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Abstract. We study how fundamental statistical limits in reinforcement learning change when multiple
real-world challenges interact. Focusing on sample inefficiency, nonstationarity, partial observability, and
high-dimensional observations, we synthesise existing lower-bound arguments and show that their effects
are generally non-additive. We formalise three structure-conditioned mechanisms: multiplicative complexity
penalties in partially observable nonstationary environments, memory collapse under low-rank observation
structure, and explicit finite-horizon safety guarantees via probabilistic shielding. Rather than proposing
new algorithms, the paper clarifies how exploitable structure reshapes worst-case guarantees and motivates
a shift from pessimistic minimax analysis toward conditional complexity frontiers that tighten as structure
is detected online.
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1 Introduction

Reinforcement learning (RL) has moved well beyond proof-of-concept videogame agents
and now powers prototype systems in robotics, industrial process control, dialogue man-
agement, and clinical decision support. However, truly reliable field deployment remains
rare. In practice, practitioners encounter a set of mutually reinforcing statistical road-
blocks that limit scalability and reliability. These include sample inefficiency, since col-
lecting sufficient on-policy experience on physical platforms is slow, risky, and expensive,
and nonstationarity, whereby real-world dynamics drift due to wear, payload changes, hu-
man intervention, or shifting objectives. They also include partial observability, as sensors
provide only coarse, delayed, or noisy access to the latent state, and the curse of dimen-
sionality, whereby rich observation streams such as images, force torque traces, or LIDAR
dramatically expand the effective search space.

Classical theoretical analyses typically treat each of these difficulties in isolation, yield-
ing pessimistic worst-case bounds on regret or sample complexity. [Azar et al.(2017)] estab-
lish minimax-optimal sample complexity for discounted MDPs under a generative model;
[Jaksch et al.(2010)] provide regret bounds for undiscounted MDPs via optimism under
uncertainty; and [Krishnamurthy et al.(2016)] extend PAC learning guarantees to con-
textual decision processes. Each of these contributions assumes stationarity and, in most
cases, full or benign partial observability-conditions that rarely hold jointly in deployed
systems.

These classical results establish sharp guarantees under stationarity and simplified ob-
servability assumptions, but do not characterise how learning difficulty compounds when
multiple sources of uncertainty and drift act simultaneously.

Understanding, and exploiting, the structure that emerges from these interactions is
therefore essential. Recent work points toward possible remedies: [Berkenkamp et al.(2017)]
use Gaussian process models to provide safety guarantees during learning, but require
accurate prior knowledge of system dynamics; [Nagabandi et al.(2018), Finn et al.(2019)]
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PON-MDP within—episode nonstationarity (schematic)
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Fig. 1. Within-episode nonstationarity in a partially observable nonstationary MDP (PON-MDP). Both
transition dynamics and emission models switch across unknown segments of an episode, forcing the agent
to jointly perform latent-state inference and change-point adaptation. (Author-generated schematic.)

demonstrate rapid adaptation through meta-learning, yet their analyses do not quantify
how adaptation cost scales with partial observability or safety constraints; and [Levine
et al.(2017)] survey uncertainty-aware control without providing unified lower bounds. A
theoretical treatment integrating these perspectives remains absent.

These lines of work demonstrate how structure, uncertainty estimates, or prior ex-
perience can improve empirical performance, yet their theoretical analyses remain largely
decoupled and do not provide a unified account of how such structure reshapes fundamental
complexity limits.

Figure 1 illustrates one such interaction through the lens of within-episode nonsta-
tionarity under partial observability. The schematic depicts a partially observable nonsta-
tionary MDP (PON-MDP) in which both transition dynamics and observation emission
models change across unknown segments within a single episode. An agent operating in
this setting must simultaneously infer latent state information, detect change-points, and
adapt its policy online, highlighting how classical assumptions underlying isolated lower
bounds are violated in combination.

We defer algorithmic implementations and empirical validation of online structure dis-
covery to future work, as this paper is concerned with isolating and clarifying the funda-
mental complexity mechanisms that limit reinforcement learning in real-world settings. In
particular, nonstationarity and the need for rapid adaptation arise naturally in lifelong and
meta-learning scenarios, where agents must continuously update their representations and
policies as tasks and dynamics evolve [Ring(1994), Finn et al.(2017), Chua et al.(2018)].

We do not propose a new algorithmic pipeline; Section 2 introduces a theoretical
framework and formal constructions used to state and interpret structure-conditioned
lower-bound mechanisms.

Throughout, our contributions should be understood as a unifying conceptual frame-
work: the results in Section 2 are not new minimax bounds per se, but reinterpret and
combine existing lower-bound constructions to expose previously implicit interactions be-
tween nonstationarity, partial observability, memory, and safety.

While these approaches focus on enabling fast adaptation, they do not explicitly analyse
how adaptation costs interact with memory, observability, and safety constraints at the level
of fundamental lower bounds.

The results in Section 2.1 are stated as formal propositions and theorems, but should
be interpreted as conceptual in two complementary senses. First, constants and tightness
are not the focus; instead, the aim is to isolate the fundamental mechanisms that govern
how statistical complexity scales when multiple challenges interact. Second, the statements
are designed to make transparent how multiplicative penalties, structure-driven memory
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collapse, and tunable safety guarantees arise under explicit and interpretable assumptions.
All proofs are self-contained given the stated constructions and are intended to prioritise
clarity and mechanism identification over sharp optimisation of bounds. To complement
these theoretical results, Section 3 presents a simple simulation study that serves as an
illustrative instantiation of the proposed mechanisms, rather than as a validation of the
theoretical bounds. Additional conceptual visualisations of the key mechanisms are pro-
vided in Appendix A.

Many of the works cited in this paper predate 2020 because they establish foundational
lower bounds and impossibility results that remain state-of-the-art. While recent advances
focus primarily on algorithmic scalability, the fundamental statistical barriers identified in
classical analyses continue to govern achievable performance. Our aim is therefore not to
replace these results, but to reinterpret them through a structure-conditioned lens that is
directly relevant to modern adaptive systems.

We also note that foundational results in reinforcement learning theory frequently
appear in peer-reviewed conference proceedings such as NeurIPS, ICML, and COLT, which
serve as primary publication venues in this field; in several cases no extended journal
version exists, and we cite these works accordingly.

2 Background and problem setting

Our analysis considers episodic reinforcement learning with a finite horizon, covering both
fully observable and partially observable decision processes. An MDP consists of a set of
states and actions, together with a Markovian transition rule P(- | s,a) and a bounded
reward function R(s,a) € [0,1]. In partially observable environments, the underlying state
is hidden, and the agent instead receives observations o; € O drawn from an emission dis-
tribution conditioned on the current state. Standard background on MDPs and POMDPs
follows classical treatments [Sutton and Barto(2018), Kaelbling et al.(1996)].

At each time step t € {0,..., H — 1}, the agent selects an action a; € A. The environ-
ment then transitions according to P, emits an observation according to {2 (in POMDPs),
and produces a reward R(s¢, at). A policy may depend on the agent’s available information:
on the current state in MDPs, or on the entire observation-action history in POMDPs,
and maps this information to a distribution over actions.

Throughout, our focus is on the statistical and information-theoretic limits of learning
and control, rather than on the design or analysis of specific algorithms. Asymptotic
notation is used to characterise scaling behaviour. In particular, we write O(-) and 2(-)
to suppress polylogarithmic factors in problem parameters when these are not central to
the discussion.

Figure 2 summarises the logical structure of the paper and illustrates how classical
worst-case analysis is refined into structure-conditioned complexity frontiers as exploitable
structure is detected.

2.1 Conditional Complexity Beyond Isolated Limits

By a conditional complexity frontier, we mean a family of lower bounds whose rate depends
explicitly on detected structural parameters (e.g. rank, number of change-points, or safety
margin), in contrast to classical minimax bounds which are fixed a priori and independent
of such structure.



40 Computer Science & Information Technology (CS & IT)

Classical worst-case analysis
(minimax bounds)

Structure detection / conditioning
e Emission rank r
¢ Change-points K
« Safety margin a (and o)

Proposition 1 Proposition 2

Prope _ Theorem 1
Multiplicative complexity Memory collapse Probabilistic shieldin
in PON-MDPs under low-rank structure P(safe for T) > (Ba+(1—Bg)c)’\T
T2K" OH, €) m = O(r log H) —

o~

Conditional complexity frontiers
Bounds tighten as structure is detected online

Fig. 2. Overview of the conditional complexity framework. Classical minimax analysis yields fixed worst-
case guarantees. Conditioning on detected structure, such as observation rank, number of change-points,
and safety margins, leads to three structure-dependent mechanisms: multiplicative complexity in partially
observable nonstationary environments (Proposition 1), memory collapse under low-rank observation struc-
ture (Proposition 2), and finite-horizon probabilistic safety guarantees (Theorem 1).

Notation. H denotes the episode horizon. K denotes the number of within-episode change-
points, yielding K + 1 stationary segments. ¢ is the target suboptimality and J§ a failure-
probability.

The preceding sections establish lower bounds for individual obstacles in reinforcement
learning (RL) in isolation. In practice, however, multiple challenges often co-occur, and real
environments frequently exhibit additional structure that can substantially alter worst-case
complexity.

Compound challenges in partially observable nonstationary environments

Definition 1 (PON-MDP). A partially observable nonstationary MDP (PON-MDP)
s a tuple

(87 Aa Ov {Pl}z]i—;a {Ql}z]i—il_l’ R’ H)’
where there exist unknown change-points 1 = 19 < 1 < --- < 7 < H such that, for all
t € [Ti—1,Ti), transitions and emissions are (P;, §2;), and the agent observes oy ~ £2;(- | s¢).

Thus, K change-points induce K +1 stationary segments; for simplicity, we index segments
byi=1,--- , K +1.

Assumption 1 (Segment-wise informational independence). For the PON-MDP con-
struction considered below, we assume that for any two segments ¢ # j, the observations
and rewards generated in segment ¢ are conditionally independent of the latent parame-
ter 6; given the history restricted to segment i. Equivalently, interaction transcripts from
segment ¢ carry zero mutual information about 6, j # 1.
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Proposition 1 (Synergistic complexity in PON-MDPs). Fiz H,K,c € (0,1) and
5 € (0,1/2). For any fized K, one can construct episodic PON-MDP instances with K
within-episode change-points for which achieving e-optimal performance in every segment
with confidence 1 — § requires at least

T > cK&(H,e) 10g(%)

interactions, where ®(H, e) denotes the intrinsic identification difficulty induced by partial
observability inside a single segment (e.g., P(H,e) = 2(H/e) for finite-memory controllers
in canonical hard families). Equivalently, if partial observability alone forces 2(P(H,¢))
samples and nonstationarity forces 2(K) adaptation phases, then there exist instances
requiring 2(K ®(H,¢)) interactions.

Proof. We give a concrete construction and then apply a standard information-theoretic
lower bound.

Step 1: A hard POMDP family for one segment. Fix any family Fpo of finite-horizon
POMDP instances indexed by a parameter 6 € {1,..., M} such that:

1. For each 0, there is an optimal segment policy .

2. Any algorithm that outputs a policy 7 with segment value at least V" — e (with prob-
ability > 1 — 6) requires at least co®@(H, ¢) log(1/§) samples when interacting with that
segment alone.

Such families are standard in partial observability lower bounds; here we treat ®(H,¢) as
an abstract hardness measure for the segment.

Step 2: Embed the hard family into K segments. Define a PON-MDP by concatenating
K independent segment instances, each drawn from Fpg. Concretely, choose parame-
ters 01,...,0x € {1,..., M}, one per segment, and define the environment so that for
t € [1i—1,7) the dynamics/emissions coincide with the POMDP instance indexed by ;.
Rewards in segment ¢ depend only on achieving near-optimal behaviour for that segment;
segments are constructed so that learning in segment ¢ does not reveal 0; for j # i (e.g.,
by using fresh state/observation alphabets per segment or resetting hidden structure at
change-points).

Step 3: Reduction to identifying K independent indices. Let © := (01, ...,0k) be uniform
on {1,..., M}*. Any algorithm that is e-optimal within each segment with probability
> 1 — ¢ induces, for each segment, an estimator (possibly implicit) that succeeds in the
segment task with error probability at most 6/K (by a union bound, otherwise overall
failure would exceed §).

Step 4: Information lower bound (Fano-style). Let Zp be the full transcript of T' interac-
tions. Since segments are independent and disjoint in information, the mutual information
decomposes:

K
1(0; Zr) = Y 1(0:: Z4),
=1

where Z(Ti) is the transcript restricted to segment i. By Step 1, achieving error < §/K for
segment i requires at least co®(H,e)log(K/d) samples in that segment. Summing over K
segments yields

T > coK®(H,e) log<%>.
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Synergistic complexity in PON-MDPs (conceptual)
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Fig. 3. Additive versus multiplicative scaling when partial observability and within-episode nonstationarity
co-occur. The plotted quantity is a conceptual lower-bound proxy: additive scaling corresponds to K +
®(H,e), while multiplicative scaling corresponds to K - &(H, ) (constants suppressed).

Since log(K/d) > log(1/60) and constants are not optimised, we obtain
1
T > cK®(H,e) 10g<5>

for some absolute constant ¢ > 0, proving the claim.

Classical results establish tight lower bounds for exploration and identification in sta-
tionary environments: [Kearns and Singh(2002)] introduced the E? algorithm with polyno-
mial sample complexity guarantees; [Brafman and Tennenholtz(2002)] proposed R-MAX
with similar guarantees under a known-horizon assumption; and [Azar et al.(2017)] sharp-
ened these bounds to minimax optimality. However, all three analyses assume stationary
dynamics and either full observability or access to a generative model, leaving open the
question of how complexity scales when nonstationarity and partial observability interact.

Memory efficiency under structured observations

Proposition 2 (Structure-dependent memory collapse). Let P be a family of finite-
horizon POMDPs with horizon H. Assume that for every instance in P the observation
emission operator admits a rank-r factorisation, and that the induced belief update can
be represented by an r-dimensional sufficient statistic whose evolution is stable, in the
sense that perturbations of this statistic incur a uniformly bounded loss in value over
the horizon H. Stability here means that the value function is Lipschitz in the sufficient
statistic uniformly over time.

Then there exists a policy class implementable by a finite-state controller with memory

m = O(r(log H + log(1/e)))

bits such that, for every POMDP in P, the class contains a policy whose expected return
differs from the optimal value by at most €.



Computer Science & Information Technology (CS & IT) 43

Interpretation and context. This result should be read as a formalised synthesis of classical
compression ideas under structured partial observability, including predictive state repre-
sentations and spectral or low-rank POMDP methods. It is included here not to introduce
a new compression technique, but to make explicit how mild and interpretable structural
assumptions can collapse worst-case ©(H) memory requirements to polylogarithmic de-
pendence on the horizon within our conditional-complexity framework.

Proof. By assumption, there exists an r-dimensional sufficient statistic by € R” such that
(i) by41 = F(bt, 0441, ar) for some (instance-dependent) update map F', and (ii) the optimal
action at time t can be chosen as a function of (b;,t) up to € loss over horizon H.

To implement such a policy with finite memory, quantise each coordinate of b; to pre-
cision n = O(e/H) so that the cumulative value loss from quantisation over H steps is
at most ¢ (standard Lipschitz/stability arguments under the stated stability assumption).
Each coordinate then requires O(log(1/n)) = O(log H + log(1/¢)) bits. Storing r coordi-
nates requires m = O(r(log H +1log(1/¢))) bits. Suppressing polylogarithmic factors yields
the O(-) statement. The resulting finite-state controller induces a policy class containing
an e-optimal policy for every instance in P.

Because the belief update map F' is Lipschitz in the sufficient statistic uniformly over
the horizon, the composition of F' with coordinate-wise quantization induces at most O(n)
error per step, which accumulates linearly over H steps and is therefore bounded by ¢ for

n=06(/H).

The role of memory in partially observable environments has been widely studied.
[Ghavamzadeh et al.(2015)] survey Bayesian approaches to reinforcement learning, includ-
ing belief-state methods for POMDPs, but focus on computational rather than information-
theoretic aspects of memory. [Hausknecht and Stone(2015)] demonstrate empirically that
recurrent architectures can mitigate partial observability in deep RL, yet do not charac-
terise the memory requirements theoretically. Our contribution complements these works
by quantifying how structural assumptions on observations reduce memory complexity.
Remark. The uniform Lipschitz stability assumption excludes certain POMDPs whose
belief dynamics are only locally contractive or exhibit transient sensitivity. Our aim here
is not maximal generality, but to make explicit how mild and interpretable structural
assumptions suffice to collapse worst-case memory requirements.

Probabilistic safety guarantees in constrained environments Our formulation
is inspired by robust MDPs and early work on safety in reinforcement learning [Nilim
and El Ghaoui(2005)],[Amodei et al.(2016)]. The qualitative distinction between worst-
case linear memory growth and structure-dependent logarithmic growth is illustrated in
Appendix A, Figure A4.

Definition 2 (Probabilistic shield). Let M = (S, A, P,R) be an MDP with safe set
Ssafe € S. A probabilistic shield is a mapping I' : Sgate = A(A) assigning a distribution
over actions at each safe state.

Unlike constraint-based or asymptotic safety formulations, the probabilistic shielding
bound here provides an explicit finite-horizon guarantee that holds independently of learn-
ing convergence or stationarity assumptions.

Theorem 1 (Probabilistic shielding guarantee). Let M = (S, A, P,R) be an MDP
with safe set Sgate € S. Define

a = min Z I'(als), o:= min P(s € Squfe | 5,a).
SeSsafe Sessafeaae-'4
a: P(s'¢Ssate|s,a)=0
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Let 7 be any base policy and consider the mizture policy mg(- | s) := SI'(-| s)+(1—=8) (- |
s) with B € (0,1]. If Sp € Ssate, then for any integer T > 1,

P(S; € Seate VE € {0,...,T}) > (Ba+(1—pB)o)".
In particular, for pure shielding (8 = 1), P(safe for T steps) > ar.

Related shield/monitor mechanisms are widely used in safe RL and verification;
Theorem 1 isolates a particularly simple finite-horizon mixture form that yields an explicit
closed-form lower bound.

Proof. Fix any time ¢ and condition on the event {S; = s} where s € Sgute. Under 7, the
action distribution is the convex combination SI'(- | s) + (1 — )7 (- | s).

Let Agre(s) := {a € A: P(Si41 ¢ Ssate | St = s, A = a) = 0} be the set of actions
that keep the next state in Sgafe with probability one. By definition of «;

P(A; € Agate(S) | St = s, shield part) = Z I'a|s) > a.
aeAsafe(S)

Therefore the shield component ensures one-step safety with probability at least Sa.
Independently, by definition of o, for any state s € Sgafe and action a € A,

IP)(StJrl € Ssate | Sp = 5,44 = a) > o.

Hence, under the base-policy component of the mixture, one-step safety is at least (1—3)o.
Combining the two contributions yields the uniform lower bound

P(Si41 € Ssate | St = 8) > Ba+ (1 —B)o Vs € Ssafe-

Now apply the chain rule and the Markov property:

T—1
IP>(Sl € Ssafea o vST € Ssafe | SO € Ssafe) = H P(StJrl € Ssafe | St € Ssafe) > (BOﬁL(l*ﬁ)O’)T»
t=0

which proves the theorem.

Figure A5 provides a conceptual visualisation of the finite-horizon safety lower bound
from Theorem 1 as a function of the horizon 1" and the shielding parameter 8. The figure
highlights the explicit trade-off between safety and autonomy: larger values of 8 yield
exponentially stronger lower bounds on safety, whereas smaller values place greater reliance
on the base policy.

When a = 0, the bound becomes vacuous, reflecting the absence of any action that is
provably safe under the shield. This conclusion follows from the definition of o alone and
is unaffected by the choice of 5.

Hard shielding as invariance under action filtering

Lemma 1 (Invariance of the safe set under shielded execution). Let M = (S, A, P, R)
be a Markov decision process and let Ssate C S be a designated safe set. Assume there exists
a shield G such that for every s € Ssate

G(s)#@ and P(s' ¢ Sate | 5,0) =0 Va € G(s). (1)
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Consider any (possibly learning) policy 7 that first proposes an action a; ~ 7( - |hy) on
the basis of the history hy = (so, ao, ..., St—1,at—1,5t) and then executes a shielded action

ar € G(Sy) (e.g. by rejection sampling or projection).
If the initial state is safe, So € Ssate almost surely, then
Pr[S; € Sate V> 0] = 1.

Proof. Let (Fi)i>0 be the natural filtration generated by the trajectory {(S:,ar)}r<¢.
Define the event
E;:={5; € Sqate for all 0 < 7 < t}.

Base case t = 0. By assumption Sy € Sgate almost surely, so Pr(Ep) = 1.

Induction step. Assume Pr(E;) = 1 for some ¢ > 0. We need to show Pr(E;;) = 1.
Because F; € F; and Pr(E;) = 1, conditioning on F; is the same as conditioning on E;.

On FE; we have S; € Sga5e almost surely, hence the shield chooses an admissible action
a; € G(S;) almost surely. By the closure property (1), we have

PI'[SH_l g Ssafe ’ ft] = E|: 1{St+1¢ssafe} ) St,dt} = PI‘(SH_l §é Ssafe | St’&t) =0 a.s.
Therefore Pr(Si11 € Ssate | F¢) = 1 and, taking expectations, Pr(E;+1) = 1.

Conclusion. By induction, Pr(F;) = 1 for all ¢ > 0. Hence the entire trajectory stays
inside Sgafe almost surely, which establishes the claim.

3 Simulation Study

We study how the hitting time tn;, varies with the number of within-episode change-points
K when an incremental agent interacts with a piece-wise stationary binary environment.

Environment and agent parameters. The episode horizon is fixed at H = 600 time-
steps. We sweep the grid K = 1,2,...,12; the average segment length is therefore L =
H/(K+1) € [46,300]. Each observation matches the latent ground-truth bit with probabil-
ity Peorrect = 0.875. Inside every segment the agent devotes a fraction explore_frac= 0.20
of the steps to undirected exploration, giving an absolute budget of nexpiore = [0.20 L]
(Table 1). The performance threshold is a mean reward of at least r, = 0.80; with
conf_margin= 0 the stopping rule declares success as soon as the running empirical mean
first exceeds r,.

Batching and termination. Episodes are generated in parallel batches of 500. For a given
K, the simulation terminates when the first batch whose running mean reward surpasses
ry completes, or after 20, 000 episodes if the threshold is never crossed. Because the test is
executed only after a completed batch plus the first episode of the next batch, the earliest
detectable success is at episode 501, yielding the constant! tp;; = 501 x 600 = 300, 600
interactions for all runs. Code is written in R (v4.3) [R Core Team(2025)] and parallelised
with furrr (Appendix A).

! The internal episode counter starts at 0; episode index 500 corresponds to the 5015 episode in 1-based
counting.
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Results. We emphasise that the simulation study in Section 3 is illustrative rather than
comparative. The aim is not to demonstrate algorithmic superiority over baselines, in-
deed we propose no new algorithm, but to visualise the scaling behaviour predicted by
the theoretical analysis. Statistical superiority tests such as the Wilcoxon signed-rank
test or Friedman test are designed to compare competing methods on a shared task;
they are therefore not applicable here, as our contribution is a conceptual framework
for understanding conditional complexity, not an algorithm claiming improved empirical
performance. Convergence and stability analyses similarly presuppose an optimisation ob-
jective, whereas our simulation instantiates the multiplicative interaction between partial
observability and nonstationarity identified in Proposition 1.

Table 1 summarises the exploration budget and the final batch-mean reward for every
K. Although the average segment length shrinks by a factor of 6.5 from K =1 to K = 12,
the agent exceeds the target in the earliest possible check for every setting, and the final
reward varies only in the third decimal place. Non-stationarity therefore does not become
a bottleneck under this combination of generous exploration (20%) and relatively accurate
observations (87.5%).

Table 1. Exploration budget and final batch return for each number of change-points K (H =
600, pcorrect = 0.875). The hitting time is the same for all settings (tniy = 300600) and the performance
target is r. = 0.80.

K 1 2 3 4 5 6 7 8 9 10 11 12

TNexplore 60 40 30 24 20 17 15 13 12 10 10 9
final mean 0.804 0.805 0.806 0.804 0.806 0.806 0.805 0.807 0.805 0.810 0.802 0.806

The columns now correspond to the different values of K and the two rows report the
exploration budget and the resulting final batch-mean reward.

Interpretation. With an informative sensor (peorrect = 0.875) and a modest reward thresh-
old, the agent already outperforms the target from the very first few episodes. The coarse
batch-level stopping rule masks this fact; finer resolution could be obtained by (i) reducing
the batch size or (ii) evaluating the success criterion more frequently within a batch.

4 Conclusion and Outlook

The central message of this survey is not that reinforcement learning is intractable in
the worst-case, this has long been established, but rather that a substantial gap remains
between worst-case lower bounds and the effective difficulty of many real-world tasks.
Classical minimax analysis captures adversarial regimes, yet it often obscures the fact
that practical settings exhibit exploitable structure. We therefore argue for a decisive
shift from purely worst-case reasoning toward a structure-conditioned theory of statistical
complexity.

Under this perspective, performance guarantees should tighten automatically as an
agent discovers exploitable structure in its environment, while degrading gracefully when
multiple statistical obstacles, such as partial observability, nonstationarity, high dimension-
ality, and safety constraints, interact in an adversarial manner. Guarantees should thus
respond to what the agent learns online, rather than being fixed a priori by pessimistic
assumptions.
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The results collected and synthesised in this paper, including multiplicative lower
bounds for partially observable nonstationary MDPs, memory reductions under low-rank
observation structure, and finite-horizon probabilistic safety guarantees, constitute initial
steps toward such a conditional theory. Together, they suggest a concrete and interdisci-
plinary research agenda.

First, reinforcement learning algorithms should incorporate online structure discovery.
Embedding spectral rank tests, change-point detectors, and sparsity estimators directly
into the learning loop would allow agents to continually refine their effective model class
as evidence accumulates.

Second, there is a need for conditioned regret and safety bounds whose rates depend
explicitly on the structure actually detected, such as intrinsic rank, latent dimensional-
ity, or the number of change-points, rather than on worst-case parameters. Regret and
failure-probability guarantees of the form Rp = O(@(rank, dim, K, H )) would better re-
flect achievable performance in structured environments.

Third, algorithm design should move beyond the current siloed practice in which explo-
ration, memory, and adaptation are handled by largely independent components. Instead,
unified objectives should explicitly trade off sample efficiency against representational
capacity and adaptation speed, recognising that these elements interact in fundamental
ways.

Fourth, probabilistic shielding should be integrated into the learning loop itself. Rather
than treating safety constraints as static filters, the safety, mixing parameter S can be
viewed as a control variable that is optimised online, for example through a risk-sensitive
critic or feedback from formal-verification modules.

Finally, progress in conditional complexity theory requires benchmarks with tunable
latent structure. Moving beyond fixed suites such as Atari or MuJoCo, future benchmarks
should allow rank, observability, and nonstationarity to be varied continuously, enabling
empirical validation of structure—-dependent theoretical claims.

Bridging reinforcement learning theory with control, formal-verification, and robust
optimisation under this unified framework will not only sharpen our mathematical under-
standing but also enable the development of reinforcement learning systems that learn
faster, adapt longer, and fail more rarely in the imperfect and ever-changing real
world.
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A  Appendix

A.1 Additional Conceptual Plots

Appendix references. The qualitative behaviour discussed in the main text is visualised in
Appendix A, Figs. A4 and A5.
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Structure—dependent memory requirements (conceptual)
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Fig. A4. Memory requirements vs. horizon. Worst-case POMDPs require ©(H) memory, whereas

families with rank-r observation structure admit 5(7" log H ) memory (suppressing poly-log factors in €).

Lower bound on P(safe for T steps)

Probabilistic shielding: finite—horizon safety bound (conceptual)
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Fig. A5. Finite-horizon safety under probabilistic shielding. The bound (Ba+(1—3)o)7 is plotted
for several shield mixes 8. Larger 3 ensures stronger safety (steeper curve) but reduces reliance on the base
policy.
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