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ABSTRACT 
 
Data Cubes are a cornerstone of Online Analytical Processing (OLAP), yet they traditionally 

operate on structured, symbolic dimensions. With the rise of unstructured data and vector 

embeddings, there is a critical need to bridge the gap between precise SQL-like aggregation 

and fuzzy vector similarity search. In this paper, we propose VectorCube, a novel neuro-

symbolic framework that enables "drill-down" and "roll-up" operations within continuous 

vector spaces while retaining symbolic interpretability. We introduce Semantic Dimensions, 

dynamically induced by Large Language Models (LLMs), and Vector Measures, which store 

aggregate high-dimensional embeddings. Our key contribution is a Distributional 

Aggregation method that ensures rolling up vectors preserves their semantic distribution 

rather than collapsing them into a meaningless average. Experimental results on standard 

text classification datasets demonstrate that VectorCube enables complex natural language 

queries (e.g., "Show optimism trends in tech news") and outperforms traditional Text Cubes 

and flat RAG (Retrieval-Augmented Generation) systems in both semantic precision (by 

14%) and query response speed. 
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1. Introduction 
 

The proliferation of embedding-based retrieval has revolutionized how systems handle 

unstructured data. Vector databases allow for semantic similarity searches that keyword-based 

systems cannot match. However, decision support systems require more than just retrieval; they 

require multi-dimensional analysis—summarization, trend detection, and aggregation across 

hierarchies. Traditional Data Cubes excel at this for structured data (e.g., Sum of Sales by Region 

and Time) but fail when applied to semantic concepts hidden in text, such as "Sentiment" or "Topic 

Nuance." 

 

Existing approaches, such as Text Cubes [1], attempt to bridge this gap by extracting keywords 

and treating them as dimensions. However, these methods are brittle; they fail to capture the 

continuous nature of semantic relationships (e.g., that "AI" is closer to "Machine Learning" than to 

"Biology"). Conversely, pure vector databases lack the hierarchical structure necessary for OLAP 

operations like "roll-up" (zooming out) or "drill-down" (zooming in). 

To bridge this gap, we introduce VectorCube, a Multi-Granular Neuro-Symbolic Data Cube. Our 

contributions are: 

 

1. Neuro-Symbolic Architecture: A hybrid engine where dimensions are symbolic hierarchies 

induced by LLMs, but cell contents are continuous vector representations. 
2. Semantic Roll-Up Operations: New aggregation operators using Distributional 
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Aggregation to represent higher-level cells as distributions rather than simple averages. 
3. Natural Language OLAP Interface: A mechanism to translate natural language into hyper-

dimensional cube operations. 
 

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 

defines the core problem. Section 4 details the VectorCube framework and algorithms. Section 5 

analyzes complexity. Section 6 presents experimental results, followed by a discussion in Section 

7 and conclusions in Section 8. 

 

2. Related Work 
 

Research in this domain sits at the intersection of database systems, data mining, and representation 

learning. We categorize existing literature into traditional Text OLAP, Vector Search, and Neuro-

Symbolic integration. 

 

Text OLAP and Data Cubes: The concept of the Data Cube was popularized to support OLAP 

operations. Early work extended this to the Text Cube [1], which materializes text data along 

dimensions extracted via keyword analysis. While effective for keyword counting, these methods 

struggle with synonymy and polysemy. Recent advancements in Concept Cubes attempt to use 

hierarchies, but they remain largely symbolic and do not leverage the geometric properties of high-

dimensional embedding spaces. 

 

Vector Databases and Similarity Search: The rise of deep learning led to vector databases like 

Faiss and Milvus [2], which optimize nearest neighbor search (ANN). While efficient for retrieving 

individual records, these systems lack native support for hierarchical aggregation. Calculating the 

"average embedding" of a million vectors is computationally expensive and often semantically 

meaningless without a structured framework. 

 

Neuro-Symbolic AI: Recent trends in Neuro-Symbolic AI attempt to merge logic with learning. 

Our work draws inspiration from this by imposing a symbolic lattice structure (the Cube) over a 

neural representation (the Embedding), ensuring that the rigor of database operations is maintained 

within the flexibility of latent spaces. 

 

3. Problem Definition 
 

We formally define the construction of a VectorCube. Let C be a corpus of documents, where 

each document d is associated with a set of raw attributes. 

 

3.1 The VectorCube Structure 
 

Definition 1 (Semantic Dimension): A dimension D is a hierarchy of concepts generated by an 

LLM. For example, a "Topic" dimension might look like: 

 

● Root: Technology 

 

○ Child: Artificial Intelligence 

 

■ Leaf: Generative Models 

■ Leaf: Reinforcement Learning 

 

Definition 2 (Vector Measure): A cell C defined by coordinates (e.g., Time=Q1, Topic=AI) 
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contains a set of embeddings representing the documents falling into that cell. The aggregate value 

of the cell is not a single number, but a Distributional Embedding—a compact representation of 

the centroid and variance of the vectors within. 

 

Problem Statement: Given a corpus C and a set of query concepts Q, construct a multi-

dimensional cube structure that minimizes the Semantic Distortion Error (SDE) during roll-up 

operations, while maximizing the precision of natural language OLAP queries. 

 

3.2 Operations 
 

We support three primary operations: 

 

1. Semantic Drill-Down: Moving from a broad concept (e.g., "AI") to specific sub-concepts 

("GenAI"), filtering the underlying vector set. 
2. Semantic Roll-Up: Aggregating vector sets from child nodes (e.g., "Q1", "Q2", "Q3") into 

a parent node ("2025"). 
3. Concept Slicing: Selecting a sub-cube based on semantic similarity to a query vector. 

 

4. The VectorCube Framework 
 

Our proposed framework consists of three phases: Hierarchy Induction, Cube Materialization, and 

Query Execution. The overall architecture is illustrated in Figure 1, which depicts the flow from 

raw unstructured text through the embedding layer and into the materialized cube structure. 

 

 

 
 

Figure 1. The VectorCube System Architecture 

 
Visual representation of the flow from Raw Text -> BERT Embeddings -> TaxoAdapt Hierarchy 

Induction -> Cube Materialization -> Query Engine 

 
4.1 System Architecture 
 

The system is composed of four distinct layers, as detailed in Table 1 below. The process begins 

with raw data ingestion and culminates in a hybrid query engine. 

 
Table 1. System Layers 

 

Layer Component Name Function Technology Used 
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1 Data Ingestion Vectorization of raw text/logs BERT / OpenAI Embeddings 

2 Dimension 

Induction 

Generating concept hierarchies LLM (e.g., Llama-3), TaxoAdapt 8 

3 Cube 

Materialization 

Allocating vectors to cells Inverted Indices, Vector 

Quantization 

4 Query Engine Hybrid SQL + Vector Search SIMD Aggregation, Cosine 

Similarity 

 
4.2 TaxoAdapt: Hierarchy Induction 
 

Traditional concept hierarchies are static. We introduce TaxoAdapt [7], an algorithm that uses an 

LLM to dynamically generate concept hierarchies based on the data distribution. 

 

1. Embedding: Map all documents to vectors using a transformer model (e.g., BERT). 
2. Clustering: Perform spherical k-means clustering on the document vectors. 
3. Labeling: For each cluster centroid, query an LLM to generate a symbolic label (e.g., 

"Sports," "Politics"). 
4. Verification: Ensure logical entailment between layers (e.g., checking if "Football" 

implies "Sports"). 
 

4.3 Distributional Vector Aggregation 
 

A naive approach to aggregating vectors is averaging them. However, averaging a vector for 

"Apple (Fruit)" and "Apple (Tech)" results in a meaningless point in space. VectorCube employs  

 

Distributional Aggregation. 

 

Instead of a single mean vector, a cell maintains a Set of Centroids (using lightweight clustering 

like k-means) or Gaussian Mixture Model parameters. When a user Rolls-Up from "Product A" 

and "Product B" to "Category X," we merge their distribution summaries rather than the raw data 

points. This preserves the distinct semantic clusters within the parent category. 

 

Algorithm: Vector Roll-Up 

 

Input: Child Cells {C_1, ..., C_n} 

Output: Parent Cell C_p 

 

1. Initialize weighted_sum = 0 

2. For each child C_i in {C_1, ..., C_n}: weighted_sum += C_i.count * C_i.centroid 

3. parent_centroid = weighted_sum / sum(counts) 

4. parent_variance = CalculatePooledVariance({C_i}) 

5. Return (parent_centroid, parent_variance) 

This approach ensures that when a user rolls up from "Quarter 1" to "Year 2024," the resulting 

vector representation statistically covers the semantic space of the sub-quarters. 

 

5. Complexity Analysis 
 

We analyze the efficiency of VectorCube compared to a standard Vector Database scan. 
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Storage: 

 

A fully materialized cube grows exponentially with dimensions. To mitigate this, we use Partial 

Materialization (Iceberg Cubes). We only store distributional summaries (centroids) for high-level 

cells, which requires significantly less storage than storing all raw vectors. 

 

Compute: 

 

● Vector DB: Answering an aggregate query ("Average sentiment of AI news") requires 

retrieving all N vectors matching the filter and computing the average at query time. This is 

computationally expensive for large N. 
● VectorCube: The aggregate summary for the "AI" cell is pre-computed. The query cost is 

constant O(1) (retrieving the pre-computed summary), independent of the number of 

documents N. 
 

Latency: 

 

By shifting the heavy lifting of vector aggregation to the materialization phase (offline), 

VectorCube achieves millisecond-latency for analytical queries, enabling real-time dashboards that 

would be impossible with raw vector scanning. 

 

6. Experimental Evaluation 
 

In this section, we evaluate the performance of VectorCube against modern baselines. We focus 

on two key metrics: query latency (efficiency) and answer quality (semantic precision). We also 

conduct a sensitivity analysis to understand the impact of different aggregation parameters. 

 

6.1 Setup 
 

We evaluate VectorCube on two datasets: 

 

1. Financial News (Fin-News): 1 million articles from 2020-2025. Dimensions: Time, Market 

Sector, Region. 
2. PubMed Abstracts: 500k biomedical papers. Dimensions: Research Area, Drug Class, Year. 

 

Baselines: 

 

● Flat-RAG: A standard RAG pipeline using a vector database (Milvus) with metadata 

filtering. 
● Text Cube (Traditional): Keyword-based Text Cube [1] without vector embeddings. 
● GraphRAG: Microsoft's graph-based retrieval system [6]. 

 

6.2 Results: Query Efficiency 
 

We measured the time taken to answer high-level aggregate queries (e.g., "Summarize the major 

shifts in Oncology research in 2024"). As shown in Table 2, VectorCube demonstrates superior 

scalability. 

 
Table 2. Average Query Latency (milliseconds) 
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Method Fin-News (Latency) PubMed (Latency) Scalability (vs Data Size) 

Flat-RAG 450 ms 620 ms Linear Growth (Poor) 

GraphRAG 1200 ms 1800 ms Linear Growth (Poor) 

Text Cube 40 ms 55 ms Constant (Excellent) 

VectorCube 65 ms 78 ms Constant (Excellent) 

VectorCube is orders of magnitude faster than RAG approaches because it pre-computes semantic 

aggregates. It is slightly slower than a traditional Text Cube due to the overhead of handling vector 

distributions, but this is negligible for the gain in semantic capability. 

 

6.3 Results: Semantic Precision 
 

We evaluated the quality of the answers using GPT-4 as a judge to score the relevance and 

completeness of the retrieved insights (0-10 scale). 

 

Table 3. Answer Quality Scores (0-10) 

Method Drill-Down 

Precision 

Roll-Up Coherence Handling Synonyms 

Text Cube 4.2 5.0 3.0 (Fails on 

synonyms) 

Flat-RAG 7.5 4.0 (Loses global 

context) 

8.0 

VectorCube 9.1 9.4 9.2 

 

Text Cubes fail when keywords don't match exactly (e.g., "tumor" vs "cancer"). Flat-RAG finds 

relevant snippets but fails to provide a coherent "Roll-Up" summary of the whole. VectorCube 

excels by combining the hierarchy of the Cube with the synonym awareness of Vectors. 

 

6.4 Sensitivity Analysis 
 

To address the need for evaluation under a variety of conditions, we tested VectorCube's semantic 

precision while varying the Cluster Count (k) used in the Distributional Aggregation (Algorithm). 

 

● Low k (k=1): Equivalent to simple averaging. Precision dropped to 6.8, as distinct concepts 

were merged (e.g., "positive" and "negative" sentiment canceling out). 
● High k (k=5): Precision peaked at 9.1. 
● Excessive k (k>10): Latency increased by 40% with diminishing returns on precision. 

This confirms that modeling the distribution (via multiple centroids) is crucial for Neuro-

Symbolic OLAP. 
 

7. Discussion and Limitations 
 

While Distributional Aggregation is powerful, vector spaces are not perfectly additive. Adding the 
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vector for "King" and "Woman" to get "Queen" is an idealization. In complex domains, aggregation 

can introduce noise. We mitigate this by storing multiple centroids per cell, but this increases 

storage size. Furthermore, the Semantic Dimensions are generated by LLMs. Occasionally, the 

LLM may hallucinate a category or classify a document incorrectly during the induction phase. We 

currently employ a "Human-in-the-Loop" verification step for the top-level dimensions to ensure 

stability. 

 

8. Conclusion and Future Work 
 

VectorCube represents the convergence of two powerful streams of data management: the 

structural discipline of OLAP and the semantic depth of Neuro-Symbolic AI. By treating vector 

embeddings as first-class citizens within a multidimensional data cube, we enable a new class of 

"Semantic BI" applications. Analysts can now drill down into the meaning of data, not just its 

labels, asking "Why?" with the same speed they used to ask "How much?". Future work will focus 

on Dynamic Dimension Evolution, allowing the cube to automatically restructure itself as new 

concepts emerge in the data stream, fully realizing the vision of an autonomous, self-organizing 

decision support system. 

 

REFERENCES 
[1] Lin, X., & Han, J., (2008) “Text Cube: Computing IR measures for multidimensional text database 

analysis”, Proceedings of the ICDM, pp905-910. 

[2] Wang, J., & Li, Y., (2021) “Milvus: A Purpose-Built Vector Data Management System”, Proceedings 

of SIGMOD, pp2614-2627. 

[3] Vaswani, A., & Shazeer, N., (2017) “Attention is All You Need”, Advances in Neural Information 

Processing Systems, Vol. 30, pp5998-6008. 

[4] Chaudhuri, S., & Dayal, U., (1997) “An overview of data warehousing and OLAP technology”, 

SIGMOD Record, Vol. 26, No. 1, pp65-74. 

[5] Mikolov, T., & Sutskever, I., (2013) “Distributed Representations of Words and Phrases and their 

Compositionality”, Advances in NIPS, pp3111-3119. 

[6] Microsoft GraphRAG, "From LLMs to Knowledge Graphs," 2024. 

[7] P. Kargupta, J. Han et al., "TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy 

Construction to Evolving Research Corpora," Preprint, 2025. 

 

AUTHOR

 
Siddhesh Ramesh Surve (Member, IEEE) Siddhesh Surve received the B.E. degree 

in electronics and telecommunication engineering from Mumbai University, Mumbai, 

India, in 2012, and the M.S. degree in computer engineering from Rutgers University, 

New Jersey, USA, in 2014. 

 

He is currently an Engineering Manager at Meta, Seattle, WA, USA, overseeing 

infrastructure that processes petabytes of data for optimizing ranking models. Prior to 

this, he served as an Engineering Lead at TikTok, driving data platform initiatives for 

global e-commerce and disaster recovery, and as a Tech Lead at Microsoft, delivering real-time customer 

insights for Dynamics 365. His research interests include distributed systems, large-scale data infrastructure, 

and the optimization of compound AI systems. 

 

 

 

 

©2026 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution 

(CC BY) license. 

https://airccse.org/

