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Abstract. In this paper, we present a parallel algorithm for coloring 3-colorable graphs,
based on Wigderson’s classical algorithm which guarantees a coloring using at most O(y/n)
colors. To parallelize the approach, we integrate Luby and Gebremedhin-Manne (GM) algo-
rithm for parallel coloring. Experimental evaluations demonstrate that our parallel algorithm
achieves speedup to 16 threads.
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1 Introduction

Graph coloring is a fundamental problem in theoretical computer science and has numerous
practical applications in areas such as scheduling, register allocation, machine learning,
frequency assignment, and parallel task execution. The objective is to assign colors to the
vertices of a graph such that no two adjacent vertices share the same color, with the aim
of minimizing the total number of colors used. Despite its simple definition, graph coloring
is computationally challenging. In particular, determining whether a graph can be colored
with three colors is an NP-complete problem, and finding the minimum number of colors
needed for general graphs is NP-hard.

Due to the intractability of the optimal solution, many heuristic and approximation
algorithms have been proposed. Heuristic algorithms are often fast and practical but do
not provide guarantees on the quality of the solution [1], i.e., the number of colors used.
Approximation algorithms, on the other hand, offer provable upper bounds. For instance,
Wigderson’s algorithm [2] guarantees that any 3-colorable graph can be colored using at
most O(y/n) colors, where n is the number of vertices. However, this algorithm is inherently
sequential and does not leverage modern multi-core architectures.

The increasing scale of graph-based data and the need for faster processing times
highlight the importance of parallel graph coloring algorithms. While parallel heuristic
methods exist, they lack guarantees on the number of colors used. The proposed parallel
algorithm is designed to be efficient and suitable for execution on multi-core systems using
OpenMP. The goal is focus on getting speedup by replacing two Luby and GM algorithms.
Graph coloring also plays an important role in several machine learning workflows.

Many ML models operate on large computational graphs where tasks, operators, or
data blocks exhibit dependencies. Coloring these graphs enables conflict-free scheduling on
parallel hardware by assigning independent operations the same color so they can execute
simultaneously. In feature selection and dimensionality reduction, graph coloring is used to
cluster mutually exclusive or weakly correlated features, allowing models to reduce redun-
dancy and improve generalization. Moreover, in graph-based semi-supervised learning and
message-passing neural networks, coloring is applied to partition vertices into independent
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sets, enabling synchronous or color-wise parallel updates that accelerate training. These
connections highlight the broader relevance of scalable parallel graph coloring algorithms
in modern machine learning systems.

2 Related Work

A large amount of related work exists on graph coloring. However, we know of no other
work combine Luby and Gebremedhin(GM) algorithm to increase the parallelism.

The classical sequential graph coloring algorithm is based on the greedy first-fit heuris-
tic. Several other heuristics have been proposed that use relatively few colors and have
good bounds on their computational complexity. In contrast, parallel algorithms have not
been studied as extensively. Nevertheless, there are a few polynomial-time algorithms,
some of which can solve the problem using as few colors as the sequential algorithms.

Parallel algorithms improve the time complexity by distributing the vertices among
multiple processors. These types of algorithms have two phases: the first phase colors
vertices simultaneously, and the second phase resolves any color conflicts in sequential or
parallel that require resolution. Luby’s Mazimal Independent Set (MIS) algorithm [3] as-
signs random weights to vertices and iteratively selects the vertex with the highest weight
among its neighbors to form an independent set. Its time complexity is O(logn) due
to hierarchical comparisons. The Jones-Plassmann algorithm [4] improves upon Luby’s
method by assigning unique initial weights, reducing the need for repeated weight genera-

tion and achieving a time complexity of O (lolglgo gn) The Largest-Degree-First (LDF) [5]

and Smallest-Degree-Last (SDL) 6] algorithms assign two weights to each vertex based
on degree and randomness. Initially, they consider the weight based on degree, and when
two vertices have the same degree, they consider a random weight. The LDF algorithm
selects the vertex with the largest degree, while the SDL algorithm selects the vertex
with the smallest degree. The Jones-Plassmann Largest-Log-Degree-First (JP-LLF) |7]
and Jones-Plassmann Smallest-Log-Degree-Last (JP-SLL) [7] algorithms are similar to
LDF and SDL, with the difference being that the degree is determined based on a log-
arithmic scale. The Efficient Coloring with Local Information (ECL-GC) algorithm [8]
improves parallel execution by introducing shortcuts that increase independence among
vertices during coloring. The Distributed Graph Coloring (DistG) algorithm [9] employs a
distributed memory approach, where each vertex computes its color based on local informa-
tion, with conflicts resolved through iterative updates. The Asynchronous parallel graph
coloring heuristics algorithm [4] divide the graph into global and local vertices, resolv-
ing conflicts via asynchronous communication for scalable execution. SegSolve [10|, Iter-
Solve [10-13], IterSolveR [11], ColorTM |[14], Color-Centric (CLU) [15], Vertex-Centric
(VFF) |16], and Recoloring [16] algorithms follow the two phases of parallel graph coloring
using different approaches. Additionally, hybrid [17], Gebremedhin and Manne (GM) [13]
and Bal-ColorTM algorithms, function similarly to SeqSolve, IterSolve, IterSolveR, Col-
orTM, Color-Centric (CLU), Vertex-Centric (VFF), and Recoloring, with one difference:
they consider load balancing. In graph coloring, this means ensuring that each color class
contains roughly the same number of vertices.

In this paper We propose a parallel graph coloring algorithm based on Wigderson’s
approach. The algorithm first computes the degree of all vertices in parallel. It then selects
vertices whose degree is greater than or equal to /n, along with their neighbors, and
places them into a set. On this set, we apply Luby’s algorithm: each vertex is assigned a
random value, and in each iteration, a vertex is colored if its value is the highest among
its neighbors. This process continues until all vertices in the set are colored.
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For the remaining vertices—those with degree less than y/n and not adjacent to the
selected set—we apply the Gebremedhin-Manne (GM) algorithm. This algorithm works
in two phases: in parallel, each vertex marks the colors used by its neighbors as forbidden,
then selects the smallest available color not in the forbidden set. Since this step may result
in adjacent vertices receiving the same color, we identify such conflicts and resolve them by
recoloring the vertex with the smaller ID. The recoloring step is repeated until all conflicts
are resolved and all vertices are properly colored.

3 Problem Statement

Graph coloring is a classical computational problem where the goal is to assign colors to
the vertices of a graph such that no two adjacent vertices share the same color, while min-
imizing the total number of colors used. However, finding the optimal coloring is NP-hard,
even for special cases such as 3-colorable graphs. As a result, heuristic and approximation
algorithms are widely used. Heuristic methods, while efficient, do not offer guarantees on
the number of colors used and often sacrifice optimality for speed. On the other hand,
approximation algorithms provide theoretical guarantees. For instance, Wigderson’s algo-
rithm ensures that any 3-colorable graph can be colored using at most O(y/n) colors, but
it is sequential and not well-suited for parallel execution.

With the growing size of real-world graphs and the increasing availability of multi-
core computing platforms, there is a pressing need for parallel graph coloring algorithms.
Most existing parallel approaches rely on greedy or heuristic techniques and lack provable
bounds on the number of colors used.

This paper aims to address this gap by designing and analyzing a parallel graph coloring
algorithm inspired by Wigderson’s method that is approximation algorithm. The goal of
this paper is to achieve better speedup that we mentioned.

4 Contribution

In this paper we design a new parallel algorithm based on Wigderson’s method. The
algorithm begins by identifying high-degree vertices and their neighbors in parallel and
then applies a maximal independent set (MIS)-based strategy to color this subset using a
small number of colors.

Next, we extend the parallelization to the remaining vertices using the Gebremedhin-
Manne (GM) [13] algorithm, a parallel greedy coloring approach that minimizes conflicts
while ensuring that the color usage remains within the desired bound. Our approach
effectively mimics the behavior of the sequential Wigderson algorithm in a parallel setting.

Finally, we implement the parallel algorithm in C using OpenMP and evaluate its per-
formance through experiments. Our results shows that we achieves speedup to 16 threads.

5 Sequential 3-Colorable Wigderson Algorithm

Wigderson’s algorithm is a classical approximation algorithm for coloring 3-colorable
graphs. It works by iteratively identifying vertices with high degree and coloring their
neighborhoods using only two colors, then removing those neighborhoods and repeating
the process. Once all high-degree vertices have been processed, the remaining graph has
bounded degree and can be colored greedily |18]. The following pseudocode outlines the
sequential version of this algorithm.
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Algorithm 1: Wigderson’s Algorithm [2]

Input: 3-chromatic graph G  Initialize: Let ¢ = 1
While A(G) > [/n] do:
Choose a vertex v € G with deg(v) > [v/n]
Use Bipartition Algorithm to 2-color G[N (v)] with colors ¢ and ¢+ 1
Remove N(v) from G
¢ e+ (GINW))
End While
If A(G) < [y/n] then:
Use Greedy Algorithm to color the remaining vertices with colors ¢,c+1,...,c+ [/n]

6 Parllel 3-Colorable Wigderson Algorithm

To overcome the sequential nature of Wigderson’s original algorithm, we design a parallel version that
follow sequential behaviour.

The parallel algorithm is structured in two main phases. In the first phase, we identify all high-degree
vertices—those with degree at least /n—and include their neighbors to form a subgraph.

This subgraph is then colored using a parallel maximal independent set (MIS)-based strategy to ensure
conflict-free coloring within a bounded number of colors.

Algorithm 2: Parallel Graph Coloring

Input: A 3-colorable graph G = (V, E)

Output: A proper coloring using at most O(y/n) colors

1. procedure PARALLELGRAPHCOLORING(G = (V, E))

2. Compute Degrees in Parallel:

3. for all v € V in parallel do

4. deg(v) < |N(v)|

5. end for

6. Identify High-Degree Vertices and Their Neighbors:
7. for all v € V in parallel do

8. S« {veV|deg(v) >+/n}

9. S+ SU{u|TveSue Nw)} Include neighbors of S
10. end for

11.  Color S using Maximal Independent Set (MIS):
12. S« S

13. while (]S’| > 0) do in parallel

14. Choose an independent set I from S’

15. Color all vertices in I with smallest available color
16. S 8 -1

17. end while

18. Color Remaining Vertices using GM Algorithm:
19. W+V-8

20. while W # () do

21. for each vertex v € W in parallel do

22. for each vertex w € adj(v) do

23. forbiddenColors[color|[w]] < v

24. end for

25. ¢+ min{0 < ¢ <1+ /n | forbiddenColors[i] # v}
26. color[v] < ¢

27. end for

28. R+ 10 Initialize the remaining worklist
29. for each vertex v € V in parallel do

30. for each vertex w € adj(v) do

31. if color[v] = color[w] and v < w then

32. R+ RU{v}
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33. end if

34. end for

35. end for

36. W<+ R Update the worklist
37. end while

38. end procedure

In the second phase, we use the Gebremedhin-Manne (GM) algorithm to color the remaining vertices.
The GM algorithm allows vertices to choose colors in parallel based on their neighbors’ current assignments
and includes a conflict-resolution mechanism to ensure correctness.

7 Data Generation

To evaluate the performance of our parallel graph coloring algorithm, we generated synthetic graphs that
are guaranteed to be 3-colorable. Specifically, we constructed tripartite graphs, which are a subclass of
3-colorable graphs. The vertex set is partitioned into three disjoint subsets: Vi, V2, and V3 that the graph
size is n € {5000, 10000, 15000} that 5000,10000,15000 show the number of vertices in each partition and
the edge density configurations be: configs = { (sparse, 0.3), (mid, 0.6), (dense, 0.8) }

Edges are only created between vertices from different subsets, and no edges exist within the same
subset.We generated sparse and mid and dense graph with this configuration.

The generated graphs are written to a file in the following format:

— The first line contains the number of vertices and the number of edges.

— Each subsequent line contains two integers v and v, representing an undirected edge between vertex
u and vertex v.

This approach ensures the generated graphs are 3-colorable by construction, making them suitable for
testing both correctness and performance of our algorithm.

8 Solution and Implementation

The main goal of this paper is to getting speedup for graph coloring. So, we mimic the sequential approx-
imation algorithm (Wigderson) behavior.

The sequential algorithm consists of two steps:

1. Step 1: find vertices with degree bigger and equal [/n] and then color their neighbors with colors ¢
and ¢+ 1. This step guarantees that the subgraph of a 3-colorable graph can be colored using at most
two colors. To parallelize this approach, all vertices first compute their degree in parallel. Then, those
vertices and their neighbors form a set. For coloring the set we used Luby algorithm that assigned the
random number to vertices and color vertices that their value is bigger than their neighbor with same
color and then apply this approach for remaining vertices in the set until all vertices in set be colored.
Step 2: Color the remaining vertices, which have a degree less than [y/n], using a greedy algorithm.
Since we aim to mimic the sequential algorithm, we propose using the Gebremedhin-Manne (GM)
algorithm. GM algorithm, all vertices first check their neighbors’ colors in parallel and then put them
as forbidden color for that vertex then assign the minimum color to vertices while are not in the
forbidden color. It is possible that we have color conflict so we select vertices with minimum ID that
are in color conflic for recoloring until we do not have color conflict. The GM algorithm is shown in
Algorithm 2.
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9 Experimental Result

To evaluate the performance and scalability of the proposed parallel algorithm, we conducted experiments
on synthetic tripartite graphs of sizes 15000, 30000, and 45000 vertices under three edge-density configura-
tions: sparse (0.3), mid-density (0.6), and dense (0.8). All experiments were executed using OpenMP, and
speedup was measured relative to the sequential baseline implementation that follows Wigderson’s original
structure.

The results across all graph classes demonstrate a consistent upward trend in parallel scalability as
the number of threads increases, confirming the effectiveness of replacing Wigderson’s sequential coloring
phases with Luby’s MIS-based parallel phase and the parallel GM greedy recoloring phase.

For dense graphs (Figure , the algorithm exhibits the highest speedup among all graph categories.
Dense instances contain a large number of high-degree vertices, causing a significant portion of the workload
to be shifted into the Luby MIS stage, which is highly parallelizable. As a result, the speedup grows nearly
linearly up to 8 threads and continues to improve, though with diminishing returns, up to 16 threads. For
the 45000-vertex dense graph, the speedup approaches the upper bound predicted by Amdahl’s Law given
the proportion of parallel work.

For mid-density graphs (Figure , the parallel performance also shows strong improvement, but with
slightly lower speedup than in the dense case. This behavior aligns with the algorithmic design: mid-
density graphs have fewer high-degree vertices meeting the /n threshold, which reduces the size of the
Luby-colored set. Consequently, a larger portion of the work transitions to the GM phase, which, although
parallel, involves repeated conflict-resolution rounds that limit ideal scalability. Nonetheless, the algorithm
consistently achieves meaningful speedup across all graph sizes, and the 45000-vertex instance reaches
near-linear scalability up to 8 threads.

In sparse graphs (Figure 7 speedup is still present but more moderate. These graphs contain the
fewest high-degree vertices, causing most of the workload to fall into the GM phase. The GM algorithm
relies heavily on per-vertex color checking and conflict resolution, which introduces overhead due to the
lower level of parallel independence across vertices. As expected, this reduces opportunities for massive
parallelism compared to dense graphs. However, even in the sparse case, the algorithm achieves speedup
that increases steadily with both graph size and thread count, confirming that parallelization remains
beneficial even when the structure is less conducive to MIS-based coloring.

Speedup vs Threads (Dense Graphs)
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Fig. 1: speedup for Dense Graph with 15000,30000,45000 Vertices
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Speedup vs Threads (Mid Graphs)
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Fig. 2: speedup for Mid Graph with 15000,30000,45000 Vertices

Speedup vs Threads (Sparse Graphs)
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Fig. 3: speedup for Sparse Graph with 15000,30000,45000 Vertices
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10 Limitations of the Research

Although the proposed parallel algorithm provides substantial parallel speedup, but some limitations re-
main.

First, the algorithm assumes that the input graph is 3-colorable, which restricts its applicability in set-
tings where no such structural guarantee exists. Real-world graphs often do not conform to this constraint,
and the performance or correctness of the method may vary when applied outside this class.

Second, the efficiency of the MIS-based parallel phase depends heavily on the presence of high-degree
vertices. In graphs where few vertices satisfy the \/n degree threshold—especially sparse or irregular
graphs—the amount of exploitable parallelism decreases, limiting speedup.

Third, the GM recoloring phase may require multiple rounds of conflict resolution. This iterative
process can introduce significant overhead in graphs that generate many color conflicts, reducing theoretical
scalability.

Finally, our evaluation is based on OpenMP (shared-memory method). The behavior of the algo-
rithm on GPUs, many-core accelerators, or distributed-memory environments has not yet been explored.
Investigating these architectures represents an important direction for future work.

11 Conclusion

In this work, we developed a parallel algorithm by extending Wigderson’s classical approach for coloring
3-colorable graphs. While the original algorithm is sequential, our parallel version achieves substantial
speedup by integrating Luby’s MIS procedure for high-degree neighborhoods and the Gebremedhin—Manne
(GM) algorithm for parallel greedy coloring. The combined design preserves the structural behavior of the
sequential approximation algorithm while enabling scalable execution on modern multi-core architectures.

Through implementation in C with OpenMP and experimental evaluation on multiple graph sizes and
densities, we showed that the algorithm scales effectively up to 16 threads, with dense graphs exhibiting
the highest parallel efficiency. These results confirm that parallelizing the core components of Wigderson’s
method can yield significant performance gains without compromising the approximation properties of the
original algorithm.

Beyond classical graph-theoretic applications, the relevance of scalable parallel graph coloring extends
directly to modern machine learning systems. Many ML workloads rely on large computational graphs,
message-passing neural networks, or synchronization-sensitive update rules, all of which benefit from parti-
tioning vertices into independent sets. Efficient colorings enable conflict-free parallel execution of operators,
accelerate mini-batch propagation in graph neural networks, and support structure-aware feature grouping
for dimensionality reduction and model sparsification. As machine learning models continue to increase in
structural complexity, fast parallel graph coloring becomes an increasingly important primitive.

Overall, this work contributes both a practical parallel algorithm and a pathway toward enabling high-
performance graph coloring in machine-learning pipelines and other large-scale data-driven systems. Future
work may explore integrating the algorithm into ML runtimes, extending the parallelization strategies to
k-colorable graphs, or adapting the method for GPU and distributed-memory environments.
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