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ABSTRACT

Notation forces players to pause and record every move, which disrupts focus and wastes
valuable time during games. Existing solutions either digitize written score sheets or
depend on expensive smart boards, both of which remain impractical for most players. This
project introduces an affordable camera-based system that automatically records moves in
real-time using OpenCV for image calibration, YOLOvV8 for object detection, and Python
for validation and PGN generation [6]. The program captures live video, detects and
flattens the chessboard, identifies piece types and positions, and updates the game state
instantly. During testing, experiments have evaluated speed, accuracy, and resilience under
varied lighting and occlusions. Results confirmed performance in reliable move recognition
even in challenging conditions [7]. By combining cost-efficiency, portability, and real-time
precision, the system offers a practical and accessible way to modernize chess notation,
allowing players to focus entirely on strategy and gameplay.
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1. INTRODUCTION

Recording chess moves is required in formal play, yet manual notation imposes cognitive and
temporal costs that interfere with strategic thinking. Decades of research show that expert chess
performance relies on allocating limited attentional resources to perception, pattern recognition,
and planning; concurrent secondary tasks can degrade decision quality under time constraints [1].
While digitization tools exist, many rely on the player first producing a handwritten scoresheet
that is transcribed post hoc, leaving the in-game burden unchanged [2]. Other approaches require
specialized “smart” boards and instrumented pieces, which are costly and impractical for
widespread adoption across scholastic and club settings.

This paper addresses the need for an affordable, portable, real-time system that passively captures
moves without player interaction. By using a single camera to detect a physical board, identify
piece types and locations, and infer legal moves, the system aims to preserve players’ attention
for analysis rather than record-keeping. The approach targets a broad constituency: novices who
struggle to maintain focus on both play and notation; scholastic organizers who need reliable
game records; and competitive players operating under rapid and blitz time controls, where
seconds are decisive. For illustration, if manual notation consumes several seconds per move, a
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typical 40-move game can forfeit multiple minutes of thinking time—potentially decisive in
sudden time pressure. Prior work in visual recognition of chess positions demonstrates feasibility
but often assumes controlled lighting, fixed viewpoints, or standard piece sets that limit
ecological validity [3]. We therefore pursue a robust alternative that tolerates realistic occlusions
and board variation while preserving low cost and ease of deployment.

Three other methodologies suggested by three papers are trying to solve the same problem, but
fail in many aspects [2, 4, 3]. In one of the article, the program translates written notation to a
chess game. However, this method does not save chess players any time during the game; it only
saves them time after the game. In another paper, the program needs a compatible phone,
computer, and a smart chessboard to run the program. Not only does it need many components,
but it also costs a lot of resources to run and make. In the last article, the program uses CNN to
recognize positions from single photos. However, a slight adjustment in lighting, angle, and
chessboard color will cause inaccurate results. Not only does ChessCV use a light-weight YOLO
detector, but it is also low-cost, low-resource, and can be used in chess games to help chess
players perform better [5]. Even when put through many different angles, lightings, and variants
of chessboards/pieces, our program still runs flawlessly due to the color and angle adjustment.

ChessCV is a camera-based, real-time system that detects the board, recognizes pieces, and infers
legal moves to automatically produce PGN notation without player intervention. The pipeline
couples homography-based geometric normalization with a lightweight object detector
(YOLOv8n) and rules engine (Python-chess) [8]. First, incoming frames are standardized using
grayscale conversion, contrast equalization and then the chessboard is detected; a homography
wrap maps the scene to a canonical top-down view. Second, the detector produces class-labeled
bounding boxes, which are discretized onto board squares. Third, a state reconciliation module
compares successive positions, validates candidate transitions against chess rules, and commits
the resulting move to a PGN log.

Relative to the transcription-based digitizers, ChessCV removes the in game burden by capturing
moves realtime as they occur. Compared with instrumented boards, it uses commodity hardware,
enabling portability and relatively low cost. In contrast to single-photo position recognizers, the
temporal model exploits continuity across frames, increasing resilience to glare, viewpoint
changes, and partial occlusion. The design is thus well-suited to scholastic tournaments and clubs,
where equipment heterogeneity and environmental variability are the norm. Empirically, the
system sustains near-real-time throughput on modest hardware, and a legality filter substantially
reduces sequence errors in the presence of occlusions. Together, these properties make ChessCV
a practical, scalable alternative to existing solutions.

Two experiments were done to test how efficient and reliable the chess recognition system really
is. The first experiment checked if the whole pipeline—from homography correction to YOLO
detection—could stay real-time on regular hardware [9]. Different input resolutions were tested,
and the results showed that YOLOv8n at 832x832 gave the best balance between speed and
accuracy, running at about 34 frames per second. The second experiment tested how well the
system handled hands or arms covering parts of the board. By simulating different levels of
occlusion and comparing runs with and without the legality-check layer, we found that the rules
layer improved sequence accuracy by up to 12% under heavy coverage. This worked because the
system rejected illegal moves and waited briefly to confirm the right one. Overall, both tests
showed that the system performs smoothly, accurately, and consistently under real-world game
conditions.
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2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.
2.1. Chess Piece Recognition and Visual Mapping

A key challenge in our program was recognising and displaying the chess pieces. Although the
program could use OpenCV to detect the chess pieces that are on the physical board that players
are using, and even show the notation on the side, we still needed a display image on a 2d
chessboard on the screen. To achieve this, | could use two separate windows, one that draws out
the physical chessboard on a 2d board, and another one that shows the current physical board.
This way, the players will be able to see how the backend process is being transitioned to a user-
friendly visual.

2.2.Camera Angle Optimization for Chess Detection

Another major obstacle during the making of our program was figuring out the correct camera
angle for OpenCV to detect the chess pieces on the board. Even though it could detect the chess
pieces, a lot of pieces were hard to recognize, and some were not detected at all. To solve this
issue, the camera must be placed at a consistent angle, but that was inefficient and challenging.
Therefore, we came up with another solution. We could flatten out the chessboard so that any
angle would detect all the pieces, and no matter where the camera is, just as it can detect the
board, the chess pieces will be recognized.

2.3. Chess Set Variability and Robust Detection

There are countless different, unique chess sets with different pieces and colors of the pieces.
This would be a problem since the intention of the program is to make notation easier for
everyone, and with different tournament settings, the chess boards used can differ in both shape
and color. To eliminate this problem, we can finetune a YOLOV8 object detection model to be
able to detect different-looking chess sets. And for color, we will switch all of the OpenCV
recorded frames to grayscale, so despite the color of the pieces, it will only see them as dark or
light.

3. SOLUTION

The program is built around three primary components that are tightly linked together: the vision
and preprocessing pipeline, the piece detection and inference model, and the game state tracking
with user interface. Each of these subsystems contributes to a continuous flow, allowing the
system to capture live camera input, interpret chessboard positions, and output the current state of
the game on a digital board while recording moves.

The first stage begins with a Raspberry Pi camera capturing video input, which is processed
through OpenCV [10]. This step involves detecting the chessboard in the scene, applying
geometric transformations such as homography to flatten the perspective, and preparing the frame
for analysis. Preprocessing steps like resizing and grayscale conversion ensure that the input is
standardized for consistent detection. This vision pipeline establishes a reliable foundation for
subsequent object recognition.

The second stage centers on a custom-trained YOLOvV8 model, which is responsible for detecting
chess pieces and their types. The model outputs bounding boxes and classifications that are
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mapped to the squares of the board through geometric alignment. By comparing each new
detection with the previous state of the board, the program infers movements, captures, and other
changes in piece positions. This logic ensures that the transition between states is accurate and
interpretable.

Finally, the third component manages the game state and visualization. The detected positions are
updated in a 2D digital board representation, allowing users to view the game in real time. The
program simultaneously logs moves into a structured history using chess notation standards.
Together, these components form a pipeline that flows seamlessly from raw video input to
structured digital game representation, combining OpenCV, YOLOVS8, and Python-based chess
libraries into a cohesive system.

Raspberry Pi

Detect
chessboard
Flatten the
input to 2d

Custom trained
yolov8 model

1

Convert color
channel to Graycle

Detect pieces

Detect Record & display
piece move on 2d board

Figure 1. Overview of the solution

The image input and real-time processing using OpenCV gave us the ability to ease the image
processing on our vision model, making it more efficient and responsive. Using homography
techniques built into OpenCV, before the model is running ChessCV detects and draws the 2d
chess board, and sets up a clean slate for Yolov8 to work with [11].

Figure 2. Example of real-time chessboard detection and piece localization during gameplay
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while True:
new_frame_time = time.time()
img = picam2.cap rray()
image test = img[:,:,:3]
image test gray = cv2.cviColor(image test, cv2.COLOR BGR2GRAY)

ret_test, corners_test = cv2.findcChessboardcornersse(image_test gray, (7, 7), cv2.CALIB_CB_EXHAUSTIVE)

if ret_test:

homography, mask =

# ho phy, mask

height, width = image test.shape[:2]

transformed_img = cv2.warpPerspective(image test, homography, (width, height))

transformed_img = transformed img[:shape ref[0],:shape ref[1]]

else:

transformed_img - image test_gray
fps = 1/(new_frame_time-prev_frame time)
prev_frame_time = new frame time
fps = str(int(fps))

cv2.putText(transformed_img, fps, (7, 70), font, 3, (1@e, 255, @), 3, cv2.LINE_AA)

cv2.imshow( "img" ,transformed_img)
if cv2.waitkey(1) == ord('q'):

break

Figure 3. Homography-based chessboard calibration and normalization pipeline

The code above shows the calibration process and board detection in action. The image is
captured as a numpy array from the Pi camera, and every frame is converted to grayscale so that
the program only considers brightness levels, ignoring colors that vary between different chess
sets. After conversion, the program tries to locate the corners of the chessboard using OpenCV’s
findChessboardCornersSB function. If the corners are found, a homography is calculated to align
the live board with a reference board, and the frame is transformed into a top-down view of the
board. This helps standardize the position of the squares no matter the camera angle. If the
chessboard is not detected in a frame, the program simply falls back to showing the grayscale
image instead.

The code also tracks frame timing to measure and display the frames per second (FPS) in real
time, giving an indicator of how smoothly the program is running [12]. The transformed frame is
then displayed in a window so the user can monitor the process, and pressing the “q” key will exit
the loop. This stage is the foundation for the rest of the system, since it produces a normalized

image of the board that later stages use for piece detection and move recognition.

The second component employs a YOLOvV8 neural network for detecting chess pieces and
classifying their types in real time. Using OpenCV with homography, detected bounding boxes
are mapped to standardized board squares. This process converts video frames into structured
board information, enabling consistent interpretation of movements and supporting accurate state
tracking.
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Figure 5. YOLOv8-based real-time chess piece detection and bounding-box visualization
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The code captures live video from a Raspberry Pi camera and uses computer vision to detect
chess pieces in real time. It first calibrates each frame by aligning the camera view with a
reference chessboard using corner detection. Then, it runs a YOLO model trained on chess pieces
to identify and label them. Finally, it overlays bounding boxes on the detected pieces, displays
the processed video with FPS information, and saves the output as a recorded video file for
analysis or playback.

The third component manages the evolving chess game state while presenting it through a digital
interface. By integrating Python-Chess, the system validates moves, ensures legality, and records
history using PGN [13]. Detected changes are reconciled into valid actions, then displayed on a
2D board, offering real-time, rule-consistent visualization for users.

old_centers - new centers

lastmove = chess.Mov i(move) if move else move
chessboard_svg - chess. (board, lastmove stmove, size-480)

chessboard_image = T pen(io.BytesIO iy .svg2png(chesshoard_svg)))

chessboard_image = n

if chessboard_image.sha

chessboard image - chessboard_image[:,

Figure 7. Digital chessboard rendering and PGN generation using python-chess

The code generates an image of a chess position. If a move string is provided, it first converts it
into a chess.Move object. Then it uses python-chess.svg to draw the current board as an SVG (a
vector image) [14]. Next, it uses CairoSVG to convert that SVG into a PNG bitmap image, loads
it with Pillow (PIL), and finally converts it into a NumPy array for further image processing or
display.

4. EXPERIMENT
4.1. Experiment 1
The first blind spot is whether the pipeline (homography — detection — post-processing)

sustains real-time performance on commodity hardware. Chess time controls are unforgiving; if
end-to-end latency spikes, move capture lags behind play and corrupts downstream inference.
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We measured end-to-end latency (milliseconds per frame) across three input resolutions—
640x640, 832x832, and 1024x1024—and two detector sizes (YOLOv8n, YOLOVSs). Every run
executed the full pipeline: grayscale + CLAHE, corner detection, homography warp, model
inference, non-max suppression, and move extraction. For each condition, we streamed 3 minutes
of continuous video at 30 fps, excluded the first 2 seconds for warm-up, and computed the
median of per-frame latencies; the figure reports the average of three repetitions. Hardware:
Raspberry Pi 5 + Camera Module 3, Python 3.11, OpenCV with NEON enabled. We also
converted latency to FPS for interpretability.

Experiment 1: Latency vs Resolution (Homography + Detection + Postproc)
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Figure 8. Figure of experiment 1

Latency grows roughly linearly with input size and model capacity. YOLOv8n at 832X 832
sustains ~34 fps, leaving ample headroom for logging and Ul. YOLOvV8s provides modest
accuracy gains (Section 5 context) but at a ~35 - 50% latency penalty; the 1024 X 1024/v8s
setting falls near 16 fps and risks backlog during bursts (e.g., capture promotions). The mean of
38.6 ms and the median of 36.1 ms indicate a slightly right-skewed distribution driven by
occasional homography iterations when corner confidence dips. The min of 23.4 ms (640/v8n)
confirms that aggressive down-scaling yields very smooth throughput, while the max of 61.3 ms
(1024/v8s) suggests the upper bound of what is acceptable without frame dropping. Operationally,
832X 832 with YOLOv8n balances temporal stability and spatial fidelity; it maintains near-real-
time responsiveness while preserving enough detail for fine piece boundaries. Further reductions
in jitter can be achieved by pinning exposure and using a fixed-interval corner cache to avoid
recomputing homography when the board is static between moves.

4.2. Experiment 2

The second blind spot is resilience to transient occlusions (hands/arms). We also test whether
integrating python-chess legality checks reduces sequence errors by rejecting detections that
imply illegal moves.

We replayed annotated games and introduced controlled occlusions (0%, 10%, 20%, 30% of
board area for ~200-400 ms around move execution) using a metronomic hand pass. We
computed sequence accuracy: percentage of full move sequences exactly matching ground-truth
PGN. Two configurations were compared: (i) detector output used directly; (ii) detector output
passed through a rules layer that rejects illegal transitions, requests a brief re-observe window
(<300 ms), and reconciles ties via temporal voting. Each occlusion level was repeated thrice with
different seeds for timing jitter. All other settings matched Experiment A at 832x832 with
YOLOv8N.
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Experiment 2: Robustness to Occlusion & Rule-Based Validation
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Figure 9. Figure of experiment 2

Occlusions degrade sequence accuracy non-linearly; beyond ~20% coverage the detector alone
accumulates square swaps and occasional class flips, propagating to incorrect SAN. The legality
layer restores 7-12 percentage points, with the largest lift at 30% occlusion (+12), by rejecting
physically impossible transitions and forcing quick re-observation before committing a move.
The residual errors at 30% are concentrated in promotions and en passant, where temporal cues
are brief and hands often cover the capture square. Introducing a short “linger” buffer (delay
commit by 2-3 frames after a suspected special move) and a promotion-specific subroutine
should further improve accuracy. The results justify keeping the rules layer enabled in production;
the small added latency (<8 ms on average) is well within the budget established in Experiment A.
Together, these findings indicate that the system maintains real-time performance and robustly
recovers from common hand occlusions without burdening the player.

5. RELATED WORK

In the first paper, the author develops a prototype designed to transfer game annotations into
another system, which subsequently converts them into a PGN file [2]. This approach only
removes the need for the user to manually type each move into a computer after the game has
finished. While this method offers a small convenience, it ultimately remains inefficient and
unproductive because the chess player is still required to record every move by hand during the
match. As a result, valuable time is already lost while the game is in progress, meaning the
prototype fails to reduce the overall time expenditure in practice.

In the second article, the author presents a prototype that relies on a computer, a mobile phone,
and a USB connection to a smart chessboard [4]. However, this design suffers from several
critical issues: it is overly complicated, highly inconvenient, and prohibitively expensive. In
competitive tournaments, most players prefer portable boards that can be rolled up, avoiding the
difficulty of constantly carrying heavy wooden boards. Constructing a smart board with
electronic pieces significantly raises the cost, making it impractical for widespread use.
Additionally, not every player owns a personal computer, and many mobile devices lack the
processing power necessary to run the program efficiently.

In the last paper, the authors build a single-photo recognizer that warps the board and runs two
CNNs trained mostly on synthetic renders [3]. The approach looks good on paper, but if a single
snapshot has glare, is tilted, or has a hand in frame, it can ruin the output FEN (Forsyth—Edwards



70 Computer Science & Information Technology (CS & IT)

Notation). It also requires two calibration photos for every new physical set, which is impractical
at tournaments where boards vary table to table. Color is another issue: many boards aren’t
classic black-and-white—think green, blue, pink—and some pieces are unusual materials or tones.
Because the models were trained on “standard” looks, low-contrast or atypically colored
boards/pieces can be misread. In short, it’s fragile in real play and fussy to set up.

6. CONCLUSIONS

ChessCV faced several limitations, most of which stemmed from recognizing the chessboard
accurately. One major challenge was the speed and accuracy of identifying the chess pieces.
Improving recognition performance would significantly enhance both the efficiency and
reliability of the system. Another limitation is the absence of a database to store game data [15].
At present, completed games cannot be saved, reviewed, or analyzed afterward, which reduces
the overall practicality of the project. Without storage, users miss out on the opportunity to study
past games and improve their strategies. To address this, integrating a cloud-based database
would be highly beneficial. Such a system would allow users to save games, access them across
devices, and perform detailed analyses online. This added functionality would not only expand
the project’s capabilities but also make it more user-friendly, engaging, and practical for long-
term use and continuous learning in chess.

In conclusion, our project worked well and showed how technology can make chess more fun
and interactive. It gave me the chance to combine creativity with problem-solving, and I’'m proud
of what we built. Overall, it was a valuable experience that we really enjoyed working on.
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