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Abstract. Recently, learning-based image codecs have improved compression leading to
excellent performance in bitrate reduction. However, their performance when transmitted
over lossy channels has not been well studied. This paper investigates how these learning-
based image codecs perform under lossy channel transmission conditions. For this, we set
up an experimental model that includes an encoder, a channel coding module, a channel
simulation module and a decoder to evaluate the visual quality performance under various
channel conditions. We compare the performance of several artificial intelligence models
with the standard JPEG under various channel conditions and across various bitrates. The
experimental results show that, under clean conditions, the learning-based codecs used in
the experiments outperform JPEG in terms of PSNR and MS-SSIM. However, in a noisy
channel, these codecs show significant degradation in PSNR and MS-SSIM under low-SNR
conditions (especially below 12 dB SNR), whereas JPEG is more robust to channel errors
and shows a more gradual degradation in quality as the SNR decreases.

Keywords: channel errors, error robustness, JPEG Al, visual quality, learning-based image
coding, Al-based image coding.

1 Introduction

Next generation networks (6G) [1] integrate space, air, ground, and sea to enable the In-
ternet of Everything (IoE). This environment generates massive amounts of data that can
be used to train artificial intelligence (AI) models. Thus, efficient compression is crucial for
reducing bandwidth usage, storage requirements, and latency. Classical image compression
frameworks involve several independent stages [2], as shown in Fig. 1(a). On the trans-
mitter side, the process starts with the input image. The source encoder first applies a
transform, such as the discrete cosine transform (DCT) in JPEG [3] or the discrete wavelet
transform (DWT) in JPEG2000 [4], to convert the image into a compact representation.
Then, the compact representation is quantised and mapped into a compressed bitstream
using Huffman coding (JPEG) or arithmetic coding (JPEG2000), which is then channel
encoded and sent over a channel. On the receiver side, the channel decoder converts the
received data back into the compressed bitstream. The source decoder performs entropy
decoding, inverse quantisation, and inverse transform to reconstruct the image. The new
learning-based image coding frameworks integrate neural networks (NNs) [5] into com-
pression pipelines to achieve higher compression, as shown in Fig. 1 (b). Some methods
integrate the NNs for a specific reason into one stage, such as using CNNs as prediction
tools for missing pixels [6], or replacing one of the stages of the compression pipelines
with a new NN component for source encoder and decoder. For example, [5] used NNs for

downsampling and upsampling before using the JPEG codec. However, in these methods,

David C. Wyld et al. (Eds): IBCOM, GridCom, SPPR, NLAI, ICCSEA — 2025
pp. 27-40, 2025.CS & IT - CSCP 2025 DOI: 10.5121/csit.2025.152303


https://airccse.org/
https://airccse.org/csit/V15N23.html
https://doi.org/10.5121/csit.2025.152303

28 Computer Science & Information Technology (CS & IT)

only the NN components (e.g. image encoder and decoder) are trainable, as the other
parts of the pipelines are non-differentiable and can not be trained (e.g. quantisation and
entropy coder). The use of NNs has been expanded not only to the encoder and decoder
parts but also to entropy coding. Instead of relying on fixed Huffman or arithmetic coding
tables, the authors in [7] introduced a learned entropy model that allows for an end-to-end
(E2E) training model with a neural autoencoder. The model uses a uniform noise addition
during training instead of the hard quantisation step, estimates the probability distribu-
tion of the quantised latents using NNs, and converts the compressed latents into the final
bitstream using a range encoder.
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Fig.1: Image compression pipelines: (a) classical image compression model and (b)
learning-based image compression. The main difference is the second component, in
which the classical source encoder/decoder is replaced with a learning-based source en-
coder/decoder.

Recently, the JPEG Committee introduced JPEG Al [8], a learning-based image codec
framework that uses E2E deep learning models to encode images into low-bitrate bit-
streams while preserving perceptual quality. The transmitter components of this frame-
work are similar to those used in learned entropy models [7,9, 10]. The main difference is
that on the receiver side, instead of only reconstructing the input image and performing
image processing tasks (e.g., super-resolution, denoising, colour correction, and inpaint-
ing), this model can perform computer vision tasks (e.g, image classification & object
detection and recognition) directly on the bitstreams without reconstructing the image.
As JPEG Al will be the new standard, its robustness in real-world environments is essen-
tial.

As wireless communication systems evolve, image transmission faces challenges due to
channel conditions, which creates the need for efficient compression and error correction
[11-15]. Traditional systems send raw or compressed data (bitstreams) over the channel,
while new systems such as semantic systems and E2E joint source—channel coding (JSCC)
systems , are send only features or maps that reduce the bandwidth [16-19]. However, to
the best of our knowledge, most existing research on learning-based codecs (LBCs) has
focused on rate-distortion (R-D) performance in optimal transmission scenarios. The effect
of wireless transmission errors on Al-based image bitstreams has not been well studied.
Traditional communication systems are the appropriate choice in this study because they
directly transmit the compressed bitstream generated by Al-based models. Semantic and
joint source—channel coding systems do not convert latents into bitstreams; thus they are
not suitable for testing the robustness of image codecs based on the JPEG Al framework.
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In this paper, we analyse the effect of transmission errors over wireless channels on
the visual quality of images encoded with LBCs. We focus on state-of-the-art models
implemented in the open-source CompressAl library [20], which provides E2E neural image
compression models similar to those used in JPEG AI. The main contributions of this paper
are summarised as follows:

— We analyse the effect of wireless channel errors on the visual quality of images com-
pressed with LBCs, focusing on state-of-the-art models implemented in the Compres-
sAT library.

— We compare the RD performance across all tested methods and illustrate the perfor-
mance over different signal-to-noise ratio (SNR) ranges and bitrates using the Kodak
dataset [21] to understand their robustness to transmission errors.

— We provide detailed insights into the reasons for this vulnerability.

The rest of the paper is organised as follows: Section 2 discusses various learning-based
image compression methods and the wireless communication systems. Section 3 describes
the methodology. Section 4 presents the simulation results of the deep learning methods
under various channel conditions. These results are discussed in Section 5, followed by the
conclusion and future directions in Section 6.

2 Related works

This review of the literature focuses on two main areas: learning-based image compression
methods and image transmission over wireless networks. A detailed discussion of these
methods and the available wireless communication systems is provided below.

Learning-Based Image Compression This method integrates NNs into specific stages
of compression pipelines. For example, CNNs were used as prediction tools for missing
pixels [6], while the authors in [5] used NNs for downsampling and upsampling before us-
ing the JPEG codec. A symmetric convolutional autoencoder developed by [22] trains the
model with uniform noise for quantisation steps to simulate quantisation effects and uses
principal component analysis and the JPEG2000 entropy coder. Other studies explored
semantic compression in which CNNs identify multiple regions of interest and apply adap-
tive JPEG compression based on saliency levels [23]. Generative models [24] were used to
develop GAN-based methods for low-bitrate compression and conditional selective genera-
tive compression (SC), which ensures that critical regions are preserved in high detail while
less important areas are synthesised using a semantic label map. However, using a non-
trainable standard entropy coder prevents the full E2E optimisation of the RD trade-off.
In addition, generative compression approaches [24] were used to improve visual quality
at low bitrates using perceptual methods, which have high computational costs and may
introduce artefacts in less interesting regions. Semantic compression [23] provided adap-
tive region-based control but introduced complexity in saliency estimation and parameters
used for different parts of the image.

JPEG AI framework The Joint Photographic Experts Group (JPEG) has been work-
ing on a new standard, JPEG AI [8]. It is completely based on Al to produce compact
latent representations. It uses an entropy encoder to produce bitstreams that are sent over
a channel to the receiver, which may perform entropy decoding to get back the latent
and apply standard reconstruction. The earliest learned image compression that was fully
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E2E optimised was Factorized Prior [7], which introduced a variational autoencoder that
assumed that the elements of latent variables were independent, but this limited the com-
pression performance. To overcome this, the Scale Hyperprior was introduced, which uses a
separate learning latent space to predict the scale (variance) of the latents. This improved
the rate distortion, but the model only used variance, which did not capture the full de-
pendencies. It was expanded by incorporating a Context Model and a Hyper-Network [9]
to predict latent probabilities using two condition hyper-latents and previously decoded
symbols. An autoregressive component was used for local dependencies and a hyperprior
for global dependencies. The model achieved highly adaptive and efficient image compres-
sion. However, autoregressive decoding was sequential, which increased the complexity,
and training and testing time. A discredited Gaussian mixture likelihood was used by [10]
to model the probability distribution of the data, and introduce the anchor and attention
models to focus on the complex and critical regions, which have more information and
are hard to compress. These architectures enhance performance and allow the network to
model complex dependencies and achieve superior reconstruction quality at low bitrates.
However, this increases the model size and requires higher computational requirements for
training. To reduce the complexity, [25] used a finite set of states to represent the possible
outcomes of the autoregressive process, while [26] enhanced the hyperprior architecture
using an adaptive skipping algorithm based on a threshold to skip the latent represen-
tations with a low impact on reconstruction quality and reduce the size of convolution
kernels.

Image Transmission Over Wireless Networks As wireless communication technolo-
gies are rapidly changing, this affects how images are transmitted across networks and
produces different challenges due to channel conditions interference, as well as increases
the demand for efficient data compression, efficient channel coding, and error correction
techniques. To address these challenges and optimise the transmission process, different
communication systems have been developed. These systems can be divided into two cate-
gories: traditional communication systems, which include data encoding, channel encoding,
channel and data decoding; and semantic communication systems, which focus on trans-
mitting the essential meaning of images instead of sending the actual ground truth of the
image. These communication systems are discussed below:

Traditional Communication Systems Several studies on traditional communication
systems have investigated the effect of wireless channel errors on image transmission. The
authors in [11] investigated and tested different compression techniques, such as run-length
encoding, precision run-length encoding, DCT and DWT. Their study focused on address-
ing how errors affect the amount of data transmitted, without considering the effect on
image quality. In a related study, [12] examined different types of data (text, audio and
image) transmitted via an orthogonal frequency division multiplexing (OFDM) system
along with the maximum likelihood detection technique and analysed different mapping
techniques, such as binary phase-shift keying (BPSK), 4-level quadrature amplitude mod-
ulation, 16-level quadrature amplitude modulation (16-QAM), 32-level quadrature am-
plitude modulation (32-QAM) and 64-level quadrature amplitude modulation (64-QAM).
This study addressed how errors affect the channel in two terms: bit error rate (BER)
and mean squared error (MSE). Using machine learning with OFDM showed better per-
formance in text transmission. Moreover, the schemes with a lower modulation order
performed better than the others. Another study [13] investigated the behaviour of image
transmission over Rayleigh fading channels using the OFDM technique. It tested the per-
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formance using different modulation techniques, such as BPSK, 16-QAM, 32-QAM and
64-QAM. Similarly, [14] investigated the effect of wireless channel errors on steganographic
images and proposed a system for steganographic images, which are images with securely
hidden information. This system is based on DCT and DWT and encrypts the data using a
chaotic Baker map. In addition, the authors in [15] proposed an OFDM multi-user massive
multiple-input multiple-output system that uses fast Fourier transform, fractional Fourier
transform and DW'T transforms. They tested the system with different modulations, such
as BPSK, quadrature phase-shift keying (QPSK), 8-PSK, 16-PSK, 32-PSK and 64-PSK,
over a Rayleigh channel and found that the image quality decreases when the number of
users increases.

Semantic Communication Systems Recently, semantic communication systems have
gained the attention of many researchers. The authors in [16] developed a semantic com-
munication system for image transmission in which the sender extracts the semantic map
and then sends it instead of the actual ground truth of the image. On the receiver side,
it uses a pre-trained deep learning GAN to produce the output image using the existing
knowledge base. This knowledge is shared between the encoder and the decoder. This
approach aims to save bandwidth by transmitting the compressed semantic map instead
of the full image. In addition, a semantic communication method based on compression
ratio optimisation was proposed to effectively deal with vision tasks [17] ]. This method
conducts a semantic conversion of image data on the sender’s internet of things (IoT) de-
vice through three stages, namely feature extraction, semantic relationship extraction and
semantic compression, thus effectively reducing the total amount of data and transmis-
sion delay during communication. This method optimises the compression ratio to meet
the requirements of computer vision tasks, successfully decreasing the data while main-
taining key features. A flexible simulation software proposed by [18] transmits semantic
segmentation map images using polar codes. The proposed software allows users to select
the coding parameters and the SNR. Moreover, [19] produced an E2E adaptive semantic
communication coding scheme that uses probabilistic graphical methods to extract and
interpret the hierarchical semantic structure within images. The authors utilised a hier-
archical parsing tree for unsupervised semantic representation, an enhanced encoder with
cross-attention for faster and more accurate image characterisation and an adaptive en-
coding strategy that dynamically adjusts the bitrate based on semantic complexity. The
adaptive coding strategy aims to optimise performance to achieve superior results, even
at reduced bitrates.

3 Methodology

Wireless channel errors can occur at any stage during the transmission of data. The evolu-
tion of wireless technologies affects how images are transmitted and increases the need for
efficient compression and error correction strategies to maintain visual quality. Some stud-
ies have used traditional communication systems to evaluate channel errors that transmit
raw or compressed pixel data, disregarding the semantics of the image content, as in [14].
Conversely, studies that have developed semantic communication systems have used NNs
to extract features and send these image features. For example, in [17], only semantic maps
reconstructed by GANs are sent to the receiver. This reduces the bandwidth, as only com-
pact semantic representations are transmitted, which is useful in low-capacity networks.
Each component of the traditional and semantic communication systems is separated. A
new E2E system was introduced using joint source—channel coding (JSCC) by applying
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Fig.2: PSNR vs BPP curves for different codecs under a clean channel and various noise
levels (SNR 2-16 dB) in the Kodak dataset. JPEG gradually increases in PSNR when
the channel noise decreases. However, all LBCs decrease in PSNR when the channel noise
increases.

two CNNs for encoding and decoding and directly sending the output from the encoder
through the channel [27].

In this study, we examine the robustness of learning-based image compression models.
These models are similar to the framework used in JPEG Al, which compresses images into
bitstreams and transmits them directly over the channel. In this case, using a traditional
communication system is more appropriate and allows us to analyse how channel noise
corrupts the transmitted bitstream and the effect on the visual quality of reconstructed
images across different SNR levels. Semantic communication systems and JSCC are not
suitable because they transmit only high-level features and do not convert them into actual
bitstreams. The analysis focuses on the effect of channel noise on the received bitstream
and the visual quality of the reconstructed images under varying SNR levels.
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3.1 Simulation Setup

The communication system consisted of several components: a transmitter, a modulator,
an additive white Gaussian noise (AWGN) channel, a demodulator and a receiver. The
transmitter used source coding to encode the input image into bitstreams, which were
divided into packets of size 1024 bytes, and modulate it using QPSK. The modulated
packets were transmitted through the AWGN channel. On the receiver side, the packets
were demodulated using a QPSK demodulator. The bitstream was passed to the decoder
to recover the final image. The simulation was run for SNR values of 2-16 dB in steps
of 2 dB. For each SNR level, the quality of the reconstructed image was evaluated using
the peak signal-to-noise ratio (PSNR) and multi-scale structural similarity (MS-SSIM).
To ensure accurate performance evaluation, the scenario was run multiple times across
the entire Kodak dataset, and the results were averaged over multiple transmissions.

3.2 Tested Learning-Based Image Coding Models

This study assessed three different E2E learning-based image compression models and
included standard JPEG as a reference codec for baseline comparison. The LBC models
evaluated in this work were chosen from available CompressAl models because they rep-
resent different levels of side information, such as no side information (Factorised entropy
model (bmshj2018-factorised) [7]), a hyperprior as side information (Scale Hyperprior with
zero-mean Gaussian conditionals [7])and side information with mean and variance Gaus-
sian conditionals (Scale Hyperprior with non-zero-mean Gaussian conditionals (MBT2018-
Mean) [9]. All were optimised for MSE.

4 Results and Analysis

In our experiments, we consider two channel conditions: clean (error-free channel) and
noisy transmission conditions.

4.1 Rate-Distortion Performance

To analyse the R-D, the images are compressed using the selected image codec in various
quality factors, and the coded images are decompressed. The quality of the reconstructed
images is assessed using objective performance metrics(e.g., PSNR and MS-SSIM). In this
study, all 24 high-quality uncompressed images from the Kodak dataset [21] are used in
the experiments, and the average values of the performance metrics are calculated. Fig.
2 shows the R-D curve (labelled ”Clean” in the legends) for different image compression
techniques. The standard JPEG shows the lowest PSNR values compared with the LBC
models. The LBC outperformed the traditional JPEG codec across the entire range of
bitrates. Among the Al models, MBT2018-Mean (MSE) achieves the highest PSNR values
as it uses the mean and variance to predict the distribution. Fig. 3 illustrates the MS-SSIM
(dB) (labelled ”Clean” in the legends) against BPP. All learned methods achieve excellent
perceptual quality. MBT2018-Mean and Scale Hyperprior show similar results, delivering
the highest MS-SSIM values and enhancing compression while preserving image quality.

4.2 Effect of Wireless Channel Errors on Visual Quality

To investigate Al image coding error behaviour, the Al models are tested under varying
noise conditions to analyse error patterns and assess their robustness. The SNR is varied
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Fig.3: MS-SSIM vs. BPP curves for different codecs under a clean channel and various
noise levels (SNR 2-16 dB) in the Kodak dataset. JPEG gradually increases in MS-SSIM
when the channel noise decreases. However, all LBCs decrease in MS-SSIM when the
channel noise increases.

across a range of values to achieve different levels of BER. First, the images are com-
pressed with different quality factors using the selected image codecs. Second, compressed
images are transmitted through the wireless channel with varying levels of SNR. Third,
after receiving the data, the compressed images are decoded, and the average performance
metrics (PSNR and MS-SSIM) are computed across the entire testing dataset.

The results in Figs. 2 and 3 show that increasing the SNR gradually increases the perfor-
mance in terms of PSNR and MS-SSIM for the traditional method.

The AI models have four cases:

1. (SNR < 12) All methods show significant degradation in PSNR (less than 16 dB) and
MS-SSIM (less than 0.5 dB), regardless of bitrate. This means that these methods are
sensitive to channel errors.

2. (SNR = 12) At a low bitrate, the MBT2018-Mean shows a small improvement in the
results in PSNR and MS-SSIM compared with the two other models.
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(a) Reconstructed images at SNR = 2 (b) Reconstructed images at SNR = 4

Fig. 4: Examples of reconstructed images using different methods. (a) Factorised, (b) Scale
Hyperprior, (c) MBT2018-Mean and (d) JPEG, with different quality factors (QFs) and
low SNR values.

3. (SNR = 14,) All methods show a notable improvement in PSNR (higher than 26 dB)
and MS-SSIM (higher than 0.8 dB), especially at low bitrates.
4. (SNR > 14) The AI models have similar performance in clean and noisy channels.

In the noise channel, JPEG successfully reconstructs images with some missing pixels
and a blurry artefact, as shown in Figs. 4 - 6. The reconstructed image quality improves
as the SNR increases.

For the AI models, the Factorised model fails to reconstruct the images and shows
corrupted images, as shown in Figs.4 and 5, because any errors in the bitstreams may
propagate and the entropy coder is unable to decode the bitstreams. In Fig.6, the model
reconstructs part of the image when the SNR is 12 at low quality, which leads to corrupted
regions. However, the model fails to reconstruct the entire image when the QF is high. At
above SNR 14, the model shows results similar to the no-noise case; this is because the
model can remove the compressed artefacts and conceal the errors when the signal quality
is high enough.

The Scale Hyperprior shows the worst results and fails to reconstruct the image when the
SNR is below 14, as shown in Fig.4, 5 and 6. Even when the signal quality is enhanced
(SNR=14), it fails when the QF is 4 ( Fig.6) because of corruption and error propagation
in the side information.

The mean scale hyperprior used in MBT2018-Mean reduces the error effect because it
reduces the model-distribution mismatch. However, this may cause colour artefacts or
missing parts, as shown in Figs.4 and 5. When the signal quality improves (above SNR
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(a) Reconstructed images at SNR = 6 (b) Reconstructed images at SNR = 4

Fig. 5: Examples of reconstructed images using different methods. (a) Factorised, (b) Scale
Hyperprior, (¢) MBT2018-Mean and (d) JPEG, with different quality factors (QFs) and
moderate SNR values.

14), the model removes compressed artefacts and conceals errors.

To understand the robustness of each method to the channel noise, for each SNR level, the
PSNR and MS-SSIM performance are calculated in all dataset images across all compres-
sion levels (i.e.QFs). This shows the expected performance across all compression levels.
The averaged PSNR (Fig. 7) and the averaged MS-SSIM (Fig. 8) illustrate the overall
noise robustness of each method. JPEG shows a gradual and steady increase in perfor-
mance as SNR increases. The Al methods show better quality only in high SNR values
(above 12 dB). However, these models are less resilient to noise, resulting in low PSNR
and MS-SSIM in degraded channels. The error bars represent the standard deviation of
PSNR and MS-SSIM in all Kodak images and all tested compression rates (i.e.QF's) for
each SNR level. At low SNRs, the error bars are relatively small, which means consistent
degradation across all compression levels. Regardless of the QF's, if any error occurs, the
error is propagated, and the range Asymmetric Numeral Systems (rANS) fails to recover
the correct compact presentation. At high SNRs, the error bars increase, which reflects
greater variability, depending on the bitrate and image content.

5 Discussion

The main difference between the AT models used in the experiments is how they model
the probability distributions of the latent variables. The Factorized model uses a simple
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(a) Reconstructed images at SNR = 12 (b) Reconstructed images at SNR = 14

Fig. 6: Examples of reconstructed images using different methods. (a) Factorised, (b) Scale
Hyperprior, (¢) MBT2018-Mean and (d) JPEG, with different quality factors (QFs) and
high SNR values.

independent entropy model that assumes that all latents are identical as well as a Gaussian
distribution without any side information. The Scale Hyperprior model improves compres-
sion by introducing a separate hyperprior network that assumes zero means and predicts
scale parameters (standard deviations) for each latent. This helps the model predict more
accurate probabilities and enhances its performance. The MBT2018-Mean further en-
hances it by predicting the mean and the scale of each latent variable conditioned on the
hyperprior. All three methods use rANS [20] for entropy coding to achieve high compres-
sion efficiency and reduce the number of bits needed to represent the data. These models
outperform the traditional method in terms of PSNR and MS-SSIM performance, while
preserving image quality at low bitrates. However, these models fail to reconstruct the
image as shown in Figs.4, Fig.5, and Fig.6, and often cause severe artifacts or the whole
decoding fails if any error occurs. Corruption and error propagation in the side information
increase the artefacts. This error propagation is a major challenge when using rANS-coded
latent representations over unreliable wireless channels.

The MBT2018-Mean model performs better; it only shows some missing regions and
blurry artefacts, as the use of learned mean and variance reduces the mismatch in the
model distribution. There is no block-based processing in these models; instead, they
treat the whole image as a single block and convert it into bitstreams using rANS. The
rANS compresses the data depending on the previous symbols or bits in the stream.
This explains why the AI models suddenly improve their performance when the channel
conditions improve (after SNR 12 dB). By contrast, JPEG shows a smoother and gradual
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Fig. 7: Average PSNR vs. SNR for the codec methods. Each curve shows the mean PSNR
in all Kodak dataset images and compression rates. The error bars represent the standard
deviation of the PSNR across images and quality values at each SNR level.
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Fig.8: Average MS-SSIM vs. SNR for the codec methods. Each curve shows the mean
MS-SSIM in all Kodak dataset images and compression rates. The error bars represent

the standard deviation of the MS-SSIM across images and quality values at each SNR
level.

enhancement in reconstruction quality as the channel conditions improve. JPEG is more
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resilient to errors and can reconstruct images even when the SNR is low. Its robustness
comes from encoding the image in independent blocks. This block-based design localises the
errors in specific regions and prevents error propagation. Another reason is that JPEG uses
fixed and simple statistical assumptions and does not adapt a model during encoding. This
makes its bitstreams less sensitive to small errors, as decoding does not depend on learning
statistical dependencies. Another important point is that these Al models typically do not
consider the channel part during training. Some models use noise to train the models to
be robust to quantisation errors, but not to real channel noise. New E2E communication
systems, such as [27], have opened a new era to explore the use of real E2E training
frameworks.

6 Conclusions

This study evaluated the rate-distortion performance and robustness of several Al-based
image compression methods compared with the traditional JPEG codec under different
wireless channel conditions. The results demonstrated that LBCs, such as Factorized, Scale
Hyperprior, and MBT2018-Mean, significantly outperformed JPEG in terms of compres-
sion efficiency and reconstructed image quality at high SNR levels. However, they showed
high sensitivity to bit errors introduced by channel noise. By contrast, JPEG, despite
offering lower compression efficiency, demonstrated superior resilience to errors, with a
gradual degradation in image quality as the SNR decreased. The LBCs showed a sharp
degradation in quality when the SNR dropped below 14 dB. This is mainly because they
use rANS entropy coding, which causes even small errors to propagate through the en-
tire bitstream, making it impossible to recover the image partially. Future work should
focus on improving the error resilience for LBC models, especially for applications in a
noisy channel. One critical direction is to develop advanced error concealment mecha-
nisms that can reduce the visual effects of bitstream corruption during decoding. Error
propagation must be restricted and the effect must be minimised by using a block-based
architecture or a chunk mechanism for the image or the bitstreams. More robust entropy
coding methods that use local and global context modelling must be developed to control
error propagation and limit its effect. New and fast methods of context modelling must
also be developed, as sequential context modelling could be slow and unsuitable for real-
time applications. Furthermore, most LBC models are typically trained with simple noise
during quantisation or under the assumption of clear channel conditions, which does not
reflect the real transmission scenarios. Researchers should consider training their models
with realistic channel components embedded within the learning process. Recent progress
in learning-based communication systems offers a promising path forward. Through inte-
gration, improved entropy coding, error propagation control, and channel-aware training,
future learning-based image codecs could significantly reduce the gap between high com-
pression performance and reliable transmission, enabling practical deployment in limited
bandwidth and error-prone environments.
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