved through the FCM utilization, enhancing the
decision-making for the Industry 4.0 applications.

The key contributions of this paper are as follows:

– We propose a novel hybrid model architecture, that combines deep thermal images
features extraction with interpretable reasoning using FCM, with probabilistic output
for each class and a graph structure, where two images (before and after spraying) are
simultaneously processed.

– We extend the FCM with three different types of clustering methods (Fuzzy c-Means,
Gaussian Mixture Models, and Spectral Clustering) for the training and inference
phases, showing significant improvements in classification performance.

– The modular nature of the proposed architecture allows easy integration of additional
data sources (e.g., sensor readings from the HPDC machine) and new classes, without
retraining requirement of the existing model components.

– We conduct a comprehensive performance comparison of various models and architec-
tures, along with an ablation study to assess the contribution of each component in the
proposed architecture.

– To the best of our knowledge, this work is the first one applying FCM-based classifier
to in-line HPDC defect prediction.

– Additionally, this research contributes to the advancement of interpretable AI methods
in manufacturing, especially to real applications for Industry 4.0; for both training and
testing real production data has been used.

Through this work, which is part of a larger research effort, we aim to address the chal-
lenges of HPDC defect prediction using thermal images. This represents the first step to-
ward building a more advanced, combined classifier that incorporates multiple data sources
available in-line.

This paper is organized as follows: in the next section, related research is discussed.
Then, our methodology and solution are presented. Section 4 contains the experimental
results along with their discussion, while Section 5 extends these results through an ablation
study. The final section provides the conclusion and our directions for future work.

2 Related Work

2.1 Defects occurring in HPDC

HPDC is a highly complex manufacturing process where the final quality of cast compo-
nents is influenced by numerous process parameters. A careful control of the melt temper-
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ature and process parameters (e.g., injection velocity, applied pressure, shot sleeve tem-
perature, use of vacuum, etc.) is essential to optimize the mechanical and microstructural
properties of the cast parts [17]. Additionally, the thermal regulation of the die and the
mold surface temperature are crucial factors to ensure the production of high-quality com-
ponents [16].

The improper selection of melt and mold temperatures, along with the incorrect casting
parameters, can result in the formation of severe defects [20]. These defects are typically
categorized based on their location as either surface or internal defects [7]. Surface defects
- such as cold flows, ejection marks, and incomplete filling - are generally detected through
visual inspection. In contrast, internal porosities require more advanced inspection tech-
niques. Shrinkage and gas porosities are among the most common internal defects in HPDC
components. While improper injection parameters and inadequate use of vacuum-assisted
systems are primary contributors to their formation, improper thermal die layout and
unsuitable spraying conditions can also significantly influence their occurrence. Internal
defects are commonly detected through X-ray imaging, computed tomography (CT), leak-
age tests, or destructive methods [21]. However, these techniques are often time-consuming
and not suitable for in-line or on-site application during the casting process [21]. In con-
trast, real-time monitoring of die temperature using thermal cameras offers a fast, in-line
method for preliminary quality assessment during casting [21]. Although consistent ther-
mal images do not guarantee defect-free castings, monitoring die surface temperature can
aid in controlling defect formation associated with hot spots or poor thermal management
during the casting process.

2.2 Computer-aided Defects Prediction in HPDC

Due to the latest advances in computer vision, deep learning, and AI, computer-aided
defect prediction for HPDC is becoming increasingly popular, providing more and more
precise results.

Various methods are used in HPDC defect prediction. For example, Gupta et al. pro-
posed an ensemble model with ResNet50 and CNN for quality analysis of casted sam-
ples [10]. The ensembling technique helps with model overfitting, which is a common prob-
lem [10]. The most similar work to ours is [15], where the Hypothesis Pruning Generative
Adversarial Network (HP-GAN) is used to predict porosity, combining line data from the
process and thermal images of the mold before and after spraying. The presented method
seems to have high performance; however, only the AUC metric and confusion matrices
were used. The results cannot be compared to our method due to the different mold used
and the lack of many details about the method and dataset. Additionally, contrary to our
solution, the method in [15] is, due to its architecture, not easily scalable to different defect
types and data sources. Lastly, our approach decouples feature extraction from the final
classification using FCM, providing explainability and modularity, which is not addressed
by [15] work.

Furthermore, for porosity prediction, methods using simulations with a 1D diffusion-
controlled model are incorporated [9]. Additionally, other defect types can also be predicted
using simulations, such as Cold Shuts and Misruns [14]. For simulations, specific software
like ANSYS Fluent, Anycasting, ProCAST, or FLOW-3D is sometimes used.

There is also research merging different data gathered using, e.g., the Internet of Things,
NoSQL storage, and data analysis tools (e.g., Spark). Additionally, to make predictions,
different machine learning techniques based on sensor data are used, such as random forests
or neural networks [19]. Using thermal images and deep learning has also been successfully
applied in other areas than HPDC, e.g. for porosity prediction and in-situ monitoring, such
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as laser powder bed fusion [23]. For non-destructive defect detection, X-ray can be used,
especially in connection with deep learning (DL)-based classifiers [6], such as CNN and
ResNet18 [32].

2.3 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCM) are used in many areas where interpretable knowledge rep-
resentation is needed [34]. They have been applied with great success in the industrial
and engineering fields [24], e.g., for autonomous collision avoidance at sea [8], gas predic-
tion [25] or time series data analysis [26]. Recently, they have started being used with very
promising results for image classification [12, 30] or defect inspection using cameras [34].
The main idea is based on feature extraction from the image, using, e.g., the VGG-16
network [35] or Vision Transformer [31], followed by the creation of a fuzzy cognitive map
based on information granules [35]. Not only binary classification [34] but also multi-label
classification is supported [31].

3 Methodology

3.1 Data Acquisition

Data for this research was obtained using the real production line at one of the project
partner’s factory. Varying casting parameters were used to monitor the process and form
defects. For each die casting shot, different data were collected:

1. Structured process control parameters and measurements made by the HPDC machine,
such as maximum metal pressure; additionally, information from the leakage tests is
gathered at the end of production process,

2. Configured process parameters,
3. Time series data from the actual casting process,
4. Thermal images obtained using an infrared camera pointed to the casting tool surface,
5. Quality checks made by machine operators.

In order to determine part quality, the following combination of methods was used:
automated quality checks made by the HPDC machine, visual inspection, and leakage
tests (which provide the most valuable feedback on overall quality).

Following the projects data management plan assured reliable data storage and inte-
gration of the different data sources. Future plans include e.g. complying with machine-
actionable data management plans as suggested in [22].

3.2 Architecture Overview

The architecture of the system was designed to provide a highly scalable model with the
possibility of easily adding new data sources as well as new classes. One of the solutions
that allows such flexibility is FCM [18], with some extensions, such as for image classifica-
tion [12, 30, 34]. The model consists of two images of the mold: before and after spraying,
which are passed to the feature extraction module based on a Deep Neural Network (DNN)
architecture. After feature extraction, the features are then used to build a FCM, which,
during the inference process, provides the final classification. As a result, for the use case
considered in this paper, only two classes are predicted, with values between 0 and 1.
However, the proposed architecture is highly flexible and more classes can be added, even
without retraining. As it can be seen, unlike other methods described in previous section,
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our approach decouples feature extraction from the final classification using FCM, provid-
ing explainability and modularity. An overview of the solution architecture is shown in Fig.
1.

before
spraying

after
spraying

Feature extraction

features

Fuzzy cognitive map classification

Results:
  Porosity, OK

Fig. 1: General overview of the solution architecture.

Feature Extraction - Deep Neural Networks One of the most common approaches for
image classification nowadays is to use a DNN architecture. This is very efficient, especially
when connected with autoencoders [3]. In this paper, a similar approach has been chosen,
based on a DNN and an encoder extracted from a trained autoencoder model. Additionally,
because there are two images for each sample, one before and one after spraying, the DNN
and encoder branches are duplicated.

For the DNN branch, state-of-the-art and high-performance architectures have been
chosen, such as ResNet, VGG, and DenseNet [5]. Since deep models require large training
datasets, pretrained models can be used with additional retraining on domain-specific
data [27], which in our case are thermal images.

The other part of the feature extractor uses an encoder, extracted from an autoencoder
network trained on thermal images. Since the images before and after spraying have slightly
different characteristics (e.g., temperature ranges), two trained models have been created.
For the autoencoder architecture, a U-Net [36]-inspired model has been chosen. After
training with images, to obtain a feature vector from the neuron outputs, the last layers
are removed, forming, for each i-th sample (before and after images), a feature vector fi
consisting of xj float values, defined as follows:

fi = [x1, x2, . . . , xd], where xj ∈ R (1)
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Fuzzy Cognitive Maps A FCM is a type of single-layer recurrent neural network. The
structure of the FCM model is based on a directed graph whose nodes denote concepts im-
portant for the analyzed system. Edges describe the causal relationships between concepts.
Weights of the relationships between concepts can be determined by experts or based on
available data. Concept values are initialized based on the initial vector and then updated
iteratively until the system converges or a maximum number of iterations is reached. The
concepts values can be updated with the use of the following inference rule [18]:

Xi(t+ 1) = f(
n∑

j=1,j ̸=i

wj,iXj(t)), (2)

where:

– Xi(t) is the value of the i-th concept,
– t is the number of iteration,
– wj,i is the weight of the relationships between the j-th concept and the i-th concept,
– i, j = 1, ..., n, n is the number of concepts,
– f(x) is a sigmoid function that normalizes the concept values to the interval [0,1] [4].

The main idea of image classification using FCM in our research has been based on
the work by Tziolas et al. [34]. The features extracted from the images are clustered using
the K-means algorithm. The input concepts of the FCM model are initialized based on
the centroid of each cluster. The output concepts are equal to the number of analyzed
classes. The weights of the relationships between concepts are determined based on the
fuzzy similarities between the extracted feature vectors and clusters’ centroids.

In our research, in order to improve the results as well as refine the method to our
use-case, we proposed to additionally use three different types of cluster centroids: Fuzzy
c-Means [2], Gaussian Mixture Model [29] and Spectral clustering [1].

In the Fuzzy c-Means algorithm, for each i-th feature vector fi a set of coefficients
wi,j is computed, which describes the degree of belonging to the j-th cluster. Afterward, a
j-th centroid cfcm(j) is computed. In the case of Gaussian Mixture Model (GMM)-based
k-th centroid cgmm(k) computation, each feature vector fi is associated with the posterior
probability γi,k of belonging to the k-th cluster. For Spectral Clustering, the centroid
cspec(l) computation uses similarity matrix and dimensionality reduction with eigenvectors
in order to perform the final clustering in the reduced spectral space. To summarize, all of
the centroids can be computed as follows:

cfcm(j) =

∑N
i=1w

m
i,j fi∑N

i=1w
m
i,j

(3)

cgmm(k) =

∑N
i=1 γi,k fi∑N
i=1 γi,k

(4)

cspec(l) =
1

|Cl|
∑
i∈Cl

fi (5)

where:

– fi ∈ Rd – the i-th feature vector,
– wi,j ∈ [0, 1] – the membership degree of fi to cluster j,
– m > 1 – the fuzziness parameter (typically m = 2),
– N – the total number of feature vectors,
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– γi,k ∈ [0, 1] - the posterior probability that fi belongs to the k-th cluster,
– Cl – the set of indices of feature vectors assigned to the l-th cluster,
– |Cl| – the number of feature vectors in cluster l.

For each clustering method, the shapes of the resulting clusters differ, which contributes
to better overall differentiation between image classes. Additionally, the optimal number
of centroids for each type is determined by iteratively evaluating model performance using
metrics such as the Matthews Correlation Coefficient (MCC) and Balanced Accuracy. For
the use-case considered in this paper, the highest performance metrics have been achieved
with j=4, k=5 and l=5, corresponding to the number of centroids for Fuzzy c-Means,
Gaussian Mixture Model, and Spectral Clustering, respectively.

As a result of the FCM classification usage, interpretable outputs are generated, pro-
viding a class-wise certainty level, which helps explainable decision-making.

3.3 Potential for Improvements and Extensions

The proposed solution can will be improved as a part of further research. The areas which
are considered are: enhancing the feature extractor architecture (e.g. adding GAN discrim-
inator block), clustering algorithm (e.g. incorporating other machine learning methods, like
Genetic algorithms) and features reduction (e.g using PCA).

Additionally, the classifier offers high flexibility and can be easily extended by incor-
porating additional data sources, such as inline process data (e.g., velocity and pressure
values, temperatures), to create a fused model and further improve classification perfor-
mance. Different types of feature extractors can be employed, whose outputs are then
integrated into the constructed Fuzzy Cognitive Map. Furthermore, the architecture sup-
ports not only the inclusion of new data sources but also the addition of new defect classes,
such as Cold shuts or Misruns. Due to space limitations, a detailed description of the ex-
tended approach, along with initial results, which are very promising and show improved
metric values, will be presented in a separate publication. Another way of extension is
to ensemble models for higher accuracy of classification for the same data, which will be
investigated as future research.

4 Experiments and Results

In order to evaluate the proposed solution, an experimental application has been written
in Python. As a training dataset, 3685 samples (7370 images) of class "OK" and 306 sam-
ples (612 images) of class "porosity" have been used. Due to the fact that the dataset
was imbalanced, additional augmented training data have been added for the "porosity"
class, resulting in additional samples. Moreover, for comparison with the most similar
other approach ( [15]), a balanced training and testing datasets have been created, with
all "porosity" samples and reduced "OK" samples number, to match them. For train-
ing the autoencoder, only real images have been used; for training the DNN branch and
FCM, both real and augmented images were utilized. As a test dataset, 154 samples of
class "OK" (308 images) and 102 samples of "porosity" (204 images) have been used. For
performance evaluation, the following metrics were used: Area Under the Curve (AUC),
Accuracy, Matthews Correlation Coefficient (MCC), Balanced Accuracy, and F1-scores for
each class.
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4.1 Results Using Neural Network-Based Classifier

As a first step, different deep neural network architectures have been examined, including
DenseNet [13], ResNet50 [11], EfficientNetB0 [33], YOLOv2 [28], and an Encoder (ex-
tracted from a trained Autoencoder network with an architecture inspired by U-Net [36]),
as well as ResNet50, EfficientNetB0, and YOLOv2 concatenated with the Encoder.

The classification results using proposed hybrid model are shown in Table 1. It can
be seen that the best performance was obtained by ResNet50, ConvNeXt, and DenseNet
concatenated with the Encoder branch. Example confusion matrices for ConvNeXt and
DenseNet are shown in Fig. 3b and Fig. 4b. However, the difference between F1-scores for
both classes is high, reaching up to 0.81 for the "OK" class and 0.51 for the "Porosity"
class.

The experiments demonstrated that adding the Encoder branch improves overall per-
formance across almost all architectures, particularly for the MCC, which increased from
0.00 to approximately 0.37–0.48. Architectures without the Encoder, such as ResNet50,
EfficientNetB0, and YOLOv2, achieved very low metric values, for example AUC around
0.50 and MCC equal to 0.00, indicating that their performance does not surpass random
prediction. A confusion matrix for the test data using YOLOv2 is shown in Fig. 2, illus-
trating this issue. In contrast, the confusion matrices for DenseNet and ConvNeXt (Fig. 3a
and Fig. 4a) show that none of the "OK" class samples were misclassified as "Porosity",
but still the performance is lower than for the version with added Encoder.

Table 1: Comparison of the performance of different neural network architectures on the
test dataset.

Model(s) AUC Accuracy MCC Balanced accuracy F1-score OK F1-score Porosity
Encoder 0.67 0.47 0.47 0.67 0.81 0.50

DenseNet 0.65 0.71 0.46 0.65 0.80 0.47
ResNet50, EfficientNetB0 0.50 0.42 0.00 0.50 0.00 0.59

YOLOv2 0.50 0.58 0.00 0.50 0.74 0.00
DenseNet + Encoder 0.65 0.71 0.45 0.65 0.80 0.46
ResNet50 + Encoder 0.65 0.71 0.43 0.65 0.80 0.48

EfficientNetB0 + Encoder 0.63 0.69 0.39 0.63 0.79 0.43
ConvNeXt + Encoder 0.67 0.72 0.48 0.67 0.81 0.51

YOLOv2 + Encoder 0.61 0.67 0.37 0.61 0.78 0.35

OK Porosity

OK

Porosity

0 130

0 93

Predicted

A
ct

ua
l

Fig. 2: Confusion Matrix for the YOLOv2 model.
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Fig. 3: Confusion matrices for DenseNet variants: (a) DenseNet, (b) DenseNet + Encoder,
(c) DenseNet + Encoder + FCM.

4.2 Fuzzy Cognitive Map-Based Classification

The networks trained and evaluated in the previous subsection were used as feature ex-
tractors by removing the final layers of the concatenated models. The extracted features
were then used to train a FCM. Evaluation was performed using the same images as in the
neural network-based classification described in the previous subsection. The experimental
results are presented in Table 2.

Some general observations can be made based on the results:

– For models using neural networks as feature extractors and FCM as a classifier, a
significant improvement in performance can be observed, especially for those models
that include the Encoder branch. In contrast, models without the Encoder achieved
the lowest metric values.

– The highest performance was obtained by DenseNet and ConvNeXt models concate-
nated with the Encoder and subsequently passed to the FCM.

Comparing to the results from the previous subsection, it can be seen that the F1-score
for the "Porosity" class obtained much higher values (about 29% higher), additionally
still maintaining high values for the "OK" class. The highest F1-score for the "Porosity"
class obtained by neural networks was 0.59, however, reducing the F1-score for the "OK"
class to 0.00. The highest values for both classes were 0.81 ("OK") and 0.51 ("Porosity").
Contrary to that, the highest obtained values for the FCM classifier were 0.83 ("OK") and
0.64 ("Porosity"), as well as 0.82 ("OK") and 0.66 ("Porosity"). A similar situation can be
observed, for example, for the MCC values: for neural networks, the highest one was 0.48,
while for the FCM, it was 0.55.
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Fig. 4: Confusion matrices for ConvNeXt variants: (a) ConvNeXt, (b) ConvNeXt + En-
coder, (c) ConvNeXt + Encoder + FCM.

Comparison of the confusion matrices also shows performance improvement, especially
for the "Porosity" class. However, still not all samples can be predicted, but this may be
connected to the different origins of the porosity, its severity or location. This situation
will be examined in further research on this topic.

As an additional performance test, a comparison with the results of a sensor process
data values trained with LightGBM classifier was done. Fig. 7 shows the best FCM mod-
els’ metric values compared to the non-image-based classifier. It can be observed that the
best FCM models are obtaining similar metric values to the LightGBM classifier, with the
exception of the MCC, which is only slightly lower for FCM models. However, when com-
paring the confusion matrices, shown in Fig. 5 and Fig. 3c, the values are almost identical.
This means that using two different data sources separately results in similar prediction
performance. This situation can be used to combine predictions into one, stronger classi-
fier, which will be investigated further with more details. However, first results are very
promising, as can be seen in Fig. 6.

4.3 Comparison with HP-GAN algorithm

In the previous subsection, we presented a comparison between the proposed solution and
several state of the art deep neural network architectures, with and without added Encoder
branch. As can be seen, our method achieved higher overall performance.

Additional tests have been performed in order to compare our solution with other, more
complex researches than the network architectures shown in the previous subsections. As
the main algorithm, a HP-GAN described by [15] has been chosen, since it is the most
similar research. The implementation has been limited to use only images, as our solution
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Table 2: Comparison of the performance of different neural network architectures on the
test dataset.

Model(s) AUC Accurracy MCC Balanced acc. F1 OK F1 Porosity
Encoder FCM 0.59 0.65 0.33 0.59 0.77 0.29
ResNet50 FCM 0.50 0.58 0.00 0.50 0.74 0.00

EfficientNetB0 FCM 0.50 0.58 0.00 0.50 0.74 0.00
YOLO FCM 0.50 0.58 0.00 0.50 0.74 0.00

DenseNet + Encoder FCM 0.73 0.77 0.55 0.73 0.83 0.64
ResNet50 + Encoder FCM 0.59 0.56 0.19 0.59 0.52 0.59

EfficientNetB0 + Encoder FCM 0.59 0.56 0.19 0.59 0.50 0.60
ConvNeXt + Encoder FCM 0.73 0.77 0.52 0.73 0.82 0.66

YOLO + Encoder FCM 0.54 0.52 0.09 0.54 0.50 0.54

OK Porosity

OK

Porosity

129 1

47 46

Predicted

A
ct

ua
l

Fig. 5: Confusion Matrix for the LightGBM classifier using sensors data.
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Fig. 6: Confusion Matrix for the combined model using both image and sensors data.
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Fig. 7: Comparison of the best model performance metrics.

also is based on them. The tests consisted of training and testing with imbalanced datasets
and balanced dataset for both training and testing.

The test results using imbalanced datasets are shown in Table 3. It can be seen that
only the AUC and F1-score for "OK" class were higher for HP-GAN, whereas all other
metrics were higher for our solution. The performance difference is shown by F1-score and
recall metrics for the "Porosity" class, indicating much higher ability of our solution to
distinguish the defect from the non-defect samples. Additionally, computation time has
been measured: the training took 5060.87s for HP-GAN and 681.59s for our solution, the
testing 9.86s for HP-GAN and 8.78s for our solution accordingly.

The test results using imbalanced datasets are shown in Table 4. It can be seen that for
the AUC and MCC metrics, the HP-GAN achieved higher results. However, for all others,
our solution gave better performance, especially for the Balanced Accuracy. It must be
noted that the training dataset was limited to only about 1000 of samples, thus the results
may differ, when more data will be captured during the further project development. The
computation times were as follows: for the training: 811.04s for HP-GAN and 89.61s for
our solution, for the testing: 3.01s for HP-GAN and 8.65s for our solution.

Table 3: Comparison of model performance: HP-GAN [15] vs. our approach for imbalanced
dataset.

Model AUC MCC Balanced Acc. F1 OK F1 Porosity Recall OK Recall Porosity
HP-GAN [15] 0.746 0.313 0.569 0.911 0.244 0.996 0.142

Proposed solution 0.698 0.357 0.698 0.767 0.556 0.690 0.707
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Table 4: Comparison of model performance: HP-GAN [15] vs. our approach for balanced
dataset.

Model AUC MCC Balanced Acc. F1 OK F1 Porosity Recall OK Recall Porosity
HP-GAN [15] 0.869 0.820 0.663 0.847 0.794 0.937 0.704

Proposed solution 0.834 0.692 0.834 0.860 0.810 0.954 0.714
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Fig. 8: Example trained FCM visualization, showing global top 10% edges.

4.4 Fuzzy Cognitive Map

An example FCM visualization is shown in the Fig. 8. Due to the high number of edges,
only top 10% is shown. However, even with such a limit, it can be seen that some of the
input concepts are positively influencing the Porosity class, whereas much less are related
to the OK class.

The output classification of the FCM can provide important information for the e.g.
machine operator, showing the probability of Porosity occurrence - when it’s close to 1.0,
then there is high chance that the part will contain it. However, when the value is lower,
e.g. closer to 0.5, than additional tests may be needed to be done. An example plot showing
the predictions is shown in Fig. 9. Such a plot can be used to see the process stability, when
the probability of the class "Porosity" is becoming higher than the probality for "Good",
then the process should be test for different problems which may cause the higher number
of parts with the porosity.
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Fig. 9: A visualization of the probabilities for the sample test set.

4.5 Ablation Study

In order to better understand the influence of all components in the proposed architecture,
an ablation study was additionally performed. It was divided into two parts: evaluating
the feature extractor and evaluating the FCM classifier.

The first part was primarily covered by the experiments performed in subsection 4.1,
where different architectures were analyzed. As a result, shown in Table 1 and Table 2, it
can be concluded that for both, the feature extractor and FCM, adding the Encoder branch
is very beneficial, improving overall performance. Additionally, using FCM stabilizes the
model’s performance, especially for the "Porosity" class.

Table 5: Comparison of FCM model performance on the test dataset with removed cen-
troids.
Removed type of centroids AUC Accuracy MCC Balanced accurracy F1 OK F1 Porosity

none 0.73 0.77 0.55 0.73 0.83 0.64
Fuzzy c-Means 0.69 0.74 0.50 0.69 0.81 0.56

GMM only 0.60 0.58 0.21 0.60 0.55 0.60
Spectral only 0.67 0.73 0.47 0.67 0.81 0.53

Fuzzy c-Means and GMM 0.56 0.56 0.13 0.56 0.58 0.53
Fuzzy c-Means and Spectral 0.56 0.63 0.27 0.56 0.76 0.21

GMM and Spectral 0.69 0.73 0.46 0.69 0.80 0.56

The second part of the ablation study focused on the FCM and the influence of centroids
on the overall performance, which is shown in Fig. 10. Firstly, different numbers of centroids
were removed, showing that the model is quite stable up to 5 centroids being lost. After
removing 9 centroids, the metric values dropped drastically, and after removing all of
them, the system was unable to provide any classification. Further tests were conducted
to examine the influence of each centroid type on the results: Fuzzy c-Means, Gaussian
Mixture Models (GMM), and Spectral Clustering. The results of the study are shown
in Table 5. It can be seen that after removing only Fuzzy c-Means, only Spectral, and
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Table 6: Comparison of FCM model performance using different activation functions.
Activation function AUC Accuracy MCC Balanced accurracy F1 OK F1 Porosity
sigmoid (l=0.65, l=0.1) 0.73 0.77 0.55 0.73 0.83 0.64

sigmoid (l=0.25, l=5, l=10) 0.72 0.76 0.53 0.72 0.83 0.62
softmax 0.72 0.76 0.53 0.72 0.83 0.62

tanh 0.50 0.58 0.00 0.50 0.74 0.00
ReLU 0.50 0.58 0.00 0.50 0.74 0.00

both GMM and Spectral centroids, the AUC, Accuracy, Balanced Accuracy, and F1-scores
remain surprisingly high. The lowest MCC value was obtained by removing only GMM,
which indicates that this cluster type is the most important for the classification. However,
when both GMM and Spectral centroids were removed, the performance did not drop
significantly, suggesting that with only Fuzzy c-Means clusters, the classifier was still able
to find good matches to the centers. As in the previous experiment, when more clusters were
removed, the overall results worsened. Nevertheless, the test showed that all of the centroid
types are necessary, and only when they are combined together, the highest performance
is achieved. The last tests for the FCM classifier were performed in order to evaluate the
influence of choosing different activation functions on the final performance. The results are
shown in Table 6 — it can be seen that the highest metric values were obtained using the
sigmoid and softmax activation functions. Additionally, it can be noted that the sigmoid
function was not very sensitive to the l parameter value.
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1

Removed number of centroids
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AUC Accuracy MCC
Balanced Accuracy F1 OK F1 Porosity

Fig. 10: Comparison of FCM model performance on the test dataset with randomly removed
centroids.

4.6 Limitations

The experiments showed the performance of the proposed solution. The results are very
promising, however, still there are some limitations found, which can be summarized as
follows:

– not all porosity occurrence can be found - which is related to the cause of the defect,
as well as its size,

– choosing the right l parameter for sigmoid activation function is important for achieving
the highest metrics values,

– the number of chosen centroids also has influence on the performance.
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5 Conclusion

In this paper, a novel application of FCM classification to thermal images of the HPDC
process has been presented, contributing to trustworthy AI in Industry 4.0 and support-
ing the incremental system evolution. The classifier, although based on the work by [34],
has been improved by introducing a novel feature extractor and incorporating different
clustering methods during the training and inference phases. The classification is focused
on porosity prediction in casted parts. Compared to other methods, this approach allows
the easy addition of new classes as well as additional data sources, without the need to
retrain already trained parts of the classifier. The results prove that the proposed solution
improves the performance of prediction; however, probably due to the different nature of
porosity, its severity or location, not all occurrences can be found. This issue will be fur-
ther investigated. When comparing to other solutions, the HP-GAN achieved better results
for the AUC (balanced and imbalanced datasets) and MCC metrics (only with balanced
dataset). However, for all others, especially the Balanced Accuracy, our solution obtained
higher values. Additionally, the training time is much lower than for HP-GAN, as well as
both training and testing times are not increasing as fast as for HP-GAN, when the dataset
size increases. In this paper, we also performed an ablation study, which demonstrates the
influence of each part of the classifier on the final performance.

The solution described in this paper is part of an ongoing research on the quality
inspection of HPDC parts. As part of future work, further improvements to the classi-
fier’s performance will be investigated. One of the methods involves using additional data
sources, such as structured process control parameters and measurements data, to supple-
ment the classifier. The initial results are very promising, as shown in Fig. 6. Additionally,
different training methods will be explored to prepare weights in a more efficient manner.
Ultimately, the classifier will be integrated into a real-life smart manufacturing environment
with a dashboard for factory employees as a part of the metaFacturing project.
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