
David C. Wyld et al. (Eds): CSML, AISCA, DNLP, SOEA, NET, BDHI, SIPO – 2026

pp. 92-106, 2026. CS & IT - CSCP 2026 DOI: 10.5121/csit.2026.160208

FAILURE SEMANTICS: WHY SYSTEMS FAIL

DESPITE CORRECT DIAGNOSTICS

Anand Wanjari

Independent Researcher, USA

ABSTRACT

Modern complex systems increasingly demonstrate a paradox: they detect faults with high
accuracy yet still experience unsafe, degraded, or mission-impacting failures. This paper

introduces Failure Semantics as a missing systems-engineering construct that explains why

correct diagnostics do not guarantee system correctness. It argues that failures emerge not

from detection errors but from semantic mismatches between detection, interpretation,

decision, and action layers. Drawing on diagnosability theory, resilience engineering, and

functional safety research, the paper presents a taxonomy of semantic failures and

proposes a layered Failure Semantics Framework comprising Detection, Interpretation,

Decision, Action, and Feedback & Learning layers. By enforcing semantic contracts and

leading semantic health indicators, the framework enables context-aware interpretation,

intent-aligned decisions, and proactive fault management beyond reactive diagnostics.

KEYWORDS

Failure Semantics, Systems Engineering, Functional Safety, Diagnostics, Resilience,
Layered Architecture

1. INTRODUCTION

Modern engineered systems employ increasingly sophisticated diagnostic techniquesincluding
model-based reasoning, machine learning, and dense sensor networksto detect faults with high

accuracy. Yet across multiple domains, systems continue to experience unsafe, degraded, or

mission-impacting failures even when underlying faults are correctly detected. These failures
arise not from detection gaps, but from semantic mismatches between fault detection,

interpretation, decision-making, and action, amplified by temporal dynamics, context loss, human

factors, and lifecycle evolution. To address this gap, this paper introduces Failure Semantics as a

formal construct explaining why correct fault detection does not ensure correct system response.
Failure semantics is defined as the contextual interpretation of detected conditions in terms of

severity, urgency, scope, and required response, and is supported by a taxonomy of semantic

failure modes grounded in diagnosability theory, resilience engineering, and functional safety
research [10–12, 18]. A layered semantic framework is proposed to align diagnostics, decision-

making, and system intent across the system lifecycle, shifting the focus from whether faults are

detected to whether systems respond correctly to what they detect [5, 14, 15, 17–20].

https://airccse.org/cscp.html
https://airccse.org/csit/V16N02.html
https://doi.org/10.5121/csit.2026.160208

93 Computer Science & Information Technology (CS & IT)

2. BACKGROUND AND DEFINITIONS

2.1. Fault, Error, Failure Revisited

The foundational terminology for reasoning about system failures originates from dependability
theory, particularly the work of Avizienis, Laprie, and colleagues on dependable computing [17],

with later refinements addressing diagnosability and observability by Bozzano [12] and Gao et al.

[1]. Within this framework, a fault is a defect or condition in hardware, software, design, or the
environment that can lead to incorrect behavior and may be permanent, transient, or latent [1,

17]. Activation of a fault produces an error, defined as an incorrect internal system state that may

propagate through components or be masked by redundancy [12, 17]. A failure occurs when such

an error becomes externally observable, resulting in service interruption, incorrect output, or
violation of safety or mission requirements [17]. Together, the fault–error–failure chain describes

a causal progression that underpins reliability engineering, safety analysis, and fault-tolerant

design [1, 17]. However, this chain characterizes how failures occur, not how systems should
respond once faults are detected, and therefore provides limited guidance on response

correctness.

Fault detection, while necessary, is insufficient for failure prevention because detection alone

does not ensure that a system can interpret and act on fault information appropriately. A detected

fault may be identified too late for effective mitigation or followed by delayed responses due to

processing or communication latency [12]. The meaning of a fault is highly context-dependent,
varying with operational mode, mission phase, environmental conditions, and system history

[13]. Moreover, a system may lack the actuators, redundancy, or operational margin required to

execute the intended response [4], or may prioritize one objective, such as hardware protection, at
the expense of safety or mission success [21]. Interactions among multiple concurrent faults

further invalidate single-fault response assumptions [12], while human operators may interpret

diagnostic outputs differently from designers’ intentions, leading to inappropriate manual

interventions [14, 15].

2.2. What Are Failure Semantics?

This paper defines Failure Semantics as the contextual interpretation of a detected condition that

determines its meaning in terms of severity, urgency, scope, and required response within the

operational and mission context of a system. Severity reflects how seriously a condition threatens
safety, mission success, or efficiency and is not intrinsic to the fault itself, but dependent on

system state, redundancy, and operational margins [2]. Urgency captures how rapidly the system

must respond, shaped by fault propagation dynamics, time to failure, and available intervention
windows [12]. Scope determines which parts of the system are affected or at risk and whether

local mitigation is sufficient or coordinated system-level action is required [13]. The required

response must be feasible, effective, and aligned with system intent, ensuring that safety and
mission objectives are preserved rather than inadvertently compromised [23]. Failure semantics is

inherently contextual, as identical fault codes can have markedly different meanings depending

on operational mode, mission phase, environmental conditions, and system history.

Modern diagnostic systems typically achieve syntactic correctness, meaning that faults are

accurately detected, coded, and reported according to predefined standards such as SAE J1939,

OBD-II, or IEC 61508 diagnostic metrics [10]. However, syntactic correctness does not
guarantee semantic correctness, which requires that diagnostic outputs are interpreted and acted

upon appropriately to achieve system-level objectives. Traditional fault-management

architectures are therefore diagnostics-centric, prioritizing detection coverage, fault isolation

Computer Science & Information Technology (CS & IT) 94

accuracy, and reporting fidelity through methods such as FMEA, FMECA, and HAZOP [2].
Faults are treated as discrete events that trigger logging or predefined responses, implicitly if

correct detection ensures correct behavior. In contrast, a semantics-centric design treats fault

management as an intent-aware reasoning process in which detected conditions are interpreted in

context and responses are selected to balance safety, mission success, efficiency, and resource
constraints. Achieving this shift requires explicit modeling of system intent [21], context-aware

interpretation through state estimation and environmental awareness [13], temporal reasoning

that accounts for fault evolution and response latency [12], semantic contracts between system
layers that convey meaning rather than raw codes [19], and human-centered diagnostic outputs

aligned with operator mental models [14, 15]. The remainder of this paper builds on these

principles to demonstrate why diagnostics-centric approaches are insufficient and how semantics-
centric design can be systematically integrated into systems engineering practice.

3. THE FAILURE GAP: WHERE DIAGNOSTICS BREAK DOWN

The failure gap is the conceptual and operational space between correct fault detection and
correct system response. It is in this gap that systems fail despite accurate diagnostics. It

identifies four primary mechanisms through which the failure gap manifests: detection-response

decoupling, temporal semantics failure, context loss across system boundaries, and human-
system semantic mismatch.

3.1. Detection–Response Decoupling

In complex systems, fault detection and fault response are frequently designed, implemented, and

validated in isolation by different engineering disciplines, each optimizing for local objectives
such as observability, control stability, or hazard mitigation. While this separation of concerns is

necessary to manage complexity, it creates significant opportunities for semantic misalignment.

As a result, systems may detect faults with high accuracy yet respond incorrectly by over-

protecting (unnecessary shutdowns), under-protecting (continued operation under unsafe
conditions), or mis-protecting (executing responses suited to different fault conditions) [4, 13,

23]. These failures arise because response logic embeds latent assumptions about fault meaning

assumptions that may hold under nominal conditions but become invalid as configurations
change, operating environments evolve, software is updated, or multiple faults interact [12].

When such assumptions are violated, the system behaves as designed but produces semantically

incorrect outcomes.

Temporal factors further exacerbate semantic failures. The significance of a detected fault

depends not only on what is detected but also on when detection and response occur relative to

fault propagation. Faults may be detected too late for effective mitigation, responses may be
delayed by processing, communication, or actuation latency, or recovery actions may be initiated

prematurely before underlying causes are resolved, leading to oscillatory or deferred failures [12,

13]. Static diagnostic thresholds compound this problem by failing to adapt to dynamic operating
conditions, producing false positives during benign transients or false negatives during atypical

but valid operation [1]. Context loss across subsystem boundaries also contributes to semantic

failure, as local anomalies may be benign, compensated, or irrelevant at the system level, yet are
interpreted conservatively due to missing global context [13]. This issue is reinforced by interface

specifications that define syntactic data exchange without conveying semantic meaning, forcing

subsystems to infer intent from incomplete information [19].

Human–system interaction introduces additional semantic risk. Operators and technicians often

interpret diagnostic outputs differently than designers intended, influenced by training,

95 Computer Science & Information Technology (CS & IT)

experience, user-interface design, and cognitive biases such as confirmation, recency,
availability, and automation bias [14, 15]. Diagnostic interfaces that emphasize fault codes and

severity indicators without contextual explanation amplify ambiguity, increasing the likelihood of

inappropriate manual intervention. Together, these factors demonstrate that semantic failures

emerge not from incorrect diagnostics, but from misalignment between detection, interpretation,
decision-making, action, and human understanding even when fault detection itself is correct.

Figure 1: System Failure – A step by step analysis

4. TAXONOMY OF FAILURE SEMANTICS IN COMPLEX SYSTEMS

This section presents a taxonomy of semantic failure modes that explain how systems fail despite

correct diagnostics, grounded in diagnosability theory [12], failure-mode reasoning [22], and

resilience engineering [18, 20,21]. Severity semantics failures occur when fault severity is

misjudged, either triggering excessive responses to minor faults or insufficient responses to
catastrophic conditions due to conservative or optimistic assumptions that ignore context and

evolving system state [2, 21]. Scope semantics failures arise when the perceived impact of a

fault does not reflect its actual propagation potential, leading either to unnecessary system-wide
shutdowns or to the masking of global degradation as localized anomalies, thereby enabling

cascading failures [12, 13]. Intent semantics failures occur when fault responses optimize a

single objective, such as hardware protection or regulatory compliance, while violating higher-

level safety or mission goals, highlighting the tension between prescribed responses and real-
world operational demands [10, 11, 21]. Finally, recovery semantics failures result from

premature or incomplete recovery actions that mask unresolved root causes, defer consequences,

and increase the likelihood of repeated or catastrophic failures, particularly in systems that
prioritize availability over diagnostic depth [1, 13].

5. WHY CORRECT DIAGNOSTICS STILL FAIL SYSTEMS

Having characterized the failure gap and the associated semantic failure modes, this section

explains why correct diagnostics are insufficient for ensuring system correctness. The root causes

lie in the intrinsic complexity of modern systems, the limitations of prevailing diagnostic

paradigms, and the effects of system evolution over the operational lifecycle. Most diagnostic
systems are fundamentally rule-based, relying on predefined logic derived from FMEA, FTA,

and expert knowledge to associate detected conditions with specific faults and responses [2].

Such approaches are effective in deterministic environments where cause–effect relationships are
linear, faults occur independently, system state is fully observable, and operating conditions

remain within design assumptions. However, contemporary systems operate in non-deterministic

environments characterized by non-linear dynamics, interacting faults, partial observability, and

Computer Science & Information Technology (CS & IT) 96

emergent behavior that cannot be predicted from component specifications alone [1, 12, 19]. In
these contexts, rule-based diagnostics may correctly detect individual faults yet misinterpret their

system-level implications, resulting in semantically incorrect responses.

Model-based diagnostics seek to address these limitations by reasoning over explicit behavioral
models to infer faults from deviations between observed and predicted behavior [1, 3]. While this

approach enables physically interpretable root-cause analysis, formal diagnosability assessment

[12], and reasoning about fault propagation, it is constrained by model completeness, modeling
accuracy, computational complexity, and the need to continuously maintain models as systems

evolve [1, 3, 16]. As highlighted by Gao et al. [1], both model-based and signal- or data-driven

diagnostic paradigms remain limited in their ability to translate fault detection into actionable
semantic interpretation. Data-driven diagnostics, particularly those based on machine learning,

further scale diagnostic capability by identifying complex patterns in sensor data [3, 7], but

introduce additional challenges, including lack of causal explanation, brittleness under

distribution shift, and the risk of silent failures high-confidence yet incorrect inferences that can
lead to safety violations [3, 7]. Yang and Wang [3] demonstrate this phenomenon in autonomous

systems and show that even when runtime monitoring and formal verification are applied,

semantic interpretation remains a fundamental challenge.

These limitations are compounded by assumption drift over the system lifecycle. Diagnostic logic

and response strategies embed design-time assumptions regarding operating ranges, fault
independence, reset effectiveness, and environmental conditions, which may become invalid due

to usage evolution, aging effects, configuration changes, and software updates [16]. Although

diagnostic algorithms continue to function as designed, the meaning of their outputs degrades as

underlying assumptions no longer hold. Modern systems further exacerbate this issue through
high configurability, where software updates, parameter adjustments, and hardware replacements

are often introduced independently by different stakeholders without corresponding updates to

the semantic models underlying fault management [16]. Finally, toolchain fragmentation across
design, diagnostics, control, safety analysis, and service domains introduces additional semantic

mismatches, as each tool employs its own ontology and assumptions [2, 10, 11, 14, 19]. As noted

by Häring [2], failure analysis artifacts such as FMEA tables rarely maintain formal semantic

links to control logic and operational procedures, leading to situations in which individual tools
produce correct outputs, yet the integrated system exhibits semantically incorrect behavior due to

the absence of a shared semantic framework.

6. A FAILURE SEMANTICS FRAMEWORK

Figure 2: Failure Semantics Framework Layers and Processes

97 Computer Science & Information Technology (CS & IT)

To address the failure gap and mitigate the semantic failure modes identified earlier, this paper
proposes a Failure Semantics Framework composed of five layers connected through explicit

semantic contracts. The framework guides the design of fault-management systems toward

semantic correctness, ensuring not only accurate fault detection but also context-aware

interpretation, intent-aligned decision-making, and effective response.

The framework comprises five layers with distinct roles. The Detection Layer ensures syntactic

correctness by observing system behavior and reporting raw diagnostic information using
conventional techniques such as model-based detection, data-driven anomaly detection, and

signal processing [1, 3, 7]. The Interpretation Layer provides semantic enrichment by assessing

detected conditions in operational context, accounting for severity, urgency, and scope through
context-aware reasoning methods such as Bayesian inference [14]. The Decision Layer

embodies system intent by selecting responses that balance safety, mission objectives,

availability, and cost, potentially using multi-objective optimization or decision-theoretic

approaches [21]. The Action Layer executes selected responses while managing feasibility
constraints, monitoring execution, and invoking fallback strategies as needed. The Feedback &

Learning Layer closes the loop by evaluating response effectiveness, detecting semantic

failures, identifying assumption drift [16], and refining models and procedures using operational
data and human-factors insights [14, 15].

A key contribution of the framework is the formalization of semantic contracts between layers,
which define the semantics, assumptions, uncertainty bounds, and temporal characteristics of

exchanged information in addition to its data structure.These contracts enable downstream layers

to assess detection confidence, latency, and observability limitations, and to detect violations of

underlying assumptions before incorrect behavior propagates [12]. Finally, the framework
emphasizes leading indicators over traditional lagging diagnostics by promoting semantic health

indicators such as operational margins, degradation trends, prognostic estimates, and contextual

state to support proactive decision-making. By integrating prognostics and health management
techniques, the framework shifts fault management from reactive response to proactive, intent-

aware system health management [1, 18].

7. FAILURE SEMANTICS

7.1. Failure Semantics and Functional Safety

Functional safety standards such as IEC 61508 [10] and ISO 26262 provide rigorous processes

for developing safety-critical systems. These standards emphasize systematic hazard analysis and

risk assessment, safety integrity levels (SIL) and automotive safety integrity levels (ASIL),
diagnostic coverage and safe failure fraction (SFF), and verification and validation of safety

functions. Functional safety standards ensure that systems detect faults and execute protective

actions to prevent hazards [11]. However, they focus primarily on compliance with process
requirements and achievement of quantitative metrics such as SFF, diagnostic coverage, and

probability of failure on demand.

A system can comply with functional safety standards yet still exhibit semantic failures,
demonstrating that compliance does not guarantee correctness. Diagnostic coverage metrics

measure the probability of detecting faults but do not ensure that detected faults are interpreted

correctly or that responses are appropriate. Signoret and Leroy [10] critique the reliance on
simplified probabilistic calculations in IEC 61508, arguing for systemic models such as fault

trees, Markov chains, and Petri nets that capture complex, interacting failure modes. However,

even these sophisticated models focus on what happens with fault propagation and failure

Computer Science & Information Technology (CS & IT) 98

probabilities rather than why responses may be semantically incorrect. This limitation highlights
the need for an explicit semantic framework.

Failure semantics complements functional safety by providing a framework for reasoning about

the meaning of detected faults, not merely their probability. It emphasizes alignment between
detection, interpretation, decision, and action, while highlighting the importance of operational

context in determining correct responses. Most critically, it encourages verification of semantic

correctness rather than syntactic compliance alone, addressing gaps that functional safety
standards leave unexamined.

7.2. Failure Semantics as a Precursor to Resilience

Resilience engineering defines resilience as the ability of a system to anticipate, absorb, adapt to,

and recover from disruptions [18, 20]. Resilient systems exhibit four key capabilities: anticipation
of potential failures and preparation of responses; continuous monitoring of system state to detect

anomalies; execution of appropriate actions to mitigate disruptions; and adaptation based on

experience to improve future performance.

Failure semantics serves as a precursor to resilience because resilience fails when semantics are

incorrect. A system cannot respond appropriately to a disruption if it misinterprets the meaning of

detected conditions. Anticipation requires semantic models to understand how faults propagate
and what they mean in different contexts [12]. Monitoring requires semantic interpretation, as

detecting anomalies alone is insufficient; the system must interpret their severity, urgency, and

scope [13]. Response requires semantic alignment, ensuring that executed actions align with
system intent and address the objectives at stake [21]. Finally, learning requires semantic

feedback to understand why responses succeeded or failed, enabling meaningful adaptation [16].

Irshad and Hulse [20] propose integrating human error and functional failure reasoning (HEFFR)
into resilience modeling, emphasizing joint machine-human failure dynamics. Their work

highlights that resilience depends on semantic alignment between automated systems and human

operators, a central theme of the failure semantics framework. Similarly, Mishra et al. [15]

presents a framework integrating reliability, resilience, and human factors for trustworthy AI
systems. They argue that trustworthiness requires not just technical robustness but semantic

correctness: AI systems must interpret their environment correctly and align their actions with

human values and intentions. This perspective directly supports the objectives of the failure
semantics framework, demonstrating its relevance across diverse application domains.

7.3. Reliability Metrics that Ignore Semantics

System dependability in reliability engineering is quantified using well-established metrics,

including Mean Time Between Failures (MTBF), failure rate (λ), availability, and
maintainability, which collectively describe failure occurrence, operational continuity, and repair

efficiency. These metrics are essential for lifecycle cost analysis, maintenance planning, and

design optimization. However, they are fundamentally context-free: they do not distinguish

between failures occurring in different operational contexts or mission phases.

This limitation can be illustrated by comparing two systems, each with an MTBF of 1000 hours.

System A fails randomly throughout operation, with failures equally likely in all mission phases.
System B fails primarily during mission-critical phases when consequences are severe. Although

both systems have identical MTBF values, System B is far more problematic because its failures

occur when they matter most. Traditional reliability metrics fail to capture this semantically
significant difference, potentially leading to misguided design and operational decisions. Failure

99 Computer Science & Information Technology (CS & IT)

semantics suggests augmenting traditional reliability metrics with context-aware variants that
align reliability analysis with system intent and operational reality.

8. FUTURE DIRECTIONS

The failure semantics framework opens several promising research directions that leverage
emerging technologies and methodologies. The failure semantics framework enables several

promising research directions. Semantic digital twins extend conventional digital twinsfocused

primarily on physical fidelity [19]by integrating semantic models of operational context, system
intent, severity assessment, and response strategies, enabling real-time interpretation of system

states and proactive fault management [16, 19]. AI-assisted interpretation layers combine data-

driven anomaly detection [3, 7] with causal reasoning [1], contextual enrichment [13], and formal
verification to improve semantic trustworthiness and detect silent failures, as demonstrated by

hybrid approaches such as the FAME framework [3]. Intent-aware diagnostics further advance

fault management by interpreting detected conditions related to safety goals, mission objectives,

and operational constraints, enabling intent-aligned responses optimized across safety,
availability, and cost rather than fixed reaction logic [21]. Finally, Cross-domain semantic

standards could address fragmentation across industries by defining shared ontologies and

semantic contracts, improving tool interoperability, knowledge transfer, and certification
efficiency across safety-critical domains [10, 11].

9. CASE STUDY: AUTONOMOUS VEHICLE FLEET FAILURE DURING URBAN

POWER OUTAGE

9.1. Incident Description

On December 21, 2025, a fire at a San Francisco electrical substation caused widespread power
loss affecting 130,000 customers and disabling hundreds of traffic signals. Waymo's autonomous

vehicle fleet correctly detected non-functional signals and invoked four-way stop protocols.

However, multiple vehicles stalled at intersections, blocking traffic and emergency access routes.
Each vehicle requested human operator confirmation before proceeding with a response designed

for isolated signal failures. The simultaneous requests overwhelmed operator capacity, creating a

fleet-wide bottleneck. Waymo suspended service after six hours, resuming only after deploying
emergency software updates[24].

Alignment with Failure Semantics: This incident exemplifies the paper's central thesis:

accurate fault detection does not guarantee correct system response. The vehicles achieved
syntactic correctness (detected faults accurately) but failed semantic correctness (responded

inappropriately). The failure emerged from misalignment between detection, interpretation,

decision, and action layers precisely the diagnostic-response decoupling described in Section 3.1.

Computer Science & Information Technology (CS & IT) 100

9.2. System Architecture Analysis

Figure 3: Semantic failure propagation through Waymo's autonomous vehicle architecture during the San

Francisco power outage.

Note - (✓) indicates correct operation; (✗) indicates semantic failure; (⚠) indicates partial

failure. The missing semantic contracts between layers allowed semantically incorrect
interpretations and decisions to propagate unchecked.

101 Computer Science & Information Technology (CS & IT)

9.3. Failure Semantics Characteristics

Table 1 compares the semantic characteristics required for correct system response against what

the Waymo system exhibited during the incident:

Table 1: Comparison of required semantic characteristics versus actual system behavior during the Waymo

San Francisco incident.

Semantic

Dimension
Required for Correctness

Waymo System

Behavior
Failure Mode

Severity

Assessment

Critical: regional

infrastructure failure

requires immediate decisive

action

Moderate: treated as

isolated equipment issues

requiring cautious

verification

Severity Semantics Failure:

System assessed each signal

independently without

recognizing cumulative severity

Scope

Determination

Regional: 33% of city

infrastructure affected,

coordinated response
needed

Local: each vehicle

treated its intersection as
isolated event

Scope Semantics Failure: No

fleet-level pattern recognition or
scope aggregation

Urgency

Classification

Immediate: act decisively to

clear intersections, enable

emergency response

Delayed: extended

verification periods

acceptable ("stationary

longer than usual")

Temporal Semantics Failure:

Response latency appropriate for

isolated failures, not mass events

Response

Feasibility

Scale aware: human

operator capacity

constraints must be

evaluated

Scale-blind: assumed

confirmation request

system could handle

arbitrary load

Action Feasibility Failure: No

capacity constraints checked

before selecting response

Intent

Alignment

Multi-objective: balance

vehicle safety, traffic flow,
emergency access, mission

success

Single objective:

optimized exclusively for
individual vehicle caution

Intent Semantics Failure:

Local optimization violated
system-level safety and mission

goals

Context

Integration

Infrastructure-aware:

integrate power grid status,

emergency declarations,

fleet patterns

Context-isolated: each

vehicle evaluated traffic

signals without external

context

Context Loss Failure: No

semantic information exchanged

across system boundaries

Operational

Success

7,000+ intersections

navigated successfully

~dozens of intersections

blocked

Recovery Semantics Failure:

Successful responses masked

underlying semantic brittleness

9.4. Analysis and Interpretation

Table 1 reveals a systematic pattern: the Waymo system operated under design-time semantic

assumptions that became invalid at runtime. The detection layer functioned correctly, identifying

non-functional traffic signals with high accuracy. However, each subsequent layer inherited and
amplified semantic misinterpretations due to missing semantic contracts that would have

conveyed context, constraints, and intent.

Three critical insights emerge from this comparison:

First, scope transforms severity. A single non-functional traffic signal is a minor anomaly; 100

simultaneous failures constitute a regional emergency. The system lacked mechanisms to reassess
severity based on the scope of detected anomalies, treating 100 independent observations as 100

Computer Science & Information Technology (CS & IT) 102

instances of the same low-severity event rather than recognizing the emergent high-severity
pattern.

Second, response feasibility is context dependent. The human confirmation protocol was

feasible under design assumptions (occasional isolated failures, low request rate) but became
infeasible during the mass event. The Decision layer selected this response without checking

whether the action layer could execute it at scale a violation of semantic contracts between these

layers.

Third, local optimization can violate global intent. Each vehicle is correctly optimized for

local safety (don't proceed without certainty), but the aggregate fleet behavior violated system-
level objectives: traffic flow maintenance, emergency vehicle access, and mission completion.

This demonstrates the intent semantics failure described in Section 4: responses that optimize a

single objective while compromising higher-level goals.

9.5. Implications for Failure Semantics Framework

This case study validates the necessity of the five-layer framework with explicit semantic

contracts proposed in Section 6:

Validation 1: Detection ≠ Response Correctness. Waymo achieved perfect detection accuracy
yet experienced system failure, confirming that syntactic correctness is insufficient.

Validation 2: Semantic contracts are essential. The missing contracts between layers allowed
semantically incorrect interpretations to propagate unchecked. Had the detection layer

communicated scope context and fleet-wide patterns, the interpretation layer could have

recognized the regional emergency.

Validation 3: Intent must be formalized and multi-objective. Without explicit representation

of competing objectives (vehicle safety, traffic flow, emergency response), the decision layer

could not balance trade-offs appropriately.

Validation 4: Context loss causes cascading failures. Information boundaries (vehicle-to-fleet,

autonomous system-to-city infrastructure) caused critical context to be unavailable where needed.

Validation 5: Feedback loops enable learning. Waymo's post-incident software updates

demonstrate the feedback and learning layer in action, incorporating "power outage context" to

enable "more decisive navigation" precisely the semantic enrichment the framework advocates.
The incident also highlights a limitation not fully addressed in the original framework: the

scalability of semantic reasoning. Even with perfect semantic contracts, the human-in-the-loop

confirmation system created a bottleneck during the mass event. This suggests that semantic
correctness must be achievable autonomously at scale, with human oversight for monitoring and

exception handling rather than routine decision-making.

9.6. Lessons for Systems Engineering Practice

This case study yields seven actionable lessons directly aligned with the failure semantics
framework:

Lesson 1: Implement explicit semantic contracts between system layers (Section 6). The
detection layer reported "traffic signal non-functional" without conveying scope, corroboration,

or urgency. Semantic contracts must communicate meaning, assumptions, and constraintsnot just

103 Computer Science & Information Technology (CS & IT)

diagnostic codes. The detection-to-interpretation contract should have included: fault type,
confidence, fleet-wide occurrence patterns, and geographic scope.

Lesson 2: Validate semantic assumptions across the operational envelope. Design-time

assumptions (isolated failures, sufficient human capacity) became invalid on a scale. Apply the
feedback and learning layer proactively: validate semantic models under rare but high-

consequence scenarios using fault injection testing that evaluates interpretation appropriateness,

not just detection accuracy.

Lesson 3: Enable context-aware interpretation through distributed reasoning (Section 6,

Interpretation Layer). Individual vehicles lacked fleet-level awareness and infrastructure
context, causing scope semantics failure (Section 4). Implement distributed semantic reasoning

that aggregates fleet observations, integrates external context (power grid status, emergency

declarations), and distinguishes local anomalies from system-wide events through V2V and V2I

semantic information exchange.

Lesson 4: Formalize system intent and multi-objective decision-making (Section 6, Decision

Layer). The system exhibited intent semantics failure (Section 4) by optimizing exclusively for
individual caution while violating traffic flow and emergency access objectives. Define explicit

intent hierarchies: normal operation prioritizes vehicle safety over traffic flow; emergencies

prioritize emergency response access. Enable context-shift recognition to adapt priorities
dynamically.

Lesson 5: Incorporate feasibility constraints and fallback strategies (Section 6, Action

Layer). The system selected human confirmation without verifying feasibility at scale. The
action layer must evaluate response feasibility (operator capacity, timing requirements), monitor

for unintended consequences, and invoke fallbacks when primary responses fail: "IF

confirmation queue > threshold THEN suspend service."

Lesson 6: Build semantic digital twins for proactive validation (Section 8.1). Traditional

simulation validates detection and control but not semantic correctness. Semantic digital twins

integrating physical and semantic models enable what-if analysis: simulating "100 simultaneous
signal failures" would have revealed the interpretation bottleneck and capacity constraints before

deployment.

Lesson 7: Establish feedback mechanisms for semantic drift detection (Section 6, Feedback

Layer). Semantic models valid at design time become invalid as contexts evolve. Implement

continuous monitoring of semantic correctness through metrics including context ambiguity
frequency, contract violation rates, response effectiveness, and prediction-versus-actual

divergence to detect emerging misalignments before incidents occur.

10. CONCLUSION

This paper has introduced Failure Semantics as a critical yet underrepresented dimension of

systems engineering, explaining why modern complex systems can fail despite accurate fault

detection. It demonstrated that failures arise not from diagnostic inaccuracies, but from semantic
mismatches between detection, interpretation, decision-making, and action, amplified by

temporal dynamics, context loss, human factors, and lifecycle evolution. By formalizing failure

semantics, presenting a taxonomy of semantic failure modes, and proposing a layered semantic

framework with explicit semantic contracts, this work shows that diagnostics-centric approaches
are necessary but insufficient for system correctness. The Waymo San Francisco case study

provided empirical validation of these concepts, demonstrating how syntactically correct fault

Computer Science & Information Technology (CS & IT) 104

detection combined with semantic interpretation failures produced system-level breakdowns with
safety and operational consequences. However, significant limitations constrain the framework's

immediate applicability and highlight directions for future research. The framework lacks formal

mathematical foundations, preventing rigorous verification of semantic correctness and limiting

integration with existing formal methods tools. Computational complexity remains unanalyzed,
raising questions about real-time feasibility in safety-critical embedded systems with strict timing

constraints. The framework introduces a meta-problemsemantic reasoning itself may failyet

provides no mechanisms for detecting when interpretation layers produce silent semantic failures
that are more subtle than traditional diagnostic errors. Semantic correctness depends critically on

complete and accurate context, but the framework does not address reasoning under context

uncertainty, partial observability, or information acquisition constraints inevitable in real
deployments. Constructing valid semantic models requires eliciting tacit knowledge, resolving

stakeholder disagreements, and validating requirements correctnesssociotechnical challenges the

framework acknowledges but does not directly solve.

Most critically, the proposal lacks empirical validation through prototype implementations,

controlled experiments, or quantitative assessments demonstrating that semantic contracts reduce

failures or justify their implementation complexity in production systems. Finally, practical
guidance on incremental adoption, integration with existing toolchains, and management of

increased design complexity remains underdeveloped. Despite these limitations, the failure of

semantics framework establishes essential conceptual foundations for addressing a fundamental
gap in systems engineering practice. Ensuring reliable and resilient system behavior requires

elevating semantic alignment across system layers, tools, and human interactions to a first-class

systems-engineering concern. Future research must address the identified limitations through

formal specification of semantic correctness, computational complexity analysis, methodologies
for semantic model validation, empirical studies quantifying semantic failure prevalence and

intervention effectiveness, and industrial case studies demonstrating practical deployment. By

bridging the gap between correct diagnostics and correct system response, failure semantics
offers a path toward systems that not only detect what is wrong but understand what it means and

respond appropriately toa capability increasingly critical as autonomous systems assume greater

responsibility in safety-critical and mission-critical domains.

REFERENCES

[1] Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques

Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on
Industrial Electronics, 62(6), 3757-3767. https://doi.org/10.1109/TIE.2015.2417501

[2] Häring, I. (2021). Failure mode and effects analysis. In Advanced Sensing, Fault Diagnostics, and

Structural Health Management (pp. 89-112). MDPI. https://doi.org/10.3390/books978-3-0365-

6182-0

[3] Yang, G.-Y., & Wang, F. (2025). Taming silent failures: A framework for verifiable AI

reliability. arXiv preprint arXiv:2510.22224. https://arxiv.org/abs/2510.22224v1

[4] Seo, K.-M., & Park, K.-P. (2018). Interface data modeling to detect and diagnose intersystem faults

for designing and integrating system of systems. Complexity, 2018, Article

7081501. https://doi.org/10.1155/2018/7081501

[5] Mansoor, A., van Geritn, E., et al. (2023). Backward failure propagation method for functional

safety analysis. In Advanced Fault Diagnosis and Health Monitoring Techniques for Complex
Engineering Systems (pp. 145-168). MDPI. https://doi.org/10.3390/books978-3-0365-6463-0

[6] Rostamabadi, A., Jahangiri, M., Zarei, E., Kalatpour, O., &Alanjari, P. (2020). A novel fuzzy

Bayesian network approach for safety analysis of process systems: An application of HFACS and

SHIPP methodology. Journal of Cleaner Production, 244,

118761. https://doi.org/10.1016/J.JCLEPRO.2019.336315

105 Computer Science & Information Technology (CS & IT)

[7] Dowdesitll, B., Sinha, R., &MacDonell, S. G. (2021). A scoping study on fault diagnosis and health

monitoring techniques for industrial cyber-physical systems. In Proceedings of the 2021 IEEE

International Conference on Industrial Cyber-Physical Systems (pp. 1-8). IEEE.

[8] Echtle, K., Hammer, D., &Poitll, D. (Eds.). (1994). Dependable Computing EDCC-1: First

European Dependable Computing Conference. Springer-Verlag.
[9] Kvalo, M., Torrealba, A., & Duarte, M. A. H. (2025). Built to bend: Strengthening drilling

operations with resilience engineering & MPD. In Proceedings of the SPE/IADC Drilling

Conference and Exhibition. https://doi.org/10.2118/spe-228388-ms

[10] Signoret, J.-P., & Leroy, A. (2021). Functional safety related modelling and calculations.

In Reliability Assessment of Safety and Production Systems (pp. 705-742).

Springer. https://doi.org/10.1007/978-3-030-64708-7_36

[11] ISO 26262: 2018 Standard International Organization for Standardization (ISO) Road vehicles -

Functional safety.

[12] Bozzano, M. (2017). Causality and temporal dependencies in the design of fault management

systems. Electronic Proceedings in Theoretical Computer Science, 259, 23-

35. https://doi.org/10.4204/EPTCS.259.4

[13] Guo, L. (2022). From function to failure: A formal method for reasoning about program-related
failure modes. arXiv preprint arXiv:2210.08667. https://doi.org/10.48550/arxiv.2210.08667

[14] Rostamabadi, A., et al. (2020). A novel fuzzy Bayesian network approach for safety analysis of

process systems: An application of HFACS and SHIPP methodology. Journal of Cleaner

Production, 244, 118761. https://doi.org/10.1016/J.JCLEPRO.2019.336315

[15] Mishra, S., Rao, A. B., Krishnan, R., et al. (2024). Reliability, resilience and human factors

engineering for trustworthy AI systems. arXiv preprint

arXiv:2411.08981. https://doi.org/10.48550/arxiv.2411.08981

[16] van Geritn, E., et al. (2022). Practical method to integrate diagnostic models into MBSE for design-

time and runtime diagnosis support. Systems Engineering, 25(4), 289-307.

[17] Avizienis, A., Laprie, J.-C., Randell, B., &Landithr, C. (2004). Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1),
11-33.

[18] B. Werner and B. Schumeg, "Leveraging Traditional Design for Reliability Techniques for

Artificial Intelligence," 2022 Annual Reliability and Maintainability Symposium (RAMS), Tucson,

AZ, USA, 2022, pp. 1-6, doi: 10.1109/RAMS51457.2022.9893957.

[19] Konstantinos Mokos, Panagiotis Katsaros, Preben Bohn, Model-based safety analysis of

requirement specifications,Journal of Systems and Software,Volume 219,2025,112231,ISSN 0164-

1212,https://doi.org/10.1016/j.jss.2024.112231.

[20] Irshad, L., & Hulse, D. (2022). Resilience modeling with HEFFR: Human error and functional

failure reasoning for joint machine-human failure modeling. In Proceedings of the 2022 Annual

Reliability and Maintainability Symposium (pp. 1-8). IEEE.

[21] Chu, C., et al. (2024). Dynamic fault tree generation from SysML with temporal characteristics for

embedded systems analysis. Reliability Engineering & System Safety, 241, 109634.
[22] Guo, L. (2022). From function to failure: Failure Mode Reasoning (FMR) method for formal

analysis of program-related failure modes. arXiv preprint

arXiv:2210.08667. https://doi.org/10.48550/arxiv.2210.08667

[23] [23] Brtis, John &McEvilley, Michael & Pennock, Michael. (2021). Resilience Requirements

Patterns. INCOSE International Symposium. 31. 570-584. 10.1002/j.2334-5837.2021.00855.x.

[24] Waymo's San Francisco outage raises doubts over robotaxi readiness during crises(2025)

https://www.reuters.com/business/autos-transportation/waymos-san-francisco-outage-raises-doubts-

over-robotaxi-readiness-during-crises-2025-12-27/

Computer Science & Information Technology (CS & IT) 106

AUTHOR

Anand Wanjari is a Systems Engineer with over 15 years of experience in

automotive and heavy-duty powertrain systems, specializing in system safety,

diagnostics, and resilience engineering. He has played a key role in defining system-

level requirements, failure in semantics and diagnostic strategies supporting diesel,

natural gas, and hybrid powertrain platforms, with a strong focus on tool integration

and verification efficiency. His work bridges industry practice and research,

addressing challenges in ISO 26262 functional safety, ISO 21448 and distributed
system development.He is an active member of the International Council on Systems Engineering

(INCOSE). His research interests include predictive diagnostics, system resilience patterns, failure

semantics, and safety assurance for autonomous and connected vehicle systems. He actively contributes to

technical publications and thought leadership in systems engineering and automotive safety.

©2026 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

