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Abstract. Mutations in the HBB gene cause severe hemoglobinopathies
such as sickle cell disease and beta-thalassemia. Accurate HBB variant
classification is crucial for diagnosis but remains challenging. I present
a bioinformatics pipeline integrating HGVS parsing, Ensembl annota-
tion, SpliceAI, and BioPython to analyze 1,809 ClinVar variants. Seven
models were trained with SMOTE. XGBoost achieved an F1-score of
0.9495 and perfect recall, though ROC-AUC 0.4489 showed discrimina-
tion limits. Results highlight ML challenges for single-gene classification
and importance of data quality in genomic medicine.
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1 Introduction

Existing in silico tools like PolyPhen-2, SIFT, and CADD are widely used
for mutation pathogenicity prediction [1], but their different algorithms
often produce conflicting results and may lack gene-specific accuracy. To
address this, I developed a specialized machine learning model focused
on the HBB gene, combining sequence and structural protein features
for more precise analysis. By leveraging detailed knowledge of HBB, in-
cluding exon-intron structure, functional domains, and known pathogenic
variants, our approach improves clinical interpretation, supports diag-
nostics and genetic counseling, and facilitates personalized medicine for
hemoglobinopathies.

1.1 Motivation and Problem Statement

Hemoglobinopathies represent one of the most common inherited disor-
ders worldwide, affecting approximately 7% of the global population as
carriers and resulting in over 300,000 affected births annually [2]. Beta-
thalassemia and sickle cell disease, caused by mutations in the HBB gene,
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imposes a significant burden on healthcare systems and the patient qual-
ity of life, particularly in regions such as the Mediterranean, the Middle
East, and Southeast Asia. Despite the clinical importance of accurately
classifying HBB variants, the current variant interpretation remains chal-
lenging due to several factors.

HBB variant interpretation is challenging due to the wide spectrum of
mutation effects, from benign polymorphisms to severe beta-thalassemia,
and the frequent conflicting predictions of universal tools like PolyPhen-
2, SIFT, and CADD [3]. Many variants are also classified as ”Variants
of Uncertain Significance” (VUS), limiting clinical utility. A gene-specific
machine learning model that integrates sequence, splicing, and protein-
level effects can improve classification accuracy and consistency, enhanc-
ing molecular diagnosis and genetic counseling.

1.2 Research Objectives

The main objectives of this research are:

– Development of a bioinformatics pipeline for translating DNA se-
quence � mRNA � protein, enabling the identification of mutation
effects at all levels of gene expression.

– Implementation and validation of a pre-trained machine learning model
for binary classification of mutations (benign/pathogenic) specific to
the HBB gene.

1.3 Contributions

This work makes several novel contributions to the field of computational
variant interpretation:

– Comprehensive bioinformatics pipeline: I developed an end-to-end au-
tomated workflow that processes HBB mutations from genomic coor-
dinates through transcription and translation, generating complete
mutant protein sequences. The pipeline integrates HGVS notation
parsing[4], Ensembl REST API for genomic annotation[5], SpliceAI
for splice site effect prediction[6], and BioPython for accurate codon-
to-amino acid translation[7].

– Systematic evaluation of machine learning approaches: compared seven
different classifiers (XGBoost[8], Random Forest, Gradient Boosting,
Neural Network, SVM, Logistic Regression, Naive Bayes) for HBB
variant pathogenicity prediction, providing detailed performance anal-
ysis across multiple metrics (accuracy, precision, recall, F1-score, ROC-
AUC).

76                                        Computer Science & Information Technology (CS & IT)



– Integrated feature representation: In addition to one-hot encoding of
protein sequences, I expanded the feature set with biologically rel-
evant mutation characteristics, including mutation type, premature
stop codons, protein length changes, and predicted splice effects [6],
creating a comprehensive representation of variant impact.

– Critical analysis of dataset limitations: Through rigorous evaluation,
we identified and documented fundamental challenges in HBB vari-
ant classification, including severe class imbalance (234 pathogenic vs.
25 benign variants), high-dimensionality issues (57,603 features vs.
207 training samples), and the limitations of synthetic oversampling
(SMOTE[9]) in this context.

– Curated HBB mutation benchmark: It is processed and curated 1,809
HBB variants from ClinVar[10], successfully analyzing 1,804 (99.7%)
with complete genomic-to-protein translation, providing a valuable
resource for future research in gene-specific variant interpretation.

While results revealed significant challenges that prevent immediate
clinical deployment, this work establishes a foundation for future improve-
ments through advanced protein language models, expanded datasets, and
integration of 3D structural information.

2 Related Work

2.1 General Computational Methods for Variant
Interpretation

Early variant prediction tools used evolutionary conservation: SIFT pre-
dicts deleterious substitutions but misses non-conserved regions, PolyPhen-
2 [11] adds structural info, and CADD [12] combines 60+ annotations via
machine learning, though all lack gene-specific sensitivity.

Advanced methods like PrimateAI [13] and REVEL [14] improve ro-
bustness but treat genes uniformly. Splice prediction includes MaxEntScan
[15] and SpliceAI [16], which models long-range effects with high accuracy.

2.2 Computational Studies of HBB Mutations

HBB mutations are well-characterized clinically, with databases like Hb-
Var [17] cataloging over 1,000 variants. However, computational models
targeting HBB are limited. Steinberg et al. [18] and Borg et al. [19] pro-
vided clinical and genotype–phenotype insights but no predictive models.
Feng et al. [20] applied machine learning to a small set of pathogenic vari-
ants without full genomic-to-protein translation, highlighting the need for
gene-specific computational frameworks.
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2.3 How this work differs

This work differs from existing approaches in several key aspects:

1. Gene-specific pipeline: I developed a workflow specifically for HBB, in-
corporating gene-specific biology such as exon-intron structure, canon-
ical transcript selection, and hemoglobin-specific functional constraints.

2. Full genomic-to-protein translation: The pipeline translates DNA �
mRNA� protein for each variant, handling complex mutations (frameshifts,
indels, splice-affecting variants) beyond pre-computed annotations.

3. Multi-level feature integration: I combined SpliceAI splice predictions
with protein-level consequences (premature stops, length changes, frameshift
detection) to create a comprehensive variant representation.

These results show that one-hot encoding and traditional ML classi-
fiers alone are insufficient for accurate HBB variant classification. This
work establishes a foundation for future improvements through protein
language models (ESM-2), expanded training data from functional as-
says, and integration of 3D structural information from AlphaFold2 pre-
dictions.

3 Background

3.1 Hemoglobin Structure and Function

Hemoglobin is a tetrameric protein composed of two alpha and two beta
chains, each containing a heme group that binds oxygen, allowing one
molecule to carry up to four oxygen molecules. The beta-globin chain,
encoded by the HBB gene, consists of 146 amino acids and is essential for
cooperative oxygen binding, enabling efficient oxygen uptake in the lungs
and release in tissues. Even single amino acid substitutions in beta-globin
can disrupt hemoglobin stability and function, leading to severe clinical
disorders.

3.2 Genetic Mutations: Molecular Classification

Translation occurs in the cytoplasm where ribosomes decode mRNA into
polypeptide chains using the genetic code, which operates in triplets
(codons). Translation begins at the AUG start codon (methionine) and
terminates at stop codons (UAG, UAA, UGA)[22, 26]. The triplet nature
creates three possible reading frames (0, 1, 2); insertions or deletions not
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divisible by three cause frameshift mutations, altering all downstream
codons.

Mutations in the HBB gene can be classified by their molecular mech-
anism and effect on the resulting protein:

Single Nucleotide Variants (SNVs): Substitutions with variable func-
tional impact. Synonymous mutations do not alter amino acid sequence
(e.g., GCC�GCT both encode alanine) but may affect splicing or mRNA
stability.Missense mutations change the encoded amino acid—conservative
substitutions maintain similar properties (leucine�isoleucine), while non-
conservative changes (glutamic acid�valine in HbS) often disrupt protein
structure.Nonsense mutations create premature stop codons (CAG�TAG),
producing truncated, unstable proteins that cause β-thalassemia[21].

Insertions and Deletions (Indels): In-frame indels (multiples of three
nucleotides) add or remove amino acids without shifting the reading frame
and may be tolerated in flexible regions. Frameshift mutations (not divis-
ible by three) alter all downstream codons, typically introducing prema-
ture stop codons and causing severe β-thalassemia phenotypes.

4 Materials and Methods

4.1 Data Source and Dataset Preparation

Mutation data were obtained from the ClinVar, a publicly available, free
database maintained by NCBI, containing information on the relation-
ships between genetic variations and human phenotypes, supported by
the NIH and in collaboration with the ClinGen initiative. The dataset
included:

– Variant ID

– Chromosome (chromosome 11 for the HBB gene)

– Mutation position

– Reference allele

– Alternate allele

– HGVS mutation notation

– Clinical significance

– Mutation type (deletion, insertion, SNV)

– Gene name (HBB)

Example: 15534, 11, 5225677, T, G, NC 000011.10:g.5225677T>G,

other, no assertion criteria provided,

single nucleotide variant, HBB
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The reference mRNA sequence NM 000518.5 was also downloaded
from NCBI in FASTA format. This mRNA has a coding sequence (CDS)
length of 444 bp and 148 amino acids.

Clinical Classification Distribution Table 1 shows the distribution
of clinical classifications in the dataset.

Table 1. Distribution of clinical classifications in the ClinVar HBB dataset (n = 1,809)

Classification Count Percentage

Likely benign 801 44.28%
Pathogenic 283 15.64%
Uncertain significance 261 14.43%
Other 189 10.45%
Pathogenic/Likely pathogenic 103 5.69%
Likely pathogenic 47 2.60%
Conflicting classifications 45 2.49%
Pathogenic—Other 30 1.66%
Benign/Likely benign 25 1.38%
Miscellaneous 25 ¡1%
Total 1809 100%

4.2 Mutation Processing Pipeline

The mutation processing pipeline transforms raw genomic coordinates
into complete mutant protein sequences through a multi-stage workflow.
The pipeline handles diverse mutation types including SNVs, insertions,
deletions, and complex indels, while accounting for splice effects and
strand orientation.

Stage 1: Genomic Coordinate Mapping Each mutation is initially
represented in HGVS genomic notation (e.g.,

NC\_000011.10:g.5225677T>G

). The Ensembl REST API is queried to map these coordinates to the
canonical HBB transcript (ENST00000335295) and determine whether
the mutation falls within exonic, intronic, or splice site regions (±2 bp
from exon-intron boundaries). For mutations on the minus strand (HBB
is on chromosome 11 minus strand), reverse complementation is applied
to convert genomic coordinates to the 5’�3’ orientation of the reference
mRNA.
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Stage 2: Splice Effect Prediction Mutations located at splice sites or
within 50 bp of exon-intron boundaries are evaluated using SpliceAI via
the Ensembl VEP REST API. SpliceAI returns four delta scores repre-
senting predicted changes in splice acceptor gain/loss and donor gain/loss.
A threshold of ∆ > 0.5 for any score indicates likely splice disruption.
Based on the highest delta score, the pipeline predicts the most probable
outcome: exon skipping, cryptic splice site activation, or intron retention.
For mutations activating cryptic splice sites without clear resolution, the
variant is flagged and excluded from downstream analysis.

Stage 3: Transcript Reconstruction For exonic mutations, the ref-
erence mRNA sequence (NM 000518.5, 444 bp CDS) is copied and the
mutation is applied at the corresponding transcript position. Insertions
extend the sequence; deletions remove nucleotides; SNVs replace single
bases. For splice-affecting mutations, the predicted splice outcome guides
transcript modification: exon skipping removes the affected exon, cryp-
tic site activation adjusts exon boundaries, and intron retention includes
the intronic sequence. Mutations in deep intronic regions (¿50 bp from
exons) are assigned the reference mRNA unchanged, as they are unlikely
to affect the mature transcript.

Stage 4: Translation to Protein The mutant mRNA is translated
using BioPython’s Seq.translate() method with the standard genetic
code table. Translation begins at the start codon (AUG) and continues
until a stop codon (UAA, UAG, UGA) is encountered. The pipeline de-
tects and records premature termination codons (PTCs), frameshift mu-
tations (mRNA length not divisible by 3), and protein length changes.
Each translated protein is compared to the reference beta-globin (147
amino acids) to identify specific amino acid substitutions, truncations, or
extensions.

Output and Quality Control For each processed mutation, the pipeline
generates: original genomic coordinates, mutation type classification, lo-
cation type (exonic/intronic/splice), splice prediction scores and outcomes,
mutant mRNA sequence, mutant protein sequence, detected protein alter-
ations (missense/nonsense/frameshift), and processing status flags. Mu-
tations that cannot be reliably processed (e.g., ambiguous cryptic splice
activation) are flagged with skip reasons for manual review. This compre-
hensive output enables downstream feature engineering and model train-
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ing while maintaining full traceability from genomic variant to protein
consequence.

HBB Gene Structure and Annotation Ensembl REST API was used
to process the mutated sequences and retrieve data on genomic positions.
For the HBB gene, eight transcripts were identified, and the canonical
transcript ENST00000335295 was used as the most likely transcript uti-
lized by the gene.

HBB Gene Structure The selected transcript contains 3 exons and 2
introns. The gene is located on chromosome 11, positions 5,225,464–5,229,395,
with orientation -1 (minus strand).

– Exons:
• Exon 1: 5,226,930 – 5,227,071 (142 bp)
• Exon 2: 5,226,577 – 5,226,799 (223 bp)
• Exon 3: 5,225,464 – 5,225,726 (263 bp)

– Introns:
• Intron 1: 5,226,800 – 5,226,929 (130 bp)
• Intron 2: 5,225,727 – 5,226,576 (850 bp)

– CDS: 444 bp

SpliceAI Analysis Problems arise with mutations located at the splice
site or in its vicinity. These changes can lead to incorrect selection of
nucleotides that are included in introns or exons. However, predicting the
outcome of such mutations is almost entirely random, which is why I used
SpliceAI, an open-source deep learning algorithm that predicts splicing
defects caused by DNA variations. Its delta score values help filter variants
but can be difficult to interpret precisely, and complex variants are often
not correctly handled.

In this work, the SpliceAI tool was accessed via the Ensembl VEP
REST API, where for each mutation, data including genomic position,
reference, and alternative allele were sent. The server returns an estimate
of the mutation’s effect on splicing as delta score values, which are then
used to determine whether the mutation alters splicing and the most likely
outcome. Based on this, the corresponding mutated mRNA is generated.

For some mutations, it is known whether they will affect splicing, but
in some cases, the effect may be masked, meaning the exact impact is
unknown. For such mutations, no mRNA was assigned, and they were
not included in further processing.[23]
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Protein Translation The next step is translating the mutation into
protein. Translation is performed using the standard genetic code ta-
ble, which also defines stop codons (TAA, TAG, TGA) that signal the
end of the protein chain. Each mRNA sequence is first converted into
the corresponding BioPython Seq object, and then translated into amino
acids, recording any premature stop codons and potential frameshifts if
the mRNA length is not divisible by three.

After translation, the mutated protein sequences are compared with
the reference protein to identify changes, including truncations, exten-
sions, or individual amino acid substitutions. Each mutation is recorded,
including its position and type of change. Translation is applied automat-
ically to all processed mutated mRNA sequences, and results are stored
in tabular form, including statistics on translation success, the frequency
of premature stop codons, frameshifts, and protein changes.

4.3 Protein Encoding

To prepare the data for input into the ML model, a module was designed
for the numerical representation of protein sequences using one-hot en-
coding, a standard approach in bioinformatics. Each amino acid in the
sequence is converted into a vector of length 22, which includes 20 stan-
dard amino acids, a stop codon, and a position for unknown or padding
values.

In addition to the sequence itself, the encoding includes additional mu-
tation features, such as changes in protein length, presence of premature
stop codons, protein extensions or truncations, and effects on splicing.
The clinical significance of mutations is numerically encoded into four
categories, enabling direct use in predictive models.

The generated data are stored in a compressed NPZ format along with
metadata, including variant identifiers, chromosome positions, reference
and mutated sequences, allowing for easy access and further analysis. The
encoder object is also saved, enabling reuse of the same encoding without
recalculation.[24]

4.4 Classification Models

Seven classification algorithms were implemented: Random Forest, XG-
Boost, Gradient Boosting, Multilayer Perceptron (MLP), SVM, Logistic
Regression, and Naive Bayes. Input data consisted of one-hot encoded
protein sequences (22-dimensional binary vectors per amino acid posi-
tion) augmented with seven biological features (protein length changes,
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premature stop codons, truncations, extensions, frameshifts, and splice
effect scores). All features were standardized using StandardScaler before
training.

Data were split 80/20 into training and test sets. SMOTE (Synthetic
Minority Over-Sampling Technique) was applied to the training set, gen-
erating synthetic benign samples to balance classes (187 benign, 187
pathogenic). The test set remained unmodified (5 benign, 47 pathogenic)
to preserve natural class distribution. Five-fold cross-validation assessed
stability and overfitting risk. Models were evaluated using accuracy, preci-
sion, recall, F1-score, and ROC-AUC. The best model was selected based
on F1-score and saved with scaling parameters for deployment.

4.5 Data Balancing and Limitations

SMOTE increased benign samples from 25 to 187 through interpolation
in feature space, enabling balanced training. However, synthetic samples
may introduce artifacts: overfitting to non-biological feature patterns,
overestimated generalization performance, and creation of implausible
variant regions. These risks are inherent to synthetic oversampling on
small, imbalanced datasets.

4.6 Evaluation Metrics

Model performance was assessed using multiple complementary metrics to
provide comprehensive evaluation across different aspects of classification
quality. Given the severe class imbalance in our dataset, reliance on any
single metric would be misleading.

Confusion Matrix-Based Metrics Binary classification uses four ba-
sic values: True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN). From these, we derive key evaluation
metrics:

– Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

Measures overall correctness but can be misleading on imbalanced
data.

– Precision:

Precision =
TP

TP + FP

Proportion of predicted positives that are correct.
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– Recall (Sensitivity):

Recall =
TP

TP + FN

Proportion of actual positives that are correctly identified.
– F1-Score: Harmonic mean of precision and recall, balancing both

metrics:

F1 = 2 · Precision · Recall
Precision + Recall

ROC-AUC: Evaluates model discrimination across all thresholds.
AUC = 0.5 indicates random prediction, ¡ 0.5 indicates systematic mis-
ranking, and 1.0 indicates perfect classification. This metric is critical for
imbalanced datasets as it is insensitive to class distribution.

5 Results

5.1 Mutation Processing and Translation

A total of 1,809 HBB mutations were retrieved from the ClinVar database,
of which 1,804 (99.7%) were successfully processed using the Ensembl
REST API to map genomic positions. Only 5 mutations could not be
analyzed due to the activation of cryptic splice sites, which require the
full genomic sequence for precise prediction.

Translation into protein sequences was successful for all 1,804 pro-
cessed mutations using the BioPython module and the standard genetic
code table. Results show that 72.2% of mutations (1,303) produce a pro-
tein identical to the reference beta-globin of 147 amino acids, which in-
cludes synonymous mutations that do not change the amino acid sequence
and neutral intronic variants that do not affect splicing. The remaining
27.8% (501 mutations) lead to changes in protein structure: 324 mis-
sense substitutions altering a single amino acid, 82 nonsense mutations
with premature stop codons, 66 frameshift mutations shifting the read-
ing frame, and 78 protein extensions beyond normal length. The longest
detected mutant protein had an extreme length of 2,618 amino acids
(compared to the normal 147), which was set as the maximum length for
one-hot encoding of all sequences.

5.2 Feature Representation

The feature representation strategy directly impacts model performance.
Our approach combines sequence-based encoding with explicit biologi-
cal features to capture both the mutant protein sequence and functional
consequences of mutations.
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One-Hot Encoding of Protein Sequences Protein sequences were
encoded using one-hot representation, where each amino acid at each
position is represented by a binary vector. The encoding scheme includes:

– 20 standard amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q,
R, S, T, V, W, Y)

– Stop codon (*)

– Unknown/padding symbol (X)

Each position in the protein sequence is encoded as a 22-dimensional
binary vector with exactly one element set to 1. Given the maximum ob-
served protein length of 2,618 amino acids (from extreme frameshift/extension
mutations), the one-hot encoding produces 2, 618 × 22 = 57, 596 binary
features per sample.

For example, the reference beta-globin sequence begins with MVHLTPEEK....
The first position (Methionine) is encoded as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
where the 11th position (corresponding to M) is 1 and all others are 0.

Feature Standardization Before model training, all features were stan-
dardized using scikit-learn’s StandardScaler to have zero mean and unit
variance:

z =
x− µ

σ

where µ is the mean and σ is the standard deviation computed from
the training set. Standardization is critical for models sensitive to fea-
ture scales (SVM, Neural Networks, Logistic Regression) and improves
convergence during optimization. Tree-based methods (Random Forest,
XGBoost) are invariant to monotonic transformations but were also stan-
dardized for consistency.

Limitations of One-Hot Encoding

– Does not account for the biochemical similarity of amino acids (treats
hydrophobic residues as completely distinct)

– Does not include structural protein features (secondary/tertiary struc-
ture)

– Does not distinguish the functional importance of positions (enzyme
active site vs. surface residue)
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5.3 Model Performance

The XGBoost model achieved the best results with an F1-score of 0.9495,
accuracy of 90.38%, and a perfect recall of 1.0 (100% of pathogenic mu-
tations correctly identified).

However, the model’s performance highlights several problematic as-
pects. First, the ROC-AUC of 0.4489 is below random level (0.5), indi-
cating poor discrimination ability; ROC-AUC measures the model’s ca-
pacity to distinguish classes across all thresholds, and a value below 0.5
suggests systematic misranking of predictions. Second, the precision for
the Benign class is 0.00, meaning the model failed to correctly identify
any benign samples in the test set—all 5 benign samples were misclas-
sified as pathogenic, which is critical for clinical applications where false
positives are problematic.

Third, the discrepancy between metrics—high F1-score and accuracy
versus low ROC-AUC and zero precision for benign samples—indicates
a bias toward the pathogenic class. The model has ”learned” to classify
almost all mutations as pathogenic, which inflates accuracy due to the
dominance of pathogenic samples in the test set (47/52 = 90%), but
does not reflect true predictive power. Finally, the cross-validation score
shows a CV F1-score of 0.7019 substantially lower than the test F1-score
(0.9495), further suggesting overfitting and that test set performance does
not represent true generalization.

Overall Performance Metrics

Confusion Matrix Analysis The confusion matrix shown in Figure 1
demonstrates that XGBoost correctly identified all 47 pathogenic muta-
tions (True Positives = 47, False Negatives = 0), but failed to correctly
classify any benign mutations (True Negatives = 0, False Positives = 5).

The model effectively classifies all samples as pathogenic regardless
of their actual characteristics. This explains the high accuracy of 90.38%
— since the test set is 90.4% pathogenic (47/52), a model that always
predicts the majority class automatically achieves approximately 90%
accuracy.

ROC Curve The ROC curve shown in Figure 2 with an AUC of 0.4489
highlights the problem. A value below 0.5 indicates that the model has
worse discriminative power than a random classifier. The ROC curve lies
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Fig. 1. Confusion matrix for the XGBoost model. The model classifies all samples as
pathogenic.

below the diagonal, showing that the model systematically misranks pre-
dictions across different thresholds.

For comparison, the Neural Network achieved a ROC-AUC of 0.6064
(the best among all models), but with a dramatically lower recall of
0.2979, meaning it misses 70% of pathogenic mutations.

Comparative Model Analysis Figure 3 shows a comparative analysis
of all seven models. XGBoost achieves the highest F1-score (0.9495) and
recall (1.0), but one of the lowest ROC-AUC scores (0.4489). The Neural
Network shows the opposite pattern: the best ROC-AUC (0.6064) but
poor recall (0.2979).

All models exhibit a trade-off between metrics:

– Tree-based algorithms (XGBoost, Random Forest, Gradient Boosting)
show high recall but low ROC-AUC

– Probabilistic models (Neural Network, Logistic Regression) have bet-
ter ROC-AUC but miss most pathogenic mutations

No model achieves satisfactory performance across all metrics simul-
taneously.

Advantages of Gene-Specific Approach This pipeline offers several
advantages over universal tools:
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Fig. 2. ROC curve for the XGBoost model. AUC = 0.4489, below the random baseline
(0.5).

– Complete mutation processing: Full DNA → RNA → protein trans-
lation captures complex effects (frameshifts, stop codon readthrough)
that annotation-based tools miss.

– Splice integration: Direct incorporation of SpliceAI predictions for
variants near exon-intron boundaries provides more accurate tran-
script consequences than universal tools.

– Transparency: This pipeline provides full traceability from genomic
variant to predicted protein sequence to pathogenicity classification,
enabling clinical interpretation.

– Extensibility: The modular design allows easy integration of improved
encoding methods (protein language models) and additional data sources
(functional assays, population databases).

Current Limitations However, this approach currently suffers from
critical limitations that established tools do not:

– Inadequate training data: approach has only 259 labeled variants.

– Class imbalance: unbalanced datasets 234:25, pathogenic:benign ratio
leads to severe bias.

– Feature representation: one-hot encoding discards biochemical infor-
mation.
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Fig. 3. Comparative performance analysis of all models. No model achieves satisfactory
performance across all metrics.

Future work will address these limitations through protein language mod-
els and expanded training data.

6 Discussion

6.1 Overview of Achieved Results

In this study, a complete bioinformatics pipeline was developed for an-
alyzing HBB gene mutations and predicting their pathogenicity using
machine learning. The pipeline successfully processed 1,809 mutations
from the ClinVar database, of which 1,804 mutations were successfully
analyzed and prepared for machine learning analysis.

6.2 Dataset Quality and Challenges

Analysis of the distribution of clinical classifications revealed a signifi-
cant imbalance in the data: out of 1,738 valid samples with protein se-
quences, only 259 mutations (14.9%) had a clear clinical classification as
“Pathogenic” (234 samples, 90.3%) or “Benign” (25 samples, 9.7%). The
remaining 85.1% of samples were classified as “Uncertain significance” or
other ambiguous categories, and had to be excluded from the training set.

This drastic imbalance represents a fundamental challenge in ana-
lyzing HBB mutations. The small number of benign samples (only 25)
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combined with the strong dominance of pathogenic mutations reflects
the nature of the HBB gene—most mutations in this gene lead to clini-
cally significant phenotypes (thalassemia, sickle cell anemia), while benign
variants are relatively rare. Additionally, the large number of “uncertain”
variants highlights the limitations of current clinical practice in mutation
classification.

6.3 Limitations and Future Directions

This study revealed fundamental challenges: (1) extreme class imbalance
(234:25 pathogenic:benign), (2) high dimensionality (57,603 features vs.
207 samples), (3) one-hot encoding ignoring biochemical properties and
3D structure. Future work requires protein language models (ESM-2,
ProtBERT), expanded datasets (gnomAD, HGMD, functional assays),
and AlphaFold2 structural predictions.

6.4 Proposed Improvements

Expanding the dataset is one of the most important needs and can be
achieved by integrating additional databases, such as gnomAD for popu-
lation frequencies and HGMD for disease-associated mutations. Further-
more, incorporating functional experimental data, such as deep muta-
tional scanning studies, can significantly enrich information on mutation
effects.

It is also essential to improve the analysis by implementing protein
folding verification, i.e., predicting its tertiary structure, alongside in-
vestigating the phenotypic consequences of mutations. This approach al-
lows assessment of how specific mutations affect protein stability, confor-
mation, and functionality, improving the biological interpretation of the
model and increasing the reliability of predictions in a clinical context.

7 Conclusion

This work presents a comprehensive bioinformatics pipeline that I de-
veloped for automated HBB gene mutation analysis and pathogenicity
prediction using machine learning. I successfully processed 1,804 muta-
tions (99.7% of the ClinVar HBB dataset) through complete genomic-
to-protein translation, integrating HGVS parsing, Ensembl annotation,
SpliceAI splice prediction, and BioPython translation. I evaluated seven
classifiers, with XGBoost achieving an F1-score of 0.9495 and perfect
pathogenic recall (1.0).
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However, severe class imbalance (234 pathogenic vs. 25 benign) and
extreme dimensionality (57,603 features vs. 207 samples) resulted in mod-
els lacking discriminative power (ROC-AUC 0.4489, below random base-
line). Zero precision for benign variants—all misclassified as pathogenic—demonstrates
that high accuracy can mask critical failures in imbalanced datasets. For
clinical deployment, accurate identification of both pathogenic and benign
variants is essential; a classifier labeling all variants as pathogenic would
generate excessive false positives, causing unnecessary patient anxiety,
inappropriate interventions, and incorrect risk assessment for families.

To advance toward clinical viability, I propose: (1) dataset expan-
sion through gnomAD, HGMD, and functional assay integration; (2)
replacement of one-hot encoding with protein language models (ESM-
2, ProtBERT); (3) integration of AlphaFold2 3D structural predictions;
(4) ensemble methods combining sequence and experimental data; and
(5) rigorous external validation on independent clinical cohorts. Despite
current limitations, this work establishes a reproducible framework for
gene-specific variant analysis, provides critical insights into challenges of
imbalanced genomic ML, and demonstrates that high F1-scores do not
guarantee clinical utility—contributing to validation standards for ge-
nomic medicine applications.

While substantial refinement is required before clinical deployment,
the foundation established here—comprehensive mutation processing, bi-
ologically informed feature engineering, and transparent evaluation—represents
progress toward reliable computational support for hemoglobinopathy di-
agnosis and genetic counseling as genomic sequencing becomes increas-
ingly integrated into clinical practice.

References

1. R. Ghosh, N. Oak, and S. E. Plon, Evaluation of in silico algorithms for use with
ACMG/AMP clinical variant interpretation guidelines, Genome Biology, vol. 18,
no. 1, p. 225, 2017.

2. I. Belmokhtar, K.Y. Belmokhtar, S. Lhousni, M. Charif, Z. Sidqi, R. Seddik,
M. Choukri, M. Bellaoui, R. Boulouiz, Carrier frequency and molecular ba-
sis of hemoglobinopathies among blood donors in eastern Morocco: Implications
for blood donation and genetic diagnosis, Blood Reviews, 2024. https://www.

sciencedirect.com/science/article/abs/pii/S0009912024001346
3. Tamana, S., Xenophontos, M., Minaidou, A., Stephanou, C., Harteveld, C.L.,

Bento, C., Traeger-Synodinos, J., Fylaktou, I., Mohd Yasin, N., Abdul Hamid,
F.S., Esa, E., Halim-Fikri, H., Zilfalil, B.A., Kakouri, A.C., Kleanthous, M., Koun-
touris, P. Evaluation of in silico predictors on short nucleotide variants in HBA1,
HBA2, and HBB associated with haemoglobinopathies. ClinGen Hemoglobinopa-
thy Variant Curation Expert Panel. Human Mutation, 44(11):1985–2003, 2023.
https://pmc.ncbi.nlm.nih.gov/articles/PMC9731569/.

92                                        Computer Science & Information Technology (CS & IT)



4. HGVS Nomenclature Resources and Software. Human Genome Variation Society
(HGVS). Available at: https://hgvs-nomenclature.org/stable/software/ (Ac-
cessed: 17.12.2025).

5. Howe, K. L., Achuthan, P., Allen, J., et al. Ensembl 2021. Nucleic Acids Research,
49(D1), D884–D891, 2021. https://doi.org/10.1093/nar/gkaa942

6. Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., et al. Predicting
Splicing from Primary Sequence with Deep Learning. Cell, 176(3):535–548, 2019.

7. Cock, P. J. A., Antao, T., Chang, J. T., et al. Biopython: freely available
Python tools for computational molecular biology and bioinformatics. Bioinformat-
ics, 25(11):1422–1423, 2009.

8. Chen, T., & Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 785-794, 2016.

9. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. SMOTE: Syn-
thetic Minority Over-sampling Technique. Journal of Artificial Intelligence Re-
search, 16:321-357, 2002.

10. Landrum, M. J., Lee, J. M., Benson, M., et al. ClinVar: improving access
to variant interpretations and supporting evidence. Nucleic Acids Research,
46(D1):D1062–D1067, 2018.

11. I. A. Adzhubei, S. Schmidt, L. Peshkin, et al., A method and server for predicting
damaging missense mutations, Nature Methods, vol. 7, pp. 248–249, 2010.

12. M. Kircher, D. M. Witten, P. Jain, et al., A general framework for estimating the
relative pathogenicity of human genetic variants, Nature Genetics, vol. 46, no. 3,
pp. 310–315, 2014.

13. L. Sundaram, H. Gao, S. Padigepati, et al., Predicting the clinical impact of human
mutation with deep neural networks, Nature Genetics, vol. 50, pp. 1161–1170, 2018.

14. N. M. Ioannidis, V. Rothstein, M. Pejaver, et al., REVEL: An ensemble method
for predicting the pathogenicity of rare missense variants, American Journal of
Human Genetics, vol. 99, no. 4, pp. 877–885, 2016.

15. Yeo, G., & Burge, C. B. Maximum entropy modeling of short sequence
motifs with applications to RNA splicing signals. Journal of Computational
Biology, 11(2–3):377–394, 2004. doi:10.1089/1066527041410418. :contentRefer-
ence[oaicite:0]index=0

16. Jaganathan, K., Panagiotopoulou, S. K., McRae, J. F., Darbandi, S. F., Knowles,
D., Li, Y. I., . . . Sanders, S. J. Predicting splicing from primary sequence with
deep learning. Cell, 176(3):535–548.e24, 2019. doi:10.1016/j.cell.2018.12.015. :con-
tentReference[oaicite:1]index=1

17. Giardine, B., Borg, J., Higgs, D. R., Peterson, K., Philipsen, S., Maglott, D.,
et al. HbVar: a relational database of human hemoglobin variants and thalassemia
mutations at the globin gene server. Human Mutation, 28(2):206–213, 2007. https:
//pubmed.ncbi.nlm.nih.gov/17068035/.

18. Steinberg, M. H., Forget, B. G., Higgs, D. R., & Weatherall, D. J. Disorders
of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge
University Press, 2nd edition, 2012.

19. Borg, J., Papadopoulos, P., Georgitsi, M., Gutierrez, L., Grech, G., Fanis, P.,
et al. Genotype-phenotype correlations in beta-thalassemia: clinical severity and
degree of beta-globin chain reduction. Haematologica, 94(7): 973–980, 2009. https:
//pubmed.ncbi.nlm.nih.gov/19498168/.

20. Feng, J., Li, Y., Wang, X., & Zhang, S. Machine learning approaches for predicting
pathogenicity of thalassemia variants. BMC Bioinformatics, 22:123, 2021. https:
//pubmed.ncbi.nlm.nih.gov/33658615/.

Computer Science & Information Technology (CS & IT)                                              93



21. Puglisi, R. Protein Mutations and Stability, a Link with Disease: The Case Study
of Frataxin. PubMed Central (PMC8962269), PMID: 35203634, 2022. https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC8962269/

22. Clancy, S., & Brown, W. Translation: DNA to mRNA to Protein. Nature Educa-
tion, 1(1):101, 2008.

23. de Sainte Agathe, J. M., et al. SpliceAI-visual: a free online tool to improve
SpliceAI splicing variant interpretation. Human Genomics, 2023. PubMed Cen-
tral (PMC9912651). https://pmc.ncbi.nlm.nih.gov/articles/PMC9912651/

24. Baxevanis, A. D., & Ouellette, B. F. F. Bioinformatics: A Practical Guide to the
Analysis of Genes and Proteins, 2nd edition. Genome Technology Branch, NHGRI,
NIH, Bethesda, MD, USA; Centre for Molecular Medicine and Therapeutics, Uni-
versity of British Columbia, Vancouver, BC, Canada.

25. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

26. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter,
P. Molecular Biology of the Cell, 6th edition. New York: Garland Science, 2014.

Author

I am a second-year undergraduate student in Computer Science at the
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