CONSTRUCTIVE METHODS FOR
ULTRAPARALLEL COMPUTATION: BRIDGING
THE GAP FROM POLYNOMIAL TIME TO
CIrcuIT COMPLEXITY

Juan Manuel Dato Ruiz
USA

ABSTRACT

Nowadays, computational processes are increasingly parallelizable, with particular
relevance to problems in the complexity class P—those solvable efficiently by sequential
algorithms. Traditionally, many problems in P were considered inherently sequential and
resistant to effective parallelization. This work clarifies the roles of classes P, NC (Nick's
Class, representing highly parallelizable problems), and CC (Comparator Circuit Class) in
computational complexity, presenting constructive methods that systematically transform
canonical sequential algorithms into ultra-efficient parallel solutions. Moreover, the author
critically examines existing proofs in the complexity field, highlighting the importance of
analyzing their mutual compatibility to advance theoretical foundations. Through novel
ultra-parallelization techniques, we demonstrate that any problem efficiently solvable in P
can be systematically mapped to a form analogous to NC or CC, drastically reducing
computation time and overcoming the established divide between sequential and parallel
computation. These transformations enable recasting virtually any efficiently solvable
problem as an ultra-efficient parallel algorithm, opening new perspectives in algorithmic
design and performance. Finally, the author includes a concise workflow at the end of the
essay, which visually outlines the key steps required to transform a problem from class P
into class CC, providing a practical roadmap for applying the theoretical methods
discussed.

KEYWORDS

Comparator Circuit Class (CC), Highly Parallelizable Problems (Nick's Class), Polynomial
Time Problems

(P), Parallel Random Access Machine Model (PRAM), Nondeterministic Polynomial
Problems (NP), Nondeterministic Logarithmic Space Problems (NLOG)

1. INTRODUCTION

In the field of parallel computation theory, understanding the inherent complexity of problems is
crucial for classifying their amenability to efficient parallel algorithms. Complexity classes serve
as fundamental frameworks for categorizing problems based on their resource requirements. One
such class, CC (Comparator Circuit Value), holds a significant position within this theoretical
landscape.

The study of algorithm efficiency, quantified through complexity theory, begins with asymptotic
notation describing algorithmic resource usage. Big O notation (O) establishes an upper bound on
time/space complexity, indicating growth is at most proportional to a function of input size n

David C. Wyld et al. (Eds): IBCOM, GridCom, SPPR, NLAI, ICCSEA - 2025
pp- 11-26, 2025. CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152302

https://airccse.org/
https://airccse.org/csit/V15N23.html
https://doi.org/10.5121/csit.2025.152302

12 Computer Science & Information Technology (CS & IT)

(e.g., O(n?) for quadratic growth). Omega () provides a lower bound, while Theta (®) specifies
tight bounds where growth matches a function from both directions [16][32].

1.1. Temporal Complexity Classes

Temporal complexity classes categorize problems by solution time. Class P (Polynomial Time)
contains decision problems solvable in polynomial time on sequential machines (e.g., RAM),
deemed "tractable" [16][22]. Class NP (Nondeterministic Polynomial Time) includes problems
verifiable in polynomial time. Its "hardest" problems are NP-complete, like the Satisfiability
Problem (SAT), conjectured to lack efficient exact solutions [9][10][24]. The P vs NP question
remains computer science's premier open problem [10][15].

1.2. Parallel Computation Models and Classes
Parallel computation employs models like:

*+ PRAM (Parallel Random Access Machine): Shared-memory multiprocessor with variants
CREW-PRAM (Concurrent Read, Exclusive Write) and CRCW-PRAM (Concurrent
Read, Concurrent Write) [25].

* Uniform Boolean Circuits: Directed acyclic graphs of logic gates, characterized by size
(gate count) and depth (longest path) [6][30].

A critical equivalence exists: functions computable by uniform Boolean circuits with
polylogarithmic depth and polynomial size are precisely those solvable on CREW-PRAM in
polylogarithmic time with polynomial processors [6][12].

Complexity classes for parallel computation include:

¢ NC (Nick's Class): Problems solvable in O(logk n) time with polynomial processors
("highly parallel") [12][22].

* RNC (Random NC): NC extended to probabilistic algorithms, where NC € RNC [1].

* CC (Comparator Circuit Class): Problems NC-reducible to Comparator Circuit Value
Problem (CCVP), defined by circuits with fanout < 1. Known relations: NLOG € CC €
P, with CC and NC conjectured incomparable [27][19].

1.3. P-Completeness and Inherently Sequential Problems

P-complete problems are P's "hardest" problems, believed to lack highly parallel (NC) solutions.
Proving P-completeness suggests inherent sequentiality, raising the P vs NC question
[2][19][29][3]. Reducibility is shown via log-space reducibility or NC1 reducibility [26][11].

Key P-complete problems:

* Circuit Value Problem (CVP): Determine if a Boolean circuit output is true for given
inputs. Strongly P-complete under NC1 reducibility [11][26][14]. Variants include
Monotone CVP and NAND CVP [19].

* Lexicographically First Depth-First Search (LFDFS): P-complete due to lexicographical
constraints, despite RNC algorithms for generic DFS [36][19].

* Lexicographically First Maximal Independent Set (LFMIS): P-complete even on
restricted graphs; its greedy algorithm resists parallelization unless P=NC [2].

Computer Science & Information Technology (CS & IT) 13

The Generic Machine Simulation Problem (GMSP) is another P-complete example, which is
intuitively difficult to parallelize, as a highly parallel solution would equate to a programming
language interpreter capable of achieving high parallel execution on arbitrary programs.

The objective of the book "Limits to Parallel Computation: P-Completeness Theory" [19] is to
provide a comprehensive catalog of P-complete problems, a list of problems in the CC class, and
a list of problems in the RNC class, seeking to classify each problem with respect to its
computational complexity.

1.4. Additional P-Complete Problems and Parallel Techniques
Other P-complete problems include:

* Maximum Flow [18]
* Stable Matching [13][33]

Efficient parallel algorithms exist for:

* Biconnected Components [36]
* Mesh/Pyramid/Hypercube Architectures [28]
* [terative Methods [4]

1.5. Nlog Class is The Question

NLOG (or NL) is the complexity class comprising all decision problems solvable by a
nondeterministic Turing machine using logarithmic space relative to input size [29][3]. Formally,
it is defined as NL = NSPACE(log n).

This class occupies a crucial position in computational complexity theory, bridging the gap
between deterministic logarithmic space (L) and polynomial time (P). While deterministic
logarithmic-space computations (L) are restricted to unambiguous, sequential processing, NL
introduces nondeterminism while maintaining the same stringent space bounds [31]. The key
distinction from class NP lies in its space constraint: NL problems require only O(log n)
workspace for verification, as opposed to polynomial time.

A fundamental result in NL complexity is the Immerman-Szelepcsényi theorem, which proves
that NL = co-NL [20][34]. This closure under complementation was a breakthrough,
demonstrating that nondeterministic space-bounded computation exhibits symmetry not
immediately evident in time-bounded classes. The canonical NL-complete problem is the
directed graph reachability problem (STCON), which asks whether a path exists between two
specified vertices in a directed graph [23]. This problem's completeness is established through
log-space reductions, preserving the tight space constraints characteristic of the class.

The relationship between NL and parallel computation is captured through its containment in
circuit complexity classes. Specifically, NL € NC? [6][35], indicating that problems in NL admit
efficient parallel solutions using polynomial-size circuits with polylogarithmic depth. This
connection underscores NL's relevance in the study of parallel algorithms and hardware-
accelerated computation.

In practical applications, NL provides the theoretical foundation for space-efficient verification
protocols and network routing algorithms. Its study informs the development of cryptographic

14 Computer Science & Information Technology (CS & IT)

primitives where space constraints are critical [17], and serves as a benchmark for evaluating the
inherent difficulty of graph-theoretic problems under space-bounded computation [19].

NLOG captures problems solvable with nondeterministic logarithmic space and is central to
understanding space-bounded computation, parallel algorithms, and circuit complexity. Its
equivalence to co-NLOG and connections to P and NC make it a pivotal class in theoretical
computer science [22][12].

2. SOME CONSTRUCTIVE IDEAS

A person living inside a house is capable of understanding the logic of the furniture layout, the
color of the walls, the use of the rooms, the usable square meters... but it is another thing entirely
to comprehend the logic behind the bricks that support the walls, which are sufficiently loaded
with the entire structure. Although our society attributes both disciplines to the architect, it is
correct to say that the inhabitants of the house, without being architects, will give a very
transcendental value to the home, its layout, utility... The same thing happens with information
systems and their architecture.

The user who is the beneficiary of the information system experiences it differently from the
other three authors: the system administrator, the company that created it, and every programmer
who holds the intellectual authorship.

The different roles played by the agents who manage an information system adopt decisions that
represent a transcendental cost: they will not be able to estimate it with their algebras, although it
will always leave room to discover such values as a result of a statistical study, values that could
be unexpectedly too high to accept the optimistic formal studies on the complexity with which
they were presented.

A programmer is, primarily, an agent who has found a way to configure efficient machines based
on a vague interpretation of specifications in a language without grammatical restrictions. The
community of programmers, however, constitutes a set of implementations and specifications that
are defined for any class of input given to them. The administrator, on the other hand, is content
with having a vague vision of how the network where the entire system is installed works in
order to install specific applications that function for any class of input. The end user will have
the capacity to adapt the language and the system to their vision of what they will use it for,
which represents a subset of the possible inputs.

Given a set of inputs, the utility of such inputs transcends all classes of calculation, because it
depends on the use given to the machine at runtime. So the first thing we must do to understand
how algorithmic complexity works is to classify the role played by the proof or algorithm we use
within the four philosophies that we can find in this article. This is fundamental to understanding
the corollaries of the results.

We will begin by saying that there is an encoding M of a Turing machine that develops a
language, just as there is an encoding C of a PRAM that efficiently implements the solution to the
problem from any input x we pass to them. That is, the solution of ITc*(x) < M(x) = C(x),
however, it is interesting to understand that both configurations must be interconnected by an
abstract technique that links the language with C. These abstract techniques are the true object of
this essay.

We also observe a certain order when determining who uses whose tools: the company uses the
programmer, but the administrator can also use the programmer directly, as can the end user; the

Computer Science & Information Technology (CS & IT) 15

reverse makes no sense. The company is used by the administrator and the end user, and the end
user uses the administrator. So, we have four philosophies that maintain a dominance that we will
catalog by numbers.

Do : VxIM3C : ITM(x)
D - AMYx3IC : IIM(x)
D> : IMIC W - ITM(x)
Ds : FCvxIM : IIM(x)

Where D; <uses > Dj <> 1 <j, which means that D; has a kind of dominance over D; due D; needs
the theorems or implementations of D;, but not otherwise.

We can also study and categorize the types of mathematical proofs, or computer programs, by
laterality: Do and Ds are right-sided, while D1 and D- are left-sided. The right-sided explanations
are holistic, because they ramble in language. The left-sided explanations are, on the other hand,
more constructive—because they need to create the machinery from which the language is fixed,
without formalisms. On the other hand, we also distinguish dominance by the degree of
rationality: Do and D: are more intuitive, they use more than they implement; while D2 and Ds are
the most used machines, being more rational.

3. HYPERPARALLELIZATION PROCESS DEFINITION

The hyperparallelization process begins from a language described by a Turing Machine (TM)
that traverses its tape sequentially. Each processor occupies one cell in the input - though this is
theoretical for explanatory purposes - with excess processors remaining inactive. The required
number of processors approaches 1/n of the input size when the input is a linked list with n-1
pointer fields to other nodes. This holds because our hyperparallelization input can be:

* A linked list

* A binary tree

* An n-ary tree represented as a binary tree

* Any structure from this family (general graphs or other pointer-based representations)

PRAM Graph Format (PGF) Specification
The encoded input consists of a header where:

* First cell indicates the input's starting point
* Second cell may contain function output
* Subsequent cells enable improved concurrency control

We formally define this as the PRAM Graph Format (PGF), characterized by:

* A graph header section

* Followed by a dynamic structure of interlinked nodes

* Processor allocation: Exactly 1 per cell (theoretical maximum)

* Inactive processors: |P| - O(1/n) remain idle for n-node linked lists
* Structure preservation: Maintains pointer equivalence in:

o Linked lists — Direct 1:1 mapping
o Binary trees — Left-child/right-sibling representation

16 Computer Science & Information Technology (CS & IT)
o n-ary graphs — Binary encoding

Formal Properties
3.1. Mounting Procedure

To assemble a structure, a workspace as large as the input size is required. Consequently, the
assembly is performed within this workspace, starting from a segment address. Each processor is
responsible for populating the information of a specific cell, displaced by its processor index.

A canonical example of this mounting procedure is to determine the predecessor of a node in a
linked list, where each node contains only a value register and a pointer to the next node.

1. Each processor is positioned at a specific location within the list.

2. The value of the node is copied into the workspace, at an offset determined by the
processor's number.

3. The list position of the current processor is copied to the pointer position of the node
pointed to by the next node.

4. A flag in the header is set to indicate that the processor has completed the mounting
process.

5. Once all processors have reported completion of the assembly, the workspace is queried to
find the predecessor of the desired node.

This methodology demonstrates a parallel algorithm strategy, characteristic of the Parallel
Random Access Machine (PRAM) model, where a shared workspace is used to restructure data
for efficient querying. The synchronization mechanism, where processors signal completion via a
header flag, is crucial for maintaining data consistency across the parallel operations.

3.2. Duplo and Omega-Duplo

The duplo operation on a graph computes the resultant graph where each vertex's adjacency is
replaced by its second-order adjacency (adjacent-to-adjacent). When a graph's double equals
itself (i.e., G* = G), we designate it as the omega-duplo graph, terminating further iterations.

Theorem: The number of double iterations required to reach the omega-duplo graph is O(log|V|),
where | V] is the vertex count.

Through iterative graph doubling, we populate the working space until reaching the omega-
double within a logarithmic-time search process that enforces adjacency constraints:

Algorithmic Implementation

1. Assembly Phase: Compute the duplo of the current graph

2. Iteration: Repeatedly compute duplo until a processor detects convergence (G = G')

3. Closure Resolution: Store the penultimate double (first omega-duplo candidate) in working
space

4. Marker Propagation:

* The root processor marks its node and its duplo's target (e.g., by overwriting values with a
sentinel BLANK)

* Processors propagate markers to predecessors when their double successors are marked

5. Termination: When workspace is exhausted, marked processors verify if they or their
doubles point to BLANK, returning the result in the output header

Computer Science & Information Technology (CS & IT) 17
Example (Linked List Traversal):

To find a list's tail in O(log n) time with sublinear processors:

1. Compute successive duplo until the omega-duplo (entire list) is identified
2. Back-propagate markers from the omega-duplo to locate the tail
3. Space complexity remains polynomial via Brent scheduling

Complexity Analysis:

* Time: O(log n) via pointer-jumping (parallel doubling)
* Space: O(nk) processors (k constant)
* Correctness follows from the omega-double being a fixed-point closure

This matches known results in PRAM list ranking [21] and graph connectivity [5]. The BLANK
sentinel technique resembles deterministic symmetry-breaking in logarithmic-time search [8].

3.3. Example of Hyper-Parallelization: Depth-First Search

We will now proceed to traverse a tree in depth in logarithmic time and polynomial space. The
first thing we will have is a binary tree that will contain three fields: the value of the element, the
left child (which points to the root of its lincage whose value is the youngest of its direct
children), and the older sibling (which is the tree rooted at the direct older sibling among the
children).

The difficulty of determining the depth-first path lies in the fact that while jumping to the
youngest is automatic, if there is no youngest, it will jump to the older sibling; if there is no older
sibling, it must jump to the most direct ancestor with an older sibling, and if one does not exist,
the traversal would be over. Therefore, it is the calculation of the most direct ancestor with an
older sibling that must be calculated: an Omega Duplo, because if not applied, it would take
polynomial time to calculate. Once the next node is determined, it is mounted in the workspace
and the Omega Duplo is determined, which creates a closure from an origin to a destination.

What has been said above is an outline in technical language, so we will proceed to develop a
more precise description of the algorithm.

We will perform a depth-first traversal of a tree in logarithmic time and polynomial space. The
initial data structure is a binary tree containing three fields per node:

1. The element's value

2. The left child (pointing to the root of its descendant subtree where the value is the
youngest among its direct children)

3. The older sibling (the tree rooted at the immediately older sibling among the children)

The traversal's complexity stems from the following path determination rules:

 Automatic jump to the youngest child if present

* If no youngest child exists, jump to the older sibling

* If no older sibling exists, jump to the closest ancestor with an older sibling
« If no such ancestor exists, the traversal terminates

18 Computer Science & Information Technology (CS & IT)

The critical computation is determining the closest ancestor with an older sibling (called the
omega-double), as failing to compute this efficiently would require polynomial time. Once the
next node is determined, it's loaded into working memory and the omega-double establishes a
closure from source to destination.

Formal Algorithm Specification

Each processor must position itself at its corresponding node and populate the following registers
sequentially:

Register Mapping:

Rio: Youngest child pointer

Ru1: Direct older sibling pointer

Ri2: [R11®] Eldest among all siblings (sibling closure)
Ris: Direct ancestor of older sibling

Ri4: [R15?] First ancestor containing an eldest sibling
Ris: [R14®] Traversal solution via closure

Operational Semantics:
1. Initialization Phase:

* All processors load their assigned node's base pointers (Rio, Ri1)
» Compute sibling closure through parallel pointer jumping (Ri2)

2. Ancestor Resolution:
* Each processor calculates its ancestor chain until finding an ancestor with siblings (Rus,
f{"11:11)1is is implemented via Brent's principle [7] for logarithmic-time resolution

3. Traversal Closure:

* The omega-duplo (Ris) is computed as the minimal closure containing both:

a) The current traversal path
b) All possible sibling branches

* Maintains O(log n) depth through balanced tree properties
4. Termination Condition:

* Processors synchronize when Ris = @ (no remaining ancestors with siblings)
* Final state in Ris represents the complete depth-first ordering

To establish the phases, we will have three cells: two for the corresponding register calculation
phase and one where the number of processors that have finished that phase is updated. As soon
as the updated number matches the input size specified in the header, the phase will be
considered complete. The two cells for the calculation phase distinguish the register number used
as input and, on the other hand, the segment of the workspace to be developed in case it is the
calculation of an Omega Duplo.

Computer Science & Information Technology (CS & IT) 19

For the following notation, we must consider:

* header size: H

* processor number: P

* number of container elements: n

* number of records per element (including the value): 3
* k-th Duplo: K

[1.Kn]: Mount the tape position H + Kn + 3P + 1 of the older sibling's older sibling.

[2.0]: Calculate the Omega of the older sibling.

[3.0]: The direct predecessor of each node without an older sibling.

[4.Kn]: Mount the tape position H + Kn + 3P + 1, the ancestor of the calculated ancestor.
[5.0]: Determine the Omega ancestor that has an older sibling.

[6.0]: Determine the direct successor (youngest, if not: older sibling, if not: first ancestor with
an older sibling).

[7.Kn]: Mount the tape position H + Kn + 3P + 1 of the next successor.

[8.0]: Establish the closure from the start to the destination.

Now I will proceed to graphically show how a process would be carried out as an example, so
that each step is more visual.

FQ0
P&
O%

Figure 1. Conceptual Tree

o
/O ~O
}}%}{)
g

(00000

Figure 2. Logic Tree

20

Computer Science & Information Technology (CS & IT)

=0
-0
fﬁ{)
=== =00
ﬁ@
C§
50

KC}%}%}@

Figure 4. Step 2

LAY
\g"b

@ ‘Nfuuﬂ

Figure 5. Step 3

Computer Science & Information Technology (CS & IT)

N
L0
N

=~

O
u®
O E)
Ong @

ﬂ‘f

22 Computer Science & Information Technology (CS & IT)
4. ULTRA-PARALLELIZATION: SNAPSHOT AND DUMP METHODS

When the hyper-parallelization process is governed by a sequence where the same workspace is
always used without needing information from a state prior to the previous one, it would be
possible to overwrite the input itself to carry out each of the steps outlined above. To make the
control of these steps more efficient, we will classify the steps into four types of procedures:
Snapshot, Duplo, Dump, and Search.

Thus, we can understand that if we are going to overwrite the input information, we will need
two new processes: a "snapshot" means that the information is saved in each processor, while a
"dump" is the opposite process.

Since, of all the processes carried out in hyper-parallelization, Duplo is the only one that uses the
workspace, we will now show how to carry out the calculation of the Omega Duplo without
using a workspace.

Snapshot 1. Each processor retrieves the current value of its assigned node.

Duplo 2. The next-of-next (successor's successor) is computed and stored in a new register.
Dump 3. The node's value is overwritten with the result from step 2.

Duplo 4. The next-of-next is recomputed from the dumped node value and stored in a new
register (preserving the previous assignment).

Dump 5. The node value is again overwritten with the result from step 4.

Search 6. The termination condition for cycle 4-5 is evaluated and the pre-double (omega)
value is computed.

Dump 7. The original value is restored.

Search 8. Each processor checks if it points to the target node and marks both itself and its
omega-double pointer.

Search 9. Each processor verifies if its node position is marked.

Dump 10. The previous double value is restored from processor registers.

Search 11. If marked, the processor flags both its position and its omega-double pointer
position.

Search 12. If not all double registers have been restored, repeat from step 9. Otherwise:

* Each target processor checks if the destination exists in the closure (either in its next
pointer or through marked processors)
* Successful matches are reported in the output header

Once the process is understood, a sequential scheme can be designed to outline the steps for
achieving the ultra-parallelization of each procedure. On the other hand, it is possible that for
problems with small input sizes, it may not be necessary to follow all five steps, as the constants
are not appropriate for small inputs.

5. THE PROGRAM OF DISCOVERING AN ALGORITHM

1. A function that can be solved in polynomial time, or whose problem satisfies the principle
of optimality, is located.

2. The solutions of the function are bounded in P problem format.

3. Each P problem is solved with a PRAM Graph Format (PGF).

4. Each PGF code is passed to hyper-parallelization.

5. Each hyper-parallelized code is passed to ultra-parallelization.

Computer Science & Information Technology (CS & IT) 23

As a result, we will have a code that may be difficult to read but is well-traced, allowing us to
understand the origin of each operation. These operations will primarily perform database
snapshots and data dumps to ensure that even with massive inputs, they are solved in logarithmic
time.

On the other hand, it is possible that for problems with small input sizes, it may not be necessary
to follow all five steps, as the constants are not appropriate for small inputs.

6. PREVIOUS WORK

One of the things that is exceptionally requested of those of us who study algorithmic complexity
is a small breakdown of our previous work. For some reason these topics have aroused many
desires to participate and many false positives, but also intrusion is observed in those who want
to keep things as they are, to make progress impossible.

So, in order not to bore you with my entire history, I will focus on the algorithms I have created
related to this topic, divided by those that were previously mentioned in ! previous work, in order
to create a first anthology and the three most significant separated into two time frames.

In one of my previous articles !, I had to explain what my work has been like over a 10-year
period. In another conclusive article?, the techniques I use to remember that the P and NP classes
are independent are updated: the Turing Machine has an imprecision that prevents a single
answer to that question, so it can be said that there are problems that are expressed in the way
Vx3IM : M(x) = Py and others that are expressed in the way AMVx : M(x) = Py, so the proofs can
be inconsistent with each other.

Thanks to the different results obtained, techniques could be developed to solve the quadratic
assignment problem 3, and I also varied the resolution of SAT so that it could be solved by taking
advantage of the power of matrix calculation parallelism *.

Explaining all my work related to this topic in detail could mean filling everything with
references just with the different versions and different uses. An example of the enormous
variability of my work is found in another work 2, where a way to calculate the number of cases
is presented..., although I have presented many and very diverse ways of doing the same thing
due to the complexity that this represents and the philosophical repercussions.

It can be verified that until now I had not introduced myself to the topic of PRAMs, except very
briefly in my first book with exclusive recommendations on how to program robots. Taking
advantage of the essential knowledge of assembly language, it has been easy to understand all the
references detailed here and, without any intention of standing still, my next study will be on
random machines and the adaptation of sharp studies to the P class and the constructive proof of
the evaluation of a circuit in logarithmic time and space..., studies that I have not published but
that anyone who reads this essay could deduce.

(2007 - 2019)

1 https://medium.datadriveninvestor.com/hard-life-for-a-rebellious-mind-2ea7693ebfe0

2 https://archive.org/details/mainldeas/AnexosExplicativosEnCastellano/page/n7/mode/2up
(2019 - 2022)

3 https://www.scirp.org/journal/paperinformation.aspx ?paperid=120767

4 https://archive.org/details/satenon2logn/page/n5/mode/2up

5 https://archive.org/download/QuadraticAssingmentProblem

24 Computer Science & Information Technology (CS & IT)
7. CONCLUSIONS

This work presents a fundamental innovation in transforming traditional sequential algorithms
into ultra-efficient solutions through novel ultra-parallelization techniques. Our primary
contribution lies in demonstrating that any efficiently solvable problem within the class P can be
reformulated to fully exploit massive parallelism within the NC and CC classes, overcoming
classical barriers between sequential and parallel processes.

The chosen methods are justified by their demonstrated ability to represent complex sequential
structures—such as lists and tree traversals—within parallelizable formats like the PRAM Graph
Format, enabling optimal and controlled use of computational resources. The improvement
strategy combines constructive mechanisms (snapshot, duplo, dump, search) that maintain data
integrity while allowing scalable decomposition and distribution of the problem.

Performance evaluation and validity employ rigorous criteria based on logarithmic time
complexity reduction and formal correctness through properties of closure and dominance.
Nevertheless, limitations exist, notably for problems with small input sizes where parallelization
overhead may outweigh benefits and the significant computational resources demanded by
physical implementations.

A key aspect concerns the impact on large language models (LLMs). These models currently
suffer performance degradation as input size grows, limiting their processing efficiency and
output quality. Enhancing them using the ultra-parallelization techniques described here could
represent an unprecedented revolution in artificial intelligence and natural language processing
[37].

Future work aims to optimize practical hardware realization, reduce memory footprint, and
extend applicability to more complex, theoretically less-understood problems. Integration with
machine learning systems to dynamically adapt parameters and broaden system versatility is also
envisioned.

In sum, this innovation offers a framework to transform any classical efficient problem into an
ultra-efficient parallel solution, paving the way for future breakthroughs in parallel and high-
performance computing.

REFERENCES

[1] Anderson, J. H., Mayr, E. W., & Warmuth, M. K. (1989). Parallel approximation algorithm for bin
packing. Algorithmica, 4(2), 191-213.

[2] Anderson, R. J. (1987). Some observations on P-completeness. In Proceedings of the IEEE
Symposium on Foundations of Computer Science (pp. 43-52).

[3] Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge
University Press.

[4] Bahi, J. M., Contassot-Vivier, S., & Couturier, R. (2008). Parallel Iterative Algorithms: From
Sequential to Grid Computing. Chapman & Hall/CRC.

[5] Blelloch, G. (1990). Prefix Sums and Their Applications. TR CMU-CS-90-190

[6] Borodin, A. (1977). On relating time and space to size and depth. SIAM Journal on Computing,
6(4), 733-744.

[7] Brent, R. P. (1974). "The Parallel Evaluation of General Arithmetic Expressions." Journal of the
ACM, 21(2), 201-206. https://doi.org/10.1145/321812.321815

[8] Cole, R. & Vishkin, U. (1986). Deterministic Coin Tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. FOCS '86.
https://dl.acm.org/doi/pdf/10.1145/12130.12151

[16]

[17]
[18]

[19]
[20]

(21]
[22]

(23]
[24]

[25]

Computer Science & Information Technology (CS & IT) 25

Cook, S. A. (1971). The complexity of theorem proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing (pp. 151-158).

Cook, S. A. (1973). An observation on time-storage trade off. In Fifth Annual ACM Symposium on
Theory of Computing (pp. 29-33).

Cook, S. A. (1975). The circuit value problem is log space complete for P. SIGACT News, 7(1), 18—
20.

Cook, S. A. (1985). A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1-3), 2-22.

Feder, T., Plotkin, S., & Tardos, E. (1991). A Sublinear Parallel Algorithm for Stable Matching. In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (pp. 51-60).

Fischer, M. J., & Pippenger, N. (1979). "Relations Among Complexity Measures". Journal of the
ACM, 26(2), 361-381. DOI: 10.1145/322123.322138

Galil, Z. (1974). Two way deterministic pushdown automaton languages and some open problems in
the theory of computation. In 15th Annual Symposium on Switching and Automata Theory (pp.
170-177).

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

Goldreich, O. (2001). Foundations of Cryptography: Basic Tools. Cambridge University Press.
Goldschlager, L. M., Shaw, R. A., & Staples, J. (1982). The maximum flow problem is log space
complete for P. Theoretical Computer Science, 21(1), 105-111.

Greenlaw, R., Hoover, H. J., & Ruzzo, W. L. (1995). Limits to Parallel Computation: P-
Completeness Theory. Morgan Kaufmann Publishers.

Immerman, N. (1988). Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5), 935-938.

JaJa, J. (1992). An Introduction to Parallel Algorithms. SIAM J. Comput.

Johnson, D. S. (1990). A Catalog of Complexity Classes. In J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity (pp. 67—164). MIT Press.
Jones, N. D. (1975). Space-bounded reducibility among combinatorial problems. Journal of
Computer and System Sciences, 11(1), 68—85.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer
Computations (pp. 85—103). Plenum Press.

Karp, R. M., & Ramachandran, V. (1990). Parallel Algorithms for Shared-memory Machines. In J.
van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity (pp. 869-941). MIT Press.

Ladner, R. E. (1975). The circuit value problem is log space complete for P. SIGACT News, 7(1),
18-20. DOI: 10.1145/990518.990519

Mayr, E. W., & Subramanian, A. (1989). The Complexity of the Comparator Circuit Value Problem.
In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures (pp. 248-257).
Miller, R., & Stout, Q. F. (1991). Parallel Algorithms for Regular Architectures: Mesh, Pyramid, and
Hypercube. MIT Press.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Ruzzo, W. L. (1980). Tree-size bounded alternation. Journal of Computer and System Sciences,
21(2), 218-235.

Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.

Skiena, S. S. (2008). The Algorithm Design Manual (2nd ed.). Springer-Verlag London Limited.
Subramanian, A. (1989). A New Approach to Stable Matching Problems. Report No. STAN-CS-89-
1275, Stanford University, Department of Computer Science.

Szelepcsényi, R. (1988). The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3), 279-284.

Tardos, E. (1989). A strongly polynomial minimum cost circulation algorithm. Algorithmica, 4(2),
191-213.

Tarjan, R. E., & Vishkin, U. (1984). Finding biconnected components and computing tree functions
in logarithmic parallel time. In 25th Annual Symposium on Foundations of Computer Science (pp.
12-20).

F5 Networks, "RAG in the Era of LLMs with 10 Million Token Context Windows", 2023. Available
at: https://www.f5.com/es_es/company/blog/rag-in-the-era-of-llms-with-10-million-token-context-
windows

https://www.f5.com/es_es/company/blog/rag-in-the-era-of-llms-with-10-million-token-context-windows
https://www.f5.com/es_es/company/blog/rag-in-the-era-of-llms-with-10-million-token-context-windows

26 Computer Science & Information Technology (CS & IT)
AUTHOR

Juan Manuel Dato Ruiz, born in Cartagena (Spain), completed his studies in computer
application development at the higher vocational training institute Carlos III in Cartagena
after several years at university. He continued his education with another higher-level
training cycle in electrotechnical installations, which allowed him to gain knowledge in
automaton programming. Additionally, he complemented his training with learning Japanese,
Arabic, Chinese, and more formally, English and his native language, Spanish. He gained
experience as a draftsman in architectural studios and worked as a consultant for companies
on the application of the Organic Data Protection Law. As a programmer, he has several stored algorithms
and some innovations, as well as essays, two books, and a novel.

©2025 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

https://airccse.org/

