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ABSTRACT 
 

Modern complex systems increasingly demonstrate a paradox: they detect faults with high 
accuracy yet still experience unsafe, degraded, or mission-impacting failures. This paper 

introduces Failure Semantics as a missing systems-engineering construct that explains why 

correct diagnostics do not guarantee system correctness. It argues that failures emerge not 

from detection errors but from semantic mismatches between detection, interpretation, 

decision, and action layers. Drawing on diagnosability theory, resilience engineering, and 

functional safety research, the paper presents a taxonomy of semantic failures and 

proposes a layered Failure Semantics Framework comprising Detection, Interpretation, 

Decision, Action, and Feedback & Learning layers. By enforcing semantic contracts and 

leading semantic health indicators, the framework enables context-aware interpretation, 

intent-aligned decisions, and proactive fault management beyond reactive diagnostics. 
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1. INTRODUCTION 

 

Modern engineered systems employ increasingly sophisticated diagnostic techniquesincluding 
model-based reasoning, machine learning, and dense sensor networksto detect faults with high 

accuracy. Yet across multiple domains, systems continue to experience unsafe, degraded, or 

mission-impacting failures even when underlying faults are correctly detected. These failures 
arise not from detection gaps, but from semantic mismatches between fault detection, 

interpretation, decision-making, and action, amplified by temporal dynamics, context loss, human 

factors, and lifecycle evolution. To address this gap, this paper introduces Failure Semantics as a 

formal construct explaining why correct fault detection does not ensure correct system response. 
Failure semantics is defined as the contextual interpretation of detected conditions in terms of 

severity, urgency, scope, and required response, and is supported by a taxonomy of semantic 

failure modes grounded in diagnosability theory, resilience engineering, and functional safety 
research [10–12, 18]. A layered semantic framework is proposed to align diagnostics, decision-

making, and system intent across the system lifecycle, shifting the focus from whether faults are 

detected to whether systems respond correctly to what they detect [5, 14, 15, 17–20]. 
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2. BACKGROUND AND DEFINITIONS 

 

2.1. Fault, Error, Failure Revisited 
 

The foundational terminology for reasoning about system failures originates from dependability 
theory, particularly the work of Avizienis, Laprie, and colleagues on dependable computing [17], 

with later refinements addressing diagnosability and observability by Bozzano [12] and Gao et al. 

[1]. Within this framework, a fault is a defect or condition in hardware, software, design, or the 
environment that can lead to incorrect behavior and may be permanent, transient, or latent [1, 

17]. Activation of a fault produces an error, defined as an incorrect internal system state that may 

propagate through components or be masked by redundancy [12, 17]. A failure occurs when such 

an error becomes externally observable, resulting in service interruption, incorrect output, or 
violation of safety or mission requirements [17]. Together, the fault–error–failure chain describes 

a causal progression that underpins reliability engineering, safety analysis, and fault-tolerant 

design [1, 17]. However, this chain characterizes how failures occur, not how systems should 
respond once faults are detected, and therefore provides limited guidance on response 

correctness. 

 
Fault detection, while necessary, is insufficient for failure prevention because detection alone 

does not ensure that a system can interpret and act on fault information appropriately. A detected 

fault may be identified too late for effective mitigation or followed by delayed responses due to 

processing or communication latency [12]. The meaning of a fault is highly context-dependent, 
varying with operational mode, mission phase, environmental conditions, and system history 

[13]. Moreover, a system may lack the actuators, redundancy, or operational margin required to 

execute the intended response [4], or may prioritize one objective, such as hardware protection, at 
the expense of safety or mission success [21]. Interactions among multiple concurrent faults 

further invalidate single-fault response assumptions [12], while human operators may interpret 

diagnostic outputs differently from designers’ intentions, leading to inappropriate manual 

interventions [14, 15].  
 

2.2. What Are Failure Semantics? 
 

This paper defines Failure Semantics as the contextual interpretation of a detected condition that 

determines its meaning in terms of severity, urgency, scope, and required response within the 

operational and mission context of a system. Severity reflects how seriously a condition threatens 
safety, mission success, or efficiency and is not intrinsic to the fault itself, but dependent on 

system state, redundancy, and operational margins [2]. Urgency captures how rapidly the system 

must respond, shaped by fault propagation dynamics, time to failure, and available intervention 
windows [12]. Scope determines which parts of the system are affected or at risk and whether 

local mitigation is sufficient or coordinated system-level action is required [13]. The required 

response must be feasible, effective, and aligned with system intent, ensuring that safety and 
mission objectives are preserved rather than inadvertently compromised [23]. Failure semantics is 

inherently contextual, as identical fault codes can have markedly different meanings depending 

on operational mode, mission phase, environmental conditions, and system history. 

 
Modern diagnostic systems typically achieve syntactic correctness, meaning that faults are 

accurately detected, coded, and reported according to predefined standards such as SAE J1939, 

OBD-II, or IEC 61508 diagnostic metrics [10]. However, syntactic correctness does not 
guarantee semantic correctness, which requires that diagnostic outputs are interpreted and acted 

upon appropriately to achieve system-level objectives.  Traditional fault-management 

architectures are therefore diagnostics-centric, prioritizing detection coverage, fault isolation 



Computer Science & Information Technology (CS & IT)                                     94 

accuracy, and reporting fidelity through methods such as FMEA, FMECA, and HAZOP [2]. 
Faults are treated as discrete events that trigger logging or predefined responses, implicitly if 

correct detection ensures correct behavior. In contrast, a semantics-centric design treats fault 

management as an intent-aware reasoning process in which detected conditions are interpreted in 

context and responses are selected to balance safety, mission success, efficiency, and resource 
constraints. Achieving this shift requires explicit modeling of system intent [21], context-aware 

interpretation through state estimation and environmental awareness [13], temporal reasoning 

that accounts for fault evolution and response latency [12], semantic contracts between system 
layers that convey meaning rather than raw codes [19], and human-centered diagnostic outputs 

aligned with operator mental models [14, 15]. The remainder of this paper builds on these 

principles to demonstrate why diagnostics-centric approaches are insufficient and how semantics-
centric design can be systematically integrated into systems engineering practice. 

 

3. THE FAILURE GAP: WHERE DIAGNOSTICS BREAK DOWN 
 

The failure gap is the conceptual and operational space between correct fault detection and 
correct system response. It is in this gap that systems fail despite accurate diagnostics. It 

identifies four primary mechanisms through which the failure gap manifests: detection-response 

decoupling, temporal semantics failure, context loss across system boundaries, and human-
system semantic mismatch. 

 

3.1. Detection–Response Decoupling 
 

In complex systems, fault detection and fault response are frequently designed, implemented, and 

validated in isolation by different engineering disciplines, each optimizing for local objectives 
such as observability, control stability, or hazard mitigation. While this separation of concerns is 

necessary to manage complexity, it creates significant opportunities for semantic misalignment. 

As a result, systems may detect faults with high accuracy yet respond incorrectly by over-

protecting (unnecessary shutdowns), under-protecting (continued operation under unsafe 
conditions), or mis-protecting (executing responses suited to different fault conditions) [4, 13, 

23]. These failures arise because response logic embeds latent assumptions about fault meaning 

assumptions that may hold under nominal conditions but become invalid as configurations 
change, operating environments evolve, software is updated, or multiple faults interact [12]. 

When such assumptions are violated, the system behaves as designed but produces semantically 

incorrect outcomes. 
 

Temporal factors further exacerbate semantic failures. The significance of a detected fault 

depends not only on what is detected but also on when detection and response occur relative to 

fault propagation. Faults may be detected too late for effective mitigation, responses may be 
delayed by processing, communication, or actuation latency, or recovery actions may be initiated 

prematurely before underlying causes are resolved, leading to oscillatory or deferred failures [12, 

13]. Static diagnostic thresholds compound this problem by failing to adapt to dynamic operating 
conditions, producing false positives during benign transients or false negatives during atypical 

but valid operation [1]. Context loss across subsystem boundaries also contributes to semantic 

failure, as local anomalies may be benign, compensated, or irrelevant at the system level, yet are 
interpreted conservatively due to missing global context [13]. This issue is reinforced by interface 

specifications that define syntactic data exchange without conveying semantic meaning, forcing 

subsystems to infer intent from incomplete information [19]. 

 
Human–system interaction introduces additional semantic risk. Operators and technicians often 

interpret diagnostic outputs differently than designers intended, influenced by training, 
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experience, user-interface design, and cognitive biases such as confirmation, recency, 
availability, and automation bias [14, 15]. Diagnostic interfaces that emphasize fault codes and 

severity indicators without contextual explanation amplify ambiguity, increasing the likelihood of 

inappropriate manual intervention. Together, these factors demonstrate that semantic failures 

emerge not from incorrect diagnostics, but from misalignment between detection, interpretation, 
decision-making, action, and human understanding even when fault detection itself is correct. 

 

 
 

Figure 1: System Failure – A step by step analysis 

 

4. TAXONOMY OF FAILURE SEMANTICS IN COMPLEX SYSTEMS 
 
This section presents a taxonomy of semantic failure modes that explain how systems fail despite 

correct diagnostics, grounded in diagnosability theory [12], failure-mode reasoning [22], and 

resilience engineering [18, 20,21]. Severity semantics failures occur when fault severity is 

misjudged, either triggering excessive responses to minor faults or insufficient responses to 
catastrophic conditions due to conservative or optimistic assumptions that ignore context and 

evolving system state [2, 21]. Scope semantics failures arise when the perceived impact of a 

fault does not reflect its actual propagation potential, leading either to unnecessary system-wide 
shutdowns or to the masking of global degradation as localized anomalies, thereby enabling 

cascading failures [12, 13]. Intent semantics failures occur when fault responses optimize a 

single objective, such as hardware protection or regulatory compliance, while violating higher-

level safety or mission goals, highlighting the tension between prescribed responses and real-
world operational demands [10, 11, 21]. Finally, recovery semantics failures result from 

premature or incomplete recovery actions that mask unresolved root causes, defer consequences, 

and increase the likelihood of repeated or catastrophic failures, particularly in systems that 
prioritize availability over diagnostic depth [1, 13]. 

 

5. WHY CORRECT DIAGNOSTICS STILL FAIL SYSTEMS 
 
Having characterized the failure gap and the associated semantic failure modes, this section 

explains why correct diagnostics are insufficient for ensuring system correctness. The root causes 

lie in the intrinsic complexity of modern systems, the limitations of prevailing diagnostic 

paradigms, and the effects of system evolution over the operational lifecycle. Most diagnostic 
systems are fundamentally rule-based, relying on predefined logic derived from FMEA, FTA, 

and expert knowledge to associate detected conditions with specific faults and responses [2]. 

Such approaches are effective in deterministic environments where cause–effect relationships are 
linear, faults occur independently, system state is fully observable, and operating conditions 

remain within design assumptions. However, contemporary systems operate in non-deterministic 

environments characterized by non-linear dynamics, interacting faults, partial observability, and 
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emergent behavior that cannot be predicted from component specifications alone [1, 12, 19]. In 
these contexts, rule-based diagnostics may correctly detect individual faults yet misinterpret their 

system-level implications, resulting in semantically incorrect responses. 

 

Model-based diagnostics seek to address these limitations by reasoning over explicit behavioral 
models to infer faults from deviations between observed and predicted behavior [1, 3]. While this 

approach enables physically interpretable root-cause analysis, formal diagnosability assessment 

[12], and reasoning about fault propagation, it is constrained by model completeness, modeling 
accuracy, computational complexity, and the need to continuously maintain models as systems 

evolve [1, 3, 16]. As highlighted by Gao et al. [1], both model-based and signal- or data-driven 

diagnostic paradigms remain limited in their ability to translate fault detection into actionable 
semantic interpretation. Data-driven diagnostics, particularly those based on machine learning, 

further scale diagnostic capability by identifying complex patterns in sensor data [3, 7], but 

introduce additional challenges, including lack of causal explanation, brittleness under 

distribution shift, and the risk of silent failures high-confidence yet incorrect inferences that can 
lead to safety violations [3, 7]. Yang and Wang [3] demonstrate this phenomenon in autonomous 

systems and show that even when runtime monitoring and formal verification are applied, 

semantic interpretation remains a fundamental challenge. 
 

These limitations are compounded by assumption drift over the system lifecycle. Diagnostic logic 

and response strategies embed design-time assumptions regarding operating ranges, fault 
independence, reset effectiveness, and environmental conditions, which may become invalid due 

to usage evolution, aging effects, configuration changes, and software updates [16]. Although 

diagnostic algorithms continue to function as designed, the meaning of their outputs degrades as 

underlying assumptions no longer hold. Modern systems further exacerbate this issue through 
high configurability, where software updates, parameter adjustments, and hardware replacements 

are often introduced independently by different stakeholders without corresponding updates to 

the semantic models underlying fault management [16]. Finally, toolchain fragmentation across 
design, diagnostics, control, safety analysis, and service domains introduces additional semantic 

mismatches, as each tool employs its own ontology and assumptions [2, 10, 11, 14, 19]. As noted 

by Häring [2], failure analysis artifacts such as FMEA tables rarely maintain formal semantic 

links to control logic and operational procedures, leading to situations in which individual tools 
produce correct outputs, yet the integrated system exhibits semantically incorrect behavior due to 

the absence of a shared semantic framework. 

 

6. A FAILURE SEMANTICS FRAMEWORK 
 

 
 

Figure 2: Failure Semantics Framework Layers and Processes 
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To address the failure gap and mitigate the semantic failure modes identified earlier, this paper 
proposes a Failure Semantics Framework composed of five layers connected through explicit 

semantic contracts. The framework guides the design of fault-management systems toward 

semantic correctness, ensuring not only accurate fault detection but also context-aware 

interpretation, intent-aligned decision-making, and effective response. 
 

The framework comprises five layers with distinct roles. The Detection Layer ensures syntactic 

correctness by observing system behavior and reporting raw diagnostic information using 
conventional techniques such as model-based detection, data-driven anomaly detection, and 

signal processing [1, 3, 7]. The Interpretation Layer provides semantic enrichment by assessing 

detected conditions in operational context, accounting for severity, urgency, and scope through 
context-aware reasoning methods such as Bayesian inference [14]. The Decision Layer 

embodies system intent by selecting responses that balance safety, mission objectives, 

availability, and cost, potentially using multi-objective optimization or decision-theoretic 

approaches [21]. The Action Layer executes selected responses while managing feasibility 
constraints, monitoring execution, and invoking fallback strategies as needed. The Feedback & 

Learning Layer closes the loop by evaluating response effectiveness, detecting semantic 

failures, identifying assumption drift [16], and refining models and procedures using operational 
data and human-factors insights [14, 15]. 

 

A key contribution of the framework is the formalization of semantic contracts between layers, 
which define the semantics, assumptions, uncertainty bounds, and temporal characteristics of 

exchanged information in addition to its data structure.These contracts enable downstream layers 

to assess detection confidence, latency, and observability limitations, and to detect violations of 

underlying assumptions before incorrect behavior propagates [12]. Finally, the framework 
emphasizes leading indicators over traditional lagging diagnostics by promoting semantic health 

indicators such as operational margins, degradation trends, prognostic estimates, and contextual 

state to support proactive decision-making. By integrating prognostics and health management 
techniques, the framework shifts fault management from reactive response to proactive, intent-

aware system health management [1, 18]. 

 

7. FAILURE SEMANTICS  
 

7.1. Failure Semantics and Functional Safety 
 
Functional safety standards such as IEC 61508 [10] and ISO 26262 provide rigorous processes 

for developing safety-critical systems. These standards emphasize systematic hazard analysis and 

risk assessment, safety integrity levels (SIL) and automotive safety integrity levels (ASIL), 
diagnostic coverage and safe failure fraction (SFF), and verification and validation of safety 

functions. Functional safety standards ensure that systems detect faults and execute protective 

actions to prevent hazards [11]. However, they focus primarily on compliance with process 
requirements and achievement of quantitative metrics such as SFF, diagnostic coverage, and 

probability of failure on demand. 

 

A system can comply with functional safety standards yet still exhibit semantic failures, 
demonstrating that compliance does not guarantee correctness. Diagnostic coverage metrics 

measure the probability of detecting faults but do not ensure that detected faults are interpreted 

correctly or that responses are appropriate. Signoret and Leroy [10] critique the reliance on 
simplified probabilistic calculations in IEC 61508, arguing for systemic models such as fault 

trees, Markov chains, and Petri nets that capture complex, interacting failure modes. However, 

even these sophisticated models focus on what happens with fault propagation and failure 
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probabilities rather than why responses may be semantically incorrect. This limitation highlights 
the need for an explicit semantic framework. 

 

Failure semantics complements functional safety by providing a framework for reasoning about 

the meaning of detected faults, not merely their probability. It emphasizes alignment between 
detection, interpretation, decision, and action, while highlighting the importance of operational 

context in determining correct responses. Most critically, it encourages verification of semantic 

correctness rather than syntactic compliance alone, addressing gaps that functional safety 
standards leave unexamined. 

 

7.2. Failure Semantics as a Precursor to Resilience 
 

Resilience engineering defines resilience as the ability of a system to anticipate, absorb, adapt to, 

and recover from disruptions [18, 20]. Resilient systems exhibit four key capabilities: anticipation 
of potential failures and preparation of responses; continuous monitoring of system state to detect 

anomalies; execution of appropriate actions to mitigate disruptions; and adaptation based on 

experience to improve future performance. 
 

Failure semantics serves as a precursor to resilience because resilience fails when semantics are 

incorrect. A system cannot respond appropriately to a disruption if it misinterprets the meaning of 

detected conditions. Anticipation requires semantic models to understand how faults propagate 
and what they mean in different contexts [12]. Monitoring requires semantic interpretation, as 

detecting anomalies alone is insufficient; the system must interpret their severity, urgency, and 

scope [13]. Response requires semantic alignment, ensuring that executed actions align with 
system intent and address the objectives at stake [21]. Finally, learning requires semantic 

feedback to understand why responses succeeded or failed, enabling meaningful adaptation [16]. 

Irshad and Hulse [20] propose integrating human error and functional failure reasoning (HEFFR) 
into resilience modeling, emphasizing joint machine-human failure dynamics. Their work 

highlights that resilience depends on semantic alignment between automated systems and human 

operators, a central theme of the failure semantics framework. Similarly, Mishra et al. [15] 

presents a framework integrating reliability, resilience, and human factors for trustworthy AI 
systems. They argue that trustworthiness requires not just technical robustness but semantic 

correctness: AI systems must interpret their environment correctly and align their actions with 

human values and intentions. This perspective directly supports the objectives of the failure 
semantics framework, demonstrating its relevance across diverse application domains. 

 

7.3. Reliability Metrics that Ignore Semantics 
 

System dependability in reliability engineering is quantified using well-established metrics, 

including Mean Time Between Failures (MTBF), failure rate (λ), availability, and 
maintainability, which collectively describe failure occurrence, operational continuity, and repair 

efficiency. These metrics are essential for lifecycle cost analysis, maintenance planning, and 

design optimization. However, they are fundamentally context-free: they do not distinguish 

between failures occurring in different operational contexts or mission phases. 
 

This limitation can be illustrated by comparing two systems, each with an MTBF of 1000 hours. 

System A fails randomly throughout operation, with failures equally likely in all mission phases. 
System B fails primarily during mission-critical phases when consequences are severe. Although 

both systems have identical MTBF values, System B is far more problematic because its failures 

occur when they matter most. Traditional reliability metrics fail to capture this semantically 
significant difference, potentially leading to misguided design and operational decisions. Failure 
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semantics suggests augmenting traditional reliability metrics with context-aware variants that 
align reliability analysis with system intent and operational reality. 

 

8. FUTURE DIRECTIONS 
 

The failure semantics framework opens several promising research directions that leverage 
emerging technologies and methodologies. The failure semantics framework enables several 

promising research directions. Semantic digital twins extend conventional digital twinsfocused 

primarily on physical fidelity [19]by integrating semantic models of operational context, system 
intent, severity assessment, and response strategies, enabling real-time interpretation of system 

states and proactive fault management [16, 19]. AI-assisted interpretation layers combine data-

driven anomaly detection [3, 7] with causal reasoning [1], contextual enrichment [13], and formal 
verification to improve semantic trustworthiness and detect silent failures, as demonstrated by 

hybrid approaches such as the FAME framework [3]. Intent-aware diagnostics further advance 

fault management by interpreting detected conditions related to safety goals, mission objectives, 

and operational constraints, enabling intent-aligned responses optimized across safety, 
availability, and cost rather than fixed reaction logic [21]. Finally, Cross-domain semantic 

standards could address fragmentation across industries by defining shared ontologies and 

semantic contracts, improving tool interoperability, knowledge transfer, and certification 
efficiency across safety-critical domains [10, 11]. 

 

9. CASE STUDY: AUTONOMOUS VEHICLE FLEET FAILURE DURING URBAN 

POWER OUTAGE 
 

9.1. Incident Description 
 

On December 21, 2025, a fire at a San Francisco electrical substation caused widespread power 
loss affecting 130,000 customers and disabling hundreds of traffic signals. Waymo's autonomous 

vehicle fleet correctly detected non-functional signals and invoked four-way stop protocols. 

However, multiple vehicles stalled at intersections, blocking traffic and emergency access routes. 
Each vehicle requested human operator confirmation before proceeding with a response designed 

for isolated signal failures. The simultaneous requests overwhelmed operator capacity, creating a 

fleet-wide bottleneck. Waymo suspended service after six hours, resuming only after deploying 
emergency software updates[24]. 

 

Alignment with Failure Semantics: This incident exemplifies the paper's central thesis: 

accurate fault detection does not guarantee correct system response. The vehicles achieved 
syntactic correctness (detected faults accurately) but failed semantic correctness (responded 

inappropriately). The failure emerged from misalignment between detection, interpretation, 

decision, and action layers precisely the diagnostic-response decoupling described in Section 3.1. 
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9.2. System Architecture Analysis 

 

 
 
Figure 3: Semantic failure propagation through Waymo's autonomous vehicle architecture during the San 

Francisco power outage. 

 

Note - (✓) indicates correct operation; (✗) indicates semantic failure; (⚠) indicates partial 

failure. The missing semantic contracts between layers allowed semantically incorrect 
interpretations and decisions to propagate unchecked. 
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9.3. Failure Semantics Characteristics 

 

Table 1 compares the semantic characteristics required for correct system response against what 

the Waymo system exhibited during the incident: 

 
Table 1: Comparison of required semantic characteristics versus actual system behavior during the Waymo 

San Francisco incident. 

 

Semantic 

Dimension 
Required for Correctness 

Waymo System 

Behavior 
Failure Mode 

Severity 

Assessment 

Critical: regional 

infrastructure failure 

requires immediate decisive 

action 

Moderate: treated as 

isolated equipment issues 

requiring cautious 

verification 

Severity Semantics Failure: 

System assessed each signal 

independently without 

recognizing cumulative severity 

Scope 

Determination 

Regional: 33% of city 

infrastructure affected, 

coordinated response 
needed 

Local: each vehicle 

treated its intersection as 
isolated event 

Scope Semantics Failure: No 

fleet-level pattern recognition or 
scope aggregation 

Urgency 

Classification 

Immediate: act decisively to 

clear intersections, enable 

emergency response 

Delayed: extended 

verification periods 

acceptable ("stationary 

longer than usual") 

Temporal Semantics Failure: 

Response latency appropriate for 

isolated failures, not mass events 

Response 

Feasibility 

Scale aware: human 

operator capacity 

constraints must be 

evaluated 

Scale-blind: assumed 

confirmation request 

system could handle 

arbitrary load 

Action Feasibility Failure: No 

capacity constraints checked 

before selecting response 

Intent 

Alignment 

Multi-objective: balance 

vehicle safety, traffic flow, 
emergency access, mission 

success 

Single objective: 

optimized exclusively for 
individual vehicle caution 

Intent Semantics Failure: 

Local optimization violated 
system-level safety and mission 

goals 

Context 

Integration 

Infrastructure-aware: 

integrate power grid status, 

emergency declarations, 

fleet patterns 

Context-isolated: each 

vehicle evaluated traffic 

signals without external 

context 

Context Loss Failure: No 

semantic information exchanged 

across system boundaries 

Operational 

Success 

7,000+ intersections 

navigated successfully 

~dozens of intersections 

blocked 

Recovery Semantics Failure: 

Successful responses masked 

underlying semantic brittleness 

 

9.4. Analysis and Interpretation 
 
Table 1 reveals a systematic pattern: the Waymo system operated under design-time semantic 

assumptions that became invalid at runtime. The detection layer functioned correctly, identifying 

non-functional traffic signals with high accuracy. However, each subsequent layer inherited and 
amplified semantic misinterpretations due to missing semantic contracts that would have 

conveyed context, constraints, and intent. 

 
Three critical insights emerge from this comparison: 

 

First, scope transforms severity. A single non-functional traffic signal is a minor anomaly; 100 

simultaneous failures constitute a regional emergency. The system lacked mechanisms to reassess 
severity based on the scope of detected anomalies, treating 100 independent observations as 100 
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instances of the same low-severity event rather than recognizing the emergent high-severity 
pattern. 

 

Second, response feasibility is context dependent. The human confirmation protocol was 

feasible under design assumptions (occasional isolated failures, low request rate) but became 
infeasible during the mass event. The Decision layer selected this response without checking 

whether the action layer could execute it at scale a violation of semantic contracts between these 

layers. 
 

Third, local optimization can violate global intent. Each vehicle is correctly optimized for 

local safety (don't proceed without certainty), but the aggregate fleet behavior violated system-
level objectives: traffic flow maintenance, emergency vehicle access, and mission completion. 

This demonstrates the intent semantics failure described in Section 4: responses that optimize a 

single objective while compromising higher-level goals. 

 

9.5. Implications for Failure Semantics Framework 
 
This case study validates the necessity of the five-layer framework with explicit semantic 

contracts proposed in Section 6: 

 

Validation 1: Detection ≠ Response Correctness. Waymo achieved perfect detection accuracy 
yet experienced system failure, confirming that syntactic correctness is insufficient. 

 

Validation 2: Semantic contracts are essential. The missing contracts between layers allowed 
semantically incorrect interpretations to propagate unchecked. Had the detection layer 

communicated scope context and fleet-wide patterns, the interpretation layer could have 

recognized the regional emergency. 
 

Validation 3: Intent must be formalized and multi-objective. Without explicit representation 

of competing objectives (vehicle safety, traffic flow, emergency response), the decision layer 

could not balance trade-offs appropriately. 
 

Validation 4: Context loss causes cascading failures. Information boundaries (vehicle-to-fleet, 

autonomous system-to-city infrastructure) caused critical context to be unavailable where needed. 
 

Validation 5: Feedback loops enable learning. Waymo's post-incident software updates 

demonstrate the feedback and learning layer in action, incorporating "power outage context" to 

enable "more decisive navigation" precisely the semantic enrichment the framework advocates. 
The incident also highlights a limitation not fully addressed in the original framework: the 

scalability of semantic reasoning. Even with perfect semantic contracts, the human-in-the-loop 

confirmation system created a bottleneck during the mass event. This suggests that semantic 
correctness must be achievable autonomously at scale, with human oversight for monitoring and 

exception handling rather than routine decision-making. 

 

9.6. Lessons for Systems Engineering Practice 
 

This case study yields seven actionable lessons directly aligned with the failure semantics 
framework: 

 

Lesson 1: Implement explicit semantic contracts between system layers (Section 6). The 
detection layer reported "traffic signal non-functional" without conveying scope, corroboration, 

or urgency. Semantic contracts must communicate meaning, assumptions, and constraintsnot just 
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diagnostic codes. The detection-to-interpretation contract should have included: fault type, 
confidence, fleet-wide occurrence patterns, and geographic scope. 

 

Lesson 2: Validate semantic assumptions across the operational envelope. Design-time 

assumptions (isolated failures, sufficient human capacity) became invalid on a scale. Apply the 
feedback and learning layer proactively: validate semantic models under rare but high-

consequence scenarios using fault injection testing that evaluates interpretation appropriateness, 

not just detection accuracy. 

 

Lesson 3: Enable context-aware interpretation through distributed reasoning (Section 6, 

Interpretation Layer). Individual vehicles lacked fleet-level awareness and infrastructure 
context, causing scope semantics failure (Section 4). Implement distributed semantic reasoning 

that aggregates fleet observations, integrates external context (power grid status, emergency 

declarations), and distinguishes local anomalies from system-wide events through V2V and V2I 

semantic information exchange. 
 

Lesson 4: Formalize system intent and multi-objective decision-making (Section 6, Decision 

Layer). The system exhibited intent semantics failure (Section 4) by optimizing exclusively for 
individual caution while violating traffic flow and emergency access objectives. Define explicit 

intent hierarchies: normal operation prioritizes vehicle safety over traffic flow; emergencies 

prioritize emergency response access. Enable context-shift recognition to adapt priorities 
dynamically. 

 

Lesson 5: Incorporate feasibility constraints and fallback strategies (Section 6, Action 

Layer). The system selected human confirmation without verifying feasibility at scale. The 
action layer must evaluate response feasibility (operator capacity, timing requirements), monitor 

for unintended consequences, and invoke fallbacks when primary responses fail: "IF 

confirmation queue > threshold THEN suspend service." 

 

Lesson 6: Build semantic digital twins for proactive validation (Section 8.1). Traditional 

simulation validates detection and control but not semantic correctness. Semantic digital twins 

integrating physical and semantic models enable what-if analysis: simulating "100 simultaneous 
signal failures" would have revealed the interpretation bottleneck and capacity constraints before 

deployment. 

 

Lesson 7: Establish feedback mechanisms for semantic drift detection (Section 6, Feedback 

Layer). Semantic models valid at design time become invalid as contexts evolve. Implement 

continuous monitoring of semantic correctness through metrics including context ambiguity 
frequency, contract violation rates, response effectiveness, and prediction-versus-actual 

divergence to detect emerging misalignments before incidents occur. 

 

10. CONCLUSION 
 
This paper has introduced Failure Semantics as a critical yet underrepresented dimension of 

systems engineering, explaining why modern complex systems can fail despite accurate fault 

detection. It demonstrated that failures arise not from diagnostic inaccuracies, but from semantic 
mismatches between detection, interpretation, decision-making, and action, amplified by 

temporal dynamics, context loss, human factors, and lifecycle evolution. By formalizing failure 

semantics, presenting a taxonomy of semantic failure modes, and proposing a layered semantic 

framework with explicit semantic contracts, this work shows that diagnostics-centric approaches 
are necessary but insufficient for system correctness. The Waymo San Francisco case study 

provided empirical validation of these concepts, demonstrating how syntactically correct fault 
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detection combined with semantic interpretation failures produced system-level breakdowns with 
safety and operational consequences. However, significant limitations constrain the framework's 

immediate applicability and highlight directions for future research. The framework lacks formal 

mathematical foundations, preventing rigorous verification of semantic correctness and limiting 

integration with existing formal methods tools. Computational complexity remains unanalyzed, 
raising questions about real-time feasibility in safety-critical embedded systems with strict timing 

constraints. The framework introduces a meta-problemsemantic reasoning itself may failyet 

provides no mechanisms for detecting when interpretation layers produce silent semantic failures 
that are more subtle than traditional diagnostic errors. Semantic correctness depends critically on 

complete and accurate context, but the framework does not address reasoning under context 

uncertainty, partial observability, or information acquisition constraints inevitable in real 
deployments. Constructing valid semantic models requires eliciting tacit knowledge, resolving 

stakeholder disagreements, and validating requirements correctnesssociotechnical challenges the 

framework acknowledges but does not directly solve.  

 
Most critically, the proposal lacks empirical validation through prototype implementations, 

controlled experiments, or quantitative assessments demonstrating that semantic contracts reduce 

failures or justify their implementation complexity in production systems. Finally, practical 
guidance on incremental adoption, integration with existing toolchains, and management of 

increased design complexity remains underdeveloped. Despite these limitations, the failure of 

semantics framework establishes essential conceptual foundations for addressing a fundamental 
gap in systems engineering practice. Ensuring reliable and resilient system behavior requires 

elevating semantic alignment across system layers, tools, and human interactions to a first-class 

systems-engineering concern. Future research must address the identified limitations through 

formal specification of semantic correctness, computational complexity analysis, methodologies 
for semantic model validation, empirical studies quantifying semantic failure prevalence and 

intervention effectiveness, and industrial case studies demonstrating practical deployment. By 

bridging the gap between correct diagnostics and correct system response, failure semantics 
offers a path toward systems that not only detect what is wrong but understand what it means and 

respond appropriately toa capability increasingly critical as autonomous systems assume greater 

responsibility in safety-critical and mission-critical domains. 
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