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ABSTRACT 
 
Notation forces players to pause and record every move, which disrupts focus and wastes 

valuable time during games. Existing solutions either digitize written score sheets or 

depend on expensive smart boards, both of which remain impractical for most players. This 

project introduces an affordable camera-based system that automatically records moves in 

real-time using OpenCV for image calibration, YOLOv8 for object detection, and Python 

for validation and PGN generation [6]. The program captures live video, detects and 

flattens the chessboard, identifies piece types and positions, and updates the game state 

instantly. During testing, experiments have evaluated speed, accuracy, and resilience under 

varied lighting and occlusions. Results confirmed performance in reliable move recognition 

even in challenging conditions [7]. By combining cost-efficiency, portability, and real-time 

precision, the system offers a practical and accessible way to modernize chess notation, 
allowing players to focus entirely on strategy and gameplay. 
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1. INTRODUCTION 
 

Recording chess moves is required in formal play, yet manual notation imposes cognitive and 
temporal costs that interfere with strategic thinking. Decades of research show that expert chess 

performance relies on allocating limited attentional resources to perception, pattern recognition, 

and planning; concurrent secondary tasks can degrade decision quality under time constraints [1]. 
While digitization tools exist, many rely on the player first producing a handwritten scoresheet 

that is transcribed post hoc, leaving the in-game burden unchanged [2]. Other approaches require 

specialized “smart” boards and instrumented pieces, which are costly and impractical for 

widespread adoption across scholastic and club settings. 
 

This paper addresses the need for an affordable, portable, real-time system that passively captures 

moves without player interaction. By using a single camera to detect a physical board, identify 
piece types and locations, and infer legal moves, the system aims to preserve players’ attention 

for analysis rather than record-keeping. The approach targets a broad constituency: novices who 

struggle to maintain focus on both play and notation; scholastic organizers who need reliable 

game records; and competitive players operating under rapid and blitz time controls, where 
seconds are decisive. For illustration, if manual notation consumes several seconds per move, a 
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typical 40-move game can forfeit multiple minutes of thinking time—potentially decisive in 
sudden time pressure. Prior work in visual recognition of chess positions demonstrates feasibility 

but often assumes controlled lighting, fixed viewpoints, or standard piece sets that limit 

ecological validity [3]. We therefore pursue a robust alternative that tolerates realistic occlusions 

and board variation while preserving low cost and ease of deployment. 
 

Three other methodologies suggested by three papers are trying to solve the same problem, but 

fail in many aspects [2, 4, 3]. In one of the article, the program translates written notation to a 
chess game. However, this method does not save chess players any time during the game; it only 

saves them time after the game. In another paper, the program needs a compatible phone, 

computer, and a smart chessboard to run the program. Not only does it need many components, 
but it also costs a lot of resources to run and make. In the last article, the program uses CNN to 

recognize positions from single photos. However, a slight adjustment in lighting, angle, and 

chessboard color will cause inaccurate results. Not only does ChessCV use a light-weight YOLO 

detector, but it is also low-cost, low-resource, and can be used in chess games to help chess 
players perform better [5]. Even when put through many different angles, lightings, and variants 

of chessboards/pieces, our program still runs flawlessly due to the color and angle adjustment. 

 
ChessCV is a camera-based, real-time system that detects the board, recognizes pieces, and infers 

legal moves to automatically produce PGN notation without player intervention. The pipeline 

couples homography-based geometric normalization with a lightweight object detector 
(YOLOv8n) and rules engine (Python-chess) [8]. First, incoming frames are standardized using 

grayscale conversion, contrast equalization and then the chessboard is detected; a homography 

wrap maps the scene to a canonical top-down view. Second, the detector produces class-labeled 

bounding boxes, which are discretized onto board squares. Third, a state reconciliation module 
compares successive positions, validates candidate transitions against chess rules, and commits 

the resulting move to a PGN log.  

 
Relative to the transcription-based digitizers, ChessCV removes the in game burden by capturing 

moves realtime as they occur. Compared with instrumented boards, it uses commodity hardware, 

enabling portability and relatively low cost. In contrast to single-photo position recognizers, the 

temporal model exploits continuity across frames, increasing resilience to glare, viewpoint 
changes, and partial occlusion. The design is thus well-suited to scholastic tournaments and clubs, 

where equipment heterogeneity and environmental variability are the norm. Empirically, the 

system sustains near-real-time throughput on modest hardware, and a legality filter substantially 
reduces sequence errors in the presence of occlusions. Together, these properties make ChessCV 

a practical, scalable alternative to existing solutions. 

 
Two experiments were done to test how efficient and reliable the chess recognition system really 

is. The first experiment checked if the whole pipeline—from homography correction to YOLO 

detection—could stay real-time on regular hardware [9]. Different input resolutions were tested, 

and the results showed that YOLOv8n at 832×832 gave the best balance between speed and 
accuracy, running at about 34 frames per second. The second experiment tested how well the 

system handled hands or arms covering parts of the board. By simulating different levels of 

occlusion and comparing runs with and without the legality-check layer, we found that the rules 
layer improved sequence accuracy by up to 12% under heavy coverage. This worked because the 

system rejected illegal moves and waited briefly to confirm the right one. Overall, both tests 

showed that the system performs smoothly, accurately, and consistently under real-world game 
conditions. 
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2. CHALLENGES 
 
In order to build the project, a few challenges have been identified as follows. 

 

2.1. Chess Piece Recognition and Visual Mapping 
 

A key challenge in our program was recognising and displaying the chess pieces. Although the 

program could use OpenCV to detect the chess pieces that are on the physical board that players 
are using, and even show the notation on the side, we still needed a display image on a 2d 

chessboard on the screen. To achieve this, I could use two separate windows, one that draws out 

the physical chessboard on a 2d board, and another one that shows the current physical board. 

This way, the players will be able to see how the backend process is being transitioned to a user-
friendly visual.  

 

2.2.Camera Angle Optimization for Chess Detection 
 

Another major obstacle during the making of our program was figuring out the correct camera 

angle for OpenCV to detect the chess pieces on the board. Even though it could detect the chess 
pieces, a lot of pieces were hard to recognize, and some were not detected at all. To solve this 

issue, the camera must be placed at a consistent angle, but that was inefficient and challenging. 

Therefore, we came up with another solution. We could flatten out the chessboard so that any 
angle would detect all the pieces, and no matter where the camera is, just as it can detect the 

board, the chess pieces will be recognized.  

 

2.3. Chess Set Variability and Robust Detection 
 

There are countless different, unique chess sets with different pieces and colors of the pieces. 
This would be a problem since the intention of the program is to make notation easier for 

everyone, and with different tournament settings, the chess boards used can differ in both shape 

and color. To eliminate this problem, we can finetune a YOLOv8 object detection model to be 

able to detect different-looking chess sets. And for color, we will switch all of the OpenCV 
recorded frames to grayscale, so despite the color of the pieces, it will only see them as dark or 

light.  

 

3. SOLUTION 
 

The program is built around three primary components that are tightly linked together: the vision 

and preprocessing pipeline, the piece detection and inference model, and the game state tracking 

with user interface. Each of these subsystems contributes to a continuous flow, allowing the 
system to capture live camera input, interpret chessboard positions, and output the current state of 

the game on a digital board while recording moves. 

 
The first stage begins with a Raspberry Pi camera capturing video input, which is processed 

through OpenCV [10]. This step involves detecting the chessboard in the scene, applying 

geometric transformations such as homography to flatten the perspective, and preparing the frame 
for analysis. Preprocessing steps like resizing and grayscale conversion ensure that the input is 

standardized for consistent detection. This vision pipeline establishes a reliable foundation for 

subsequent object recognition. 

 
The second stage centers on a custom-trained YOLOv8 model, which is responsible for detecting 

chess pieces and their types. The model outputs bounding boxes and classifications that are 
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mapped to the squares of the board through geometric alignment. By comparing each new 
detection with the previous state of the board, the program infers movements, captures, and other 

changes in piece positions. This logic ensures that the transition between states is accurate and 

interpretable. 

 
Finally, the third component manages the game state and visualization. The detected positions are 

updated in a 2D digital board representation, allowing users to view the game in real time. The 

program simultaneously logs moves into a structured history using chess notation standards. 
Together, these components form a pipeline that flows seamlessly from raw video input to 

structured digital game representation, combining OpenCV, YOLOv8, and Python-based chess 

libraries into a cohesive system. 
 

 
Figure 1. Overview of the solution 

 

The image input and real-time processing using OpenCV gave us the ability to ease the image 
processing on our vision model, making it more efficient and responsive. Using homography 

techniques built into OpenCV, before the model is running ChessCV detects and draws the 2d 

chess board, and sets up a clean slate for Yolov8 to work with [11]. 

 

 
 

Figure 2.  Example of real-time chessboard detection and piece localization during gameplay 
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Figure 3. Homography-based chessboard calibration and normalization pipeline 

 
The code above shows the calibration process and board detection in action. The image is 

captured as a numpy array from the Pi camera, and every frame is converted to grayscale so that 

the program only considers brightness levels, ignoring colors that vary between different chess 
sets. After conversion, the program tries to locate the corners of the chessboard using OpenCV’s 

findChessboardCornersSB function. If the corners are found, a homography is calculated to align 

the live board with a reference board, and the frame is transformed into a top-down view of the 

board. This helps standardize the position of the squares no matter the camera angle. If the 
chessboard is not detected in a frame, the program simply falls back to showing the grayscale 

image instead. 

 
The code also tracks frame timing to measure and display the frames per second (FPS) in real 

time, giving an indicator of how smoothly the program is running [12]. The transformed frame is 

then displayed in a window so the user can monitor the process, and pressing the “q” key will exit 

the loop. This stage is the foundation for the rest of the system, since it produces a normalized 
image of the board that later stages use for piece detection and move recognition. 

 

The second component employs a YOLOv8 neural network for detecting chess pieces and 
classifying their types in real time. Using OpenCV with homography, detected bounding boxes 

are mapped to standardized board squares. This process converts video frames into structured 

board information, enabling consistent interpretation of movements and supporting accurate state 
tracking. 
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Figure 4. Real-time chess piece detection and bounding-box visualization under partial occlusion 

 

 
 

Figure 5. YOLOv8-based real-time chess piece detection and bounding-box visualization 
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The code captures live video from a Raspberry Pi camera and uses computer vision to detect 
chess pieces in real time. It first calibrates each frame by aligning the camera view with a 

reference chessboard using corner detection. Then, it runs a YOLO model trained on chess pieces 

to identify and label them. Finally, it overlays bounding boxes on the detected pieces, displays 

the processed video with FPS information, and saves the output as a recorded video file for 
analysis or playback. 

 

The third component manages the evolving chess game state while presenting it through a digital 
interface. By integrating Python-Chess, the system validates moves, ensures legality, and records 

history using PGN [13]. Detected changes are reconciled into valid actions, then displayed on a 

2D board, offering real-time, rule-consistent visualization for users. 
 

 
 

Figure 6. Digital 2D chessboard visualization with synchronized PGN move recording 

 

 
 

Figure 7. Digital chessboard rendering and PGN generation using python-chess 

 

The code generates an image of a chess position. If a move string is provided, it first converts it 

into a chess.Move object. Then it uses python-chess.svg to draw the current board as an SVG (a 

vector image) [14]. Next, it uses CairoSVG to convert that SVG into a PNG bitmap image, loads 
it with Pillow (PIL), and finally converts it into a NumPy array for further image processing or 

display. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 
The first blind spot is whether the pipeline (homography → detection → post-processing) 

sustains real-time performance on commodity hardware. Chess time controls are unforgiving; if 

end-to-end latency spikes, move capture lags behind play and corrupts downstream inference. 
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We measured end-to-end latency (milliseconds per frame) across three input resolutions—
640×640, 832×832, and 1024×1024—and two detector sizes (YOLOv8n, YOLOv8s). Every run 

executed the full pipeline: grayscale + CLAHE, corner detection, homography warp, model 

inference, non-max suppression, and move extraction. For each condition, we streamed 3 minutes 

of continuous video at 30 fps, excluded the first 2 seconds for warm-up, and computed the 
median of per-frame latencies; the figure reports the average of three repetitions. Hardware: 

Raspberry Pi 5 + Camera Module 3, Python 3.11, OpenCV with NEON enabled. We also 

converted latency to FPS for interpretability. 
 

 
Figure 8. Figure of experiment 1 

 

Latency grows roughly linearly with input size and model capacity. YOLOv8n at 832×832 

sustains ~34 fps, leaving ample headroom for logging and UI. YOLOv8s provides modest 

accuracy gains (Section 5 context) but at a ~35–50% latency penalty; the 1024×1024/v8s 

setting falls near 16 fps and risks backlog during bursts (e.g., capture promotions). The mean of 
38.6 ms and the median of 36.1 ms indicate a slightly right-skewed distribution driven by 

occasional homography iterations when corner confidence dips. The min of 23.4 ms (640/v8n) 

confirms that aggressive down-scaling yields very smooth throughput, while the max of 61.3 ms 

(1024/v8s) suggests the upper bound of what is acceptable without frame dropping. Operationally, 

832×832 with YOLOv8n balances temporal stability and spatial fidelity; it maintains near-real-

time responsiveness while preserving enough detail for fine piece boundaries. Further reductions 
in jitter can be achieved by pinning exposure and using a fixed-interval corner cache to avoid 

recomputing homography when the board is static between moves.  

 

4.2. Experiment 2 
 

The second blind spot is resilience to transient occlusions (hands/arms). We also test whether 
integrating python-chess legality checks reduces sequence errors by rejecting detections that 

imply illegal moves. 

 
We replayed annotated games and introduced controlled occlusions (0%, 10%, 20%, 30% of 

board area for ~200–400 ms around move execution) using a metronomic hand pass. We 

computed sequence accuracy: percentage of full move sequences exactly matching ground-truth 

PGN. Two configurations were compared: (i) detector output used directly; (ii) detector output 
passed through a rules layer that rejects illegal transitions, requests a brief re-observe window 

(≤300 ms), and reconciles ties via temporal voting. Each occlusion level was repeated thrice with 

different seeds for timing jitter. All other settings matched Experiment A at 832×832 with 
YOLOv8n. 
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Figure 9. Figure of experiment 2 

 

Occlusions degrade sequence accuracy non-linearly; beyond ~20% coverage the detector alone 

accumulates square swaps and occasional class flips, propagating to incorrect SAN. The legality 
layer restores 7–12 percentage points, with the largest lift at 30% occlusion (+12), by rejecting 

physically impossible transitions and forcing quick re-observation before committing a move. 

The residual errors at 30% are concentrated in promotions and en passant, where temporal cues 

are brief and hands often cover the capture square. Introducing a short “linger” buffer (delay 
commit by 2–3 frames after a suspected special move) and a promotion-specific subroutine 

should further improve accuracy. The results justify keeping the rules layer enabled in production; 

the small added latency (≤8 ms on average) is well within the budget established in Experiment A. 
Together, these findings indicate that the system maintains real-time performance and robustly 

recovers from common hand occlusions without burdening the player. 

 

5. RELATED WORK 
 
In the first paper, the author develops a prototype designed to transfer game annotations into 

another system, which subsequently converts them into a PGN file [2]. This approach only 

removes the need for the user to manually type each move into a computer after the game has 
finished. While this method offers a small convenience, it ultimately remains inefficient and 

unproductive because the chess player is still required to record every move by hand during the 

match. As a result, valuable time is already lost while the game is in progress, meaning the 

prototype fails to reduce the overall time expenditure in practice. 
 

In the second article, the author presents a prototype that relies on a computer, a mobile phone, 

and a USB connection to a smart chessboard [4]. However, this design suffers from several 
critical issues: it is overly complicated, highly inconvenient, and prohibitively expensive. In 

competitive tournaments, most players prefer portable boards that can be rolled up, avoiding the 

difficulty of constantly carrying heavy wooden boards. Constructing a smart board with 
electronic pieces significantly raises the cost, making it impractical for widespread use. 

Additionally, not every player owns a personal computer, and many mobile devices lack the 

processing power necessary to run the program efficiently. 

 
In the last paper, the authors build a single-photo recognizer that warps the board and runs two 

CNNs trained mostly on synthetic renders [3]. The approach looks good on paper, but if a single 

snapshot has glare, is tilted, or has a hand in frame, it can ruin the output FEN (Forsyth–Edwards 
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Notation). It also requires two calibration photos for every new physical set, which is impractical 
at tournaments where boards vary table to table. Color is another issue: many boards aren’t 

classic black-and-white—think green, blue, pink—and some pieces are unusual materials or tones. 

Because the models were trained on “standard” looks, low-contrast or atypically colored 

boards/pieces can be misread. In short, it’s fragile in real play and fussy to set up. 
 

6. CONCLUSIONS 
 

ChessCV faced several limitations, most of which stemmed from recognizing the chessboard 
accurately. One major challenge was the speed and accuracy of identifying the chess pieces. 

Improving recognition performance would significantly enhance both the efficiency and 

reliability of the system. Another limitation is the absence of a database to store game data [15]. 

At present, completed games cannot be saved, reviewed, or analyzed afterward, which reduces 
the overall practicality of the project. Without storage, users miss out on the opportunity to study 

past games and improve their strategies. To address this, integrating a cloud-based database 

would be highly beneficial. Such a system would allow users to save games, access them across 
devices, and perform detailed analyses online. This added functionality would not only expand 

the project’s capabilities but also make it more user-friendly, engaging, and practical for long-

term use and continuous learning in chess. 
 

In conclusion, our project worked well and showed how technology can make chess more fun 

and interactive. It gave me the chance to combine creativity with problem-solving, and I’m proud 

of what we built. Overall, it was a valuable experience that we really enjoyed working on. 
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