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ABSTRACT

Modern complex systems increasingly demonstrate a paradox: they detect faults with high
accuracy yet still experience unsafe, degraded, or mission-impacting failures. This paper
introduces Failure Semantics as a missing systems-engineering construct that explains why
correct diagnostics do not guarantee system correctness. It argues that failures emerge not
from detection errors but from semantic mismatches between detection, interpretation,
decision, and action layers. Drawing on diagnosability theory, resilience engineering, and
functional safety research, the paper presents a taxonomy of semantic failures and
proposes a layered Failure Semantics Framework comprising Detection, Interpretation,
Decision, Action, and Feedback & Learning layers. By enforcing semantic contracts and
leading semantic health indicators, the framework enables context-aware interpretation,
intent-aligned decisions, and proactive fault management beyond reactive diagnostics.
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1. INTRODUCTION

Modern engineered systems employ increasingly sophisticated diagnostic techniquesincluding
model-based reasoning, machine learning, and dense sensor networksto detect faults with high
accuracy. Yet across multiple domains, systems continue to experience unsafe, degraded, or
mission-impacting failures even when underlying faults are correctly detected. These failures
arise not from detection gaps, but from semantic mismatches between fault detection,
interpretation, decision-making, and action, amplified by temporal dynamics, context loss, human
factors, and lifecycle evolution. To address this gap, this paper introduces Failure Semantics as a
formal construct explaining why correct fault detection does not ensure correct system response.
Failure semantics is defined as the contextual interpretation of detected conditions in terms of
severity, urgency, scope, and required response, and is supported by a taxonomy of semantic
failure modes grounded in diagnosability theory, resilience engineering, and functional safety
research [10-12, 18]. A layered semantic framework is proposed to align diagnostics, decision-
making, and system intent across the system lifecycle, shifting the focus from whether faults are
detected to whether systems respond correctly to what they detect [5, 14, 15, 17-20].

David C. Wyld et al. (Eds): CSML, AISCA, DNLP, SOEA, NET, BDHI, SIPO — 2026
pp. 92-106, 2026. CS & IT - CSCP 2026 DOI: 10.5121/csit.2026.160208


https://airccse.org/cscp.html
https://airccse.org/csit/V16N02.html
https://doi.org/10.5121/csit.2026.160208

93 Computer Science & Information Technology (CS & IT)

2. BACKGROUND AND DEFINITIONS
2.1. Fault, Error, Failure Revisited

The foundational terminology for reasoning about system failures originates from dependability
theory, particularly the work of Avizienis, Laprie, and colleagues on dependable computing [17],
with later refinements addressing diagnosability and observability by Bozzano [12] and Gao et al.
[1]. Within this framework, a fault is a defect or condition in hardware, software, design, or the
environment that can lead to incorrect behavior and may be permanent, transient, or latent [1,
17]. Activation of a fault produces an error, defined as an incorrect internal system state that may
propagate through components or be masked by redundancy [12, 17]. A failure occurs when such
an error becomes externally observable, resulting in service interruption, incorrect output, or
violation of safety or mission requirements [17]. Together, the fault—error—failure chain describes
a causal progression that underpins reliability engineering, safety analysis, and fault-tolerant
design [1, 17]. However, this chain characterizes how failures occur, not how systems should
respond once faults are detected, and therefore provides limited guidance on response
correctness.

Fault detection, while necessary, is insufficient for failure prevention because detection alone
does not ensure that a system can interpret and act on fault information appropriately. A detected
fault may be identified too late for effective mitigation or followed by delayed responses due to
processing or communication latency [12]. The meaning of a fault is highly context-dependent,
varying with operational mode, mission phase, environmental conditions, and system history
[13]. Moreover, a system may lack the actuators, redundancy, or operational margin required to
execute the intended response [4], or may prioritize one objective, such as hardware protection, at
the expense of safety or mission success [21]. Interactions among multiple concurrent faults
further invalidate single-fault response assumptions [12], while human operators may interpret
diagnostic outputs differently from designers’ intentions, leading to inappropriate manual
interventions [14, 15].

2.2. What Are Failure Semantics?

This paper defines Failure Semantics as the contextual interpretation of a detected condition that
determines its meaning in terms of severity, urgency, scope, and required response within the
operational and mission context of a system. Severity reflects how seriously a condition threatens
safety, mission success, or efficiency and is not intrinsic to the fault itself, but dependent on
system state, redundancy, and operational margins [2]. Urgency captures how rapidly the system
must respond, shaped by fault propagation dynamics, time to failure, and available intervention
windows [12]. Scope determines which parts of the system are affected or at risk and whether
local mitigation is sufficient or coordinated system-level action is required [13]. The required
response must be feasible, effective, and aligned with system intent, ensuring that safety and
mission objectives are preserved rather than inadvertently compromised [23]. Failure semantics is
inherently contextual, as identical fault codes can have markedly different meanings depending
on operational mode, mission phase, environmental conditions, and system history.

Modern diagnostic systems typically achieve syntactic correctness, meaning that faults are
accurately detected, coded, and reported according to predefined standards such as SAE J1939,
OBD-Il, or IEC 61508 diagnostic metrics [10]. However, syntactic correctness does not
guarantee semantic correctness, which requires that diagnostic outputs are interpreted and acted
upon appropriately to achieve system-level objectives.  Traditional fault-management
architectures are therefore diagnostics-centric, prioritizing detection coverage, fault isolation
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accuracy, and reporting fidelity through methods such as FMEA, FMECA, and HAZOP [2].
Faults are treated as discrete events that trigger logging or predefined responses, implicitly if
correct detection ensures correct behavior. In contrast, a semantics-centric design treats fault
management as an intent-aware reasoning process in which detected conditions are interpreted in
context and responses are selected to balance safety, mission success, efficiency, and resource
constraints. Achieving this shift requires explicit modeling of system intent [21], context-aware
interpretation through state estimation and environmental awareness [13], temporal reasoning
that accounts for fault evolution and response latency [12], semantic contracts between system
layers that convey meaning rather than raw codes [19], and human-centered diagnostic outputs
aligned with operator mental models [14, 15]. The remainder of this paper builds on these
principles to demonstrate why diagnostics-centric approaches are insufficient and how semantics-
centric design can be systematically integrated into systems engineering practice.

3. THE FAILURE GAP: WHERE DIAGNOSTICS BREAK DOWN

The failure gap is the conceptual and operational space between correct fault detection and
correct system response. It is in this gap that systems fail despite accurate diagnostics. It
identifies four primary mechanisms through which the failure gap manifests: detection-response
decoupling, temporal semantics failure, context loss across system boundaries, and human-
system semantic mismatch.

3.1. Detection—Response Decoupling

In complex systems, fault detection and fault response are frequently designed, implemented, and
validated in isolation by different engineering disciplines, each optimizing for local objectives
such as observability, control stability, or hazard mitigation. While this separation of concerns is
necessary to manage complexity, it creates significant opportunities for semantic misalignment.
As a result, systems may detect faults with high accuracy yet respond incorrectly by over-
protecting (unnecessary shutdowns), under-protecting (continued operation under unsafe
conditions), or mis-protecting (executing responses suited to different fault conditions) [4, 13,
23]. These failures arise because response logic embeds latent assumptions about fault meaning
assumptions that may hold under nominal conditions but become invalid as configurations
change, operating environments evolve, software is updated, or multiple faults interact [12].
When such assumptions are violated, the system behaves as designed but produces semantically
incorrect outcomes.

Temporal factors further exacerbate semantic failures. The significance of a detected fault
depends not only on what is detected but also on when detection and response occur relative to
fault propagation. Faults may be detected too late for effective mitigation, responses may be
delayed by processing, communication, or actuation latency, or recovery actions may be initiated
prematurely before underlying causes are resolved, leading to oscillatory or deferred failures [12,
13]. Static diagnostic thresholds compound this problem by failing to adapt to dynamic operating
conditions, producing false positives during benign transients or false negatives during atypical
but valid operation [1]. Context loss across subsystem boundaries also contributes to semantic
failure, as local anomalies may be benign, compensated, or irrelevant at the system level, yet are
interpreted conservatively due to missing global context [13]. This issue is reinforced by interface
specifications that define syntactic data exchange without conveying semantic meaning, forcing
subsystems to infer intent from incomplete information [19].

Human-system interaction introduces additional semantic risk. Operators and technicians often
interpret diagnostic outputs differently than designers intended, influenced by training,
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experience, user-interface design, and cognitive biases such as confirmation, recency,
availability, and automation bias [14, 15]. Diagnostic interfaces that emphasize fault codes and
severity indicators without contextual explanation amplify ambiguity, increasing the likelihood of
inappropriate manual intervention. Together, these factors demonstrate that semantic failures
emerge not from incorrect diagnostics, but from misalignment between detection, interpretation,
decision-making, action, and human understanding even when fault detection itself is correct.
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Figure 1. System Failure — A step by step analysis

4. TAXONOMY OF FAILURE SEMANTICS IN COMPLEX SYSTEMS

This section presents a taxonomy of semantic failure modes that explain how systems fail despite
correct diagnostics, grounded in diagnosability theory [12], failure-mode reasoning [22], and
resilience engineering [18, 20,21]. Severity semantics failures occur when fault severity is
misjudged, either triggering excessive responses to minor faults or insufficient responses to
catastrophic conditions due to conservative or optimistic assumptions that ignore context and
evolving system state [2, 21]. Scope semantics failures arise when the perceived impact of a
fault does not reflect its actual propagation potential, leading either to unnecessary system-wide
shutdowns or to the masking of global degradation as localized anomalies, thereby enabling
cascading failures [12, 13]. Intent semantics failures occur when fault responses optimize a
single objective, such as hardware protection or regulatory compliance, while violating higher-
level safety or mission goals, highlighting the tension between prescribed responses and real-
world operational demands [10, 11, 21]. Finally, recovery semantics failures result from
premature or incomplete recovery actions that mask unresolved root causes, defer consequences,
and increase the likelihood of repeated or catastrophic failures, particularly in systems that
prioritize availability over diagnostic depth [1, 13].

5. WHY CORRECT DIAGNOSTICS STILL FAIL SYSTEMS

Having characterized the failure gap and the associated semantic failure modes, this section
explains why correct diagnostics are insufficient for ensuring system correctness. The root causes
lie in the intrinsic complexity of modern systems, the limitations of prevailing diagnostic
paradigms, and the effects of system evolution over the operational lifecycle. Most diagnostic
systems are fundamentally rule-based, relying on predefined logic derived from FMEA, FTA,
and expert knowledge to associate detected conditions with specific faults and responses [2].
Such approaches are effective in deterministic environments where cause—effect relationships are
linear, faults occur independently, system state is fully observable, and operating conditions
remain within design assumptions. However, contemporary systems operate in non-deterministic
environments characterized by non-linear dynamics, interacting faults, partial observability, and
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emergent behavior that cannot be predicted from component specifications alone [1, 12, 19]. In
these contexts, rule-based diagnostics may correctly detect individual faults yet misinterpret their
system-level implications, resulting in semantically incorrect responses.

Model-based diagnostics seek to address these limitations by reasoning over explicit behavioral
models to infer faults from deviations between observed and predicted behavior [1, 3]. While this
approach enables physically interpretable root-cause analysis, formal diagnosability assessment
[12], and reasoning about fault propagation, it is constrained by model completeness, modeling
accuracy, computational complexity, and the need to continuously maintain models as systems
evolve [1, 3, 16]. As highlighted by Gao et al. [1], both model-based and signal- or data-driven
diagnostic paradigms remain limited in their ability to translate fault detection into actionable
semantic interpretation. Data-driven diagnostics, particularly those based on machine learning,
further scale diagnostic capability by identifying complex patterns in sensor data [3, 7], but
introduce additional challenges, including lack of causal explanation, brittleness under
distribution shift, and the risk of silent failures high-confidence yet incorrect inferences that can
lead to safety violations [3, 7]. Yang and Wang [3] demonstrate this phenomenon in autonomous
systems and show that even when runtime monitoring and formal verification are applied,
semantic interpretation remains a fundamental challenge.

These limitations are compounded by assumption drift over the system lifecycle. Diagnostic logic
and response strategies embed design-time assumptions regarding operating ranges, fault
independence, reset effectiveness, and environmental conditions, which may become invalid due
to usage evolution, aging effects, configuration changes, and software updates [16]. Although
diagnostic algorithms continue to function as designed, the meaning of their outputs degrades as
underlying assumptions no longer hold. Modern systems further exacerbate this issue through
high configurability, where software updates, parameter adjustments, and hardware replacements
are often introduced independently by different stakeholders without corresponding updates to
the semantic models underlying fault management [16]. Finally, toolchain fragmentation across
design, diagnostics, control, safety analysis, and service domains introduces additional semantic
mismatches, as each tool employs its own ontology and assumptions [2, 10, 11, 14, 19]. As noted
by Haring [2], failure analysis artifacts such as FMEA tables rarely maintain formal semantic
links to control logic and operational procedures, leading to situations in which individual tools
produce correct outputs, yet the integrated system exhibits semantically incorrect behavior due to
the absence of a shared semantic framework.

6. A FAILURE SEMANTICS FRAMEWORK
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Figure 2: Failure Semantics Framework Layers and Processes
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To address the failure gap and mitigate the semantic failure modes identified earlier, this paper
proposes a Failure Semantics Framework composed of five layers connected through explicit
semantic contracts. The framework guides the design of fault-management systems toward
semantic correctness, ensuring not only accurate fault detection but also context-aware
interpretation, intent-aligned decision-making, and effective response.

The framework comprises five layers with distinct roles. The Detection Layer ensures syntactic
correctness by observing system behavior and reporting raw diagnostic information using
conventional techniques such as model-based detection, data-driven anomaly detection, and
signal processing [1, 3, 7]. The Interpretation Layer provides semantic enrichment by assessing
detected conditions in operational context, accounting for severity, urgency, and scope through
context-aware reasoning methods such as Bayesian inference [14]. The Decision Layer
embodies system intent by selecting responses that balance safety, mission objectives,
availability, and cost, potentially using multi-objective optimization or decision-theoretic
approaches [21]. The Action Layer executes selected responses while managing feasibility
constraints, monitoring execution, and invoking fallback strategies as needed. The Feedback &
Learning Layer closes the loop by evaluating response effectiveness, detecting semantic
failures, identifying assumption drift [16], and refining models and procedures using operational
data and human-factors insights [14, 15].

A key contribution of the framework is the formalization of semantic contracts between layers,
which define the semantics, assumptions, uncertainty bounds, and temporal characteristics of
exchanged information in addition to its data structure. These contracts enable downstream layers
to assess detection confidence, latency, and observability limitations, and to detect violations of
underlying assumptions before incorrect behavior propagates [12]. Finally, the framework
emphasizes leading indicators over traditional lagging diagnostics by promoting semantic health
indicators such as operational margins, degradation trends, prognostic estimates, and contextual
state to support proactive decision-making. By integrating prognostics and health management
techniques, the framework shifts fault management from reactive response to proactive, intent-
aware system health management [1, 18].

7. FAILURE SEMANTICS

7.1. Failure Semantics and Functional Safety

Functional safety standards such as IEC 61508 [10] and ISO 26262 provide rigorous processes
for developing safety-critical systems. These standards emphasize systematic hazard analysis and
risk assessment, safety integrity levels (SIL) and automotive safety integrity levels (ASIL),
diagnostic coverage and safe failure fraction (SFF), and verification and validation of safety
functions. Functional safety standards ensure that systems detect faults and execute protective
actions to prevent hazards [11]. However, they focus primarily on compliance with process
requirements and achievement of quantitative metrics such as SFF, diagnostic coverage, and
probability of failure on demand.

A system can comply with functional safety standards yet still exhibit semantic failures,
demonstrating that compliance does not guarantee correctness. Diagnostic coverage metrics
measure the probability of detecting faults but do not ensure that detected faults are interpreted
correctly or that responses are appropriate. Signoret and Leroy [10] critique the reliance on
simplified probabilistic calculations in IEC 61508, arguing for systemic models such as fault
trees, Markov chains, and Petri nets that capture complex, interacting failure modes. However,
even these sophisticated models focus on what happens with fault propagation and failure
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probabilities rather than why responses may be semantically incorrect. This limitation highlights
the need for an explicit semantic framework.

Failure semantics complements functional safety by providing a framework for reasoning about
the meaning of detected faults, not merely their probability. It emphasizes alignment between
detection, interpretation, decision, and action, while highlighting the importance of operational
context in determining correct responses. Most critically, it encourages verification of semantic
correctness rather than syntactic compliance alone, addressing gaps that functional safety
standards leave unexamined.

7.2. Failure Semantics as a Precursor to Resilience

Resilience engineering defines resilience as the ability of a system to anticipate, absorb, adapt to,
and recover from disruptions [18, 20]. Resilient systems exhibit four key capabilities: anticipation
of potential failures and preparation of responses; continuous monitoring of system state to detect
anomalies; execution of appropriate actions to mitigate disruptions; and adaptation based on
experience to improve future performance.

Failure semantics serves as a precursor to resilience because resilience fails when semantics are
incorrect. A system cannot respond appropriately to a disruption if it misinterprets the meaning of
detected conditions. Anticipation requires semantic models to understand how faults propagate
and what they mean in different contexts [12]. Monitoring requires semantic interpretation, as
detecting anomalies alone is insufficient; the system must interpret their severity, urgency, and
scope [13]. Response requires semantic alignment, ensuring that executed actions align with
system intent and address the objectives at stake [21]. Finally, learning requires semantic
feedback to understand why responses succeeded or failed, enabling meaningful adaptation [16].
Irshad and Hulse [20] propose integrating human error and functional failure reasoning (HEFFR)
into resilience modeling, emphasizing joint machine-human failure dynamics. Their work
highlights that resilience depends on semantic alignment between automated systems and human
operators, a central theme of the failure semantics framework. Similarly, Mishra et al. [15]
presents a framework integrating reliability, resilience, and human factors for trustworthy Al
systems. They argue that trustworthiness requires not just technical robustness but semantic
correctness: Al systems must interpret their environment correctly and align their actions with
human values and intentions. This perspective directly supports the objectives of the failure
semantics framework, demonstrating its relevance across diverse application domains.

7.3. Reliability Metrics that Ignore Semantics

System dependability in reliability engineering is quantified using well-established metrics,
including Mean Time Between Failures (MTBF), failure rate (A), availability, and
maintainability, which collectively describe failure occurrence, operational continuity, and repair
efficiency. These metrics are essential for lifecycle cost analysis, maintenance planning, and
design optimization. However, they are fundamentally context-free: they do not distinguish
between failures occurring in different operational contexts or mission phases.

This limitation can be illustrated by comparing two systems, each with an MTBF of 1000 hours.
System A fails randomly throughout operation, with failures equally likely in all mission phases.
System B fails primarily during mission-critical phases when consequences are severe. Although
both systems have identical MTBF values, System B is far more problematic because its failures
occur when they matter most. Traditional reliability metrics fail to capture this semantically
significant difference, potentially leading to misguided design and operational decisions. Failure
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semantics suggests augmenting traditional reliability metrics with context-aware variants that
align reliability analysis with system intent and operational reality.

8. FUTURE DIRECTIONS

The failure semantics framework opens several promising research directions that leverage
emerging technologies and methodologies. The failure semantics framework enables several
promising research directions. Semantic digital twins extend conventional digital twinsfocused
primarily on physical fidelity [19]by integrating semantic models of operational context, system
intent, severity assessment, and response strategies, enabling real-time interpretation of system
states and proactive fault management [16, 19]. Al-assisted interpretation layers combine data-
driven anomaly detection [3, 7] with causal reasoning [1], contextual enrichment [13], and formal
verification to improve semantic trustworthiness and detect silent failures, as demonstrated by
hybrid approaches such as the FAME framework [3]. Intent-aware diagnostics further advance
fault management by interpreting detected conditions related to safety goals, mission objectives,
and operational constraints, enabling intent-aligned responses optimized across safety,
availability, and cost rather than fixed reaction logic [21]. Finally, Cross-domain semantic
standards could address fragmentation across industries by defining shared ontologies and
semantic contracts, improving tool interoperability, knowledge transfer, and certification
efficiency across safety-critical domains [10, 11].

9. CASE STUDY: AUTONOMOUS VEHICLE FLEET FAILURE DURING URBAN
POWER OUTAGE

9.1. Incident Description

On December 21, 2025, a fire at a San Francisco electrical substation caused widespread power
loss affecting 130,000 customers and disabling hundreds of traffic signals. Waymao's autonomous
vehicle fleet correctly detected non-functional signals and invoked four-way stop protocols.
However, multiple vehicles stalled at intersections, blocking traffic and emergency access routes.
Each vehicle requested human operator confirmation before proceeding with a response designed
for isolated signal failures. The simultaneous requests overwhelmed operator capacity, creating a
fleet-wide bottleneck. Waymo suspended service after six hours, resuming only after deploying
emergency software updates[24].

Alignment with Failure Semantics: This incident exemplifies the paper's central thesis:
accurate fault detection does not guarantee correct system response. The vehicles achieved
syntactic correctness (detected faults accurately) but failed semantic correctness (responded
inappropriately). The failure emerged from misalignment between detection, interpretation,
decision, and action layers precisely the diagnostic-response decoupling described in Section 3.1.
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9.2. System Architecture Analysis
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Figure 3: Semantic failure propagation through Waymo's autonomous vehicle architecture during the San
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9.3. Failure Semantics Characteristics

Table 1 compares the semantic characteristics required for correct system response against what
the Waymao system exhibited during the incident:

Table 1: Comparison of required semantic characteristics versus actual system behavior during the Waymo
San Francisco incident.

S_eman'glc Required for Correctness Waymo S_y stem Failure Mode
Dimension Behavior
Critical: regional Moderate: treated as Severity Semantics Failure:
Severity infrastructure failure isolated equipment issues ||System assessed each signal
Assessment ||requires immediate decisive||requiring cautious independently without
action verification recognizing cumulative severity
0 -
Reglonal. 33% of city Local: each vehicle Scope Semantics Failure: No
Scope infrastructure affected,

Determination

coordinated response
needed

treated its intersection as
isolated event

fleet-level pattern recognition or
scope aggregation

Urgency
Classification

Immediate: act decisively to
clear intersections, enable
emergency response

Delayed: extended
verification periods
acceptable (“stationary
longer than usual™)

Temporal Semantics Failure:
Response latency appropriate for
isolated failures, not mass events

Scale aware: human

Scale-blind: assumed

Action Feasibility Failure: No

Response operator capacity confirmation request capacity constraints checked
Feasibility ||constraints must be system could handle -
. before selecting response
evaluated arbitrary load
Multi-objective: balance . S Intent Semantics Failure:
. ) Single objective: L .
Intent vehicle safety, traffic flow, optimized exclusively for Local optimization violated
Alignment  [|emergency access, mission individual vehicle caution system-level safety and mission
success goals
Infrastructure-aware: Context-isolated: each . )
. . . . ||Context Loss Failure: No
Context integrate power grid status, ||vehicle evaluated traffic . .
) . . . semantic information exchanged
Integration |jemergency declarations, signals without external ;
across system boundaries
fleet patterns context
. . . . . Recovery Semantics Failure:
+ ~
Operational 7,0QO intersections dozens of intersections Successful responses masked
Success navigated successfully blocked

underlying semantic brittleness

9.4. Analysis and Interpretation

Table 1 reveals a systematic pattern: the Waymo system operated under design-time semantic
assumptions that became invalid at runtime. The detection layer functioned correctly, identifying
non-functional traffic signals with high accuracy. However, each subsequent layer inherited and
amplified semantic misinterpretations due to missing semantic contracts that would have
conveyed context, constraints, and intent.

Three critical insights emerge from this comparison:

First, scope transforms severity. A single non-functional traffic signal is a minor anomaly; 100
simultaneous failures constitute a regional emergency. The system lacked mechanisms to reassess
severity based on the scope of detected anomalies, treating 100 independent observations as 100
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instances of the same low-severity event rather than recognizing the emergent high-severity
pattern.

Second, response feasibility is context dependent. The human confirmation protocol was
feasible under design assumptions (occasional isolated failures, low request rate) but became
infeasible during the mass event. The Decision layer selected this response without checking
whether the action layer could execute it at scale a violation of semantic contracts between these
layers.

Third, local optimization can violate global intent. Each vehicle is correctly optimized for
local safety (don't proceed without certainty), but the aggregate fleet behavior violated system-
level objectives: traffic flow maintenance, emergency vehicle access, and mission completion.
This demonstrates the intent semantics failure described in Section 4: responses that optimize a
single objective while compromising higher-level goals.

9.5. Implications for Failure Semantics Framework

This case study validates the necessity of the five-layer framework with explicit semantic
contracts proposed in Section 6:

Validation 1: Detection # Response Correctness. Waymo achieved perfect detection accuracy
yet experienced system failure, confirming that syntactic correctness is insufficient.

Validation 2: Semantic contracts are essential. The missing contracts between layers allowed
semantically incorrect interpretations to propagate unchecked. Had the detection layer
communicated scope context and fleet-wide patterns, the interpretation layer could have
recognized the regional emergency.

Validation 3: Intent must be formalized and multi-objective. Without explicit representation
of competing objectives (vehicle safety, traffic flow, emergency response), the decision layer
could not balance trade-offs appropriately.

Validation 4: Context loss causes cascading failures. Information boundaries (vehicle-to-fleet,
autonomous system-to-city infrastructure) caused critical context to be unavailable where needed.

Validation 5: Feedback loops enable learning. Waymo's post-incident software updates
demonstrate the feedback and learning layer in action, incorporating "power outage context" to
enable "more decisive navigation" precisely the semantic enrichment the framework advocates.
The incident also highlights a limitation not fully addressed in the original framework: the
scalability of semantic reasoning. Even with perfect semantic contracts, the human-in-the-loop
confirmation system created a bottleneck during the mass event. This suggests that semantic
correctness must be achievable autonomously at scale, with human oversight for monitoring and
exception handling rather than routine decision-making.

9.6. Lessons for Systems Engineering Practice

This case study yields seven actionable lessons directly aligned with the failure semantics
framework:

Lesson 1: Implement explicit semantic contracts between system layers (Section 6). The
detection layer reported “traffic signal non-functional™ without conveying scope, corroboration,
or urgency. Semantic contracts must communicate meaning, assumptions, and constraintsnot just
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diagnostic codes. The detection-to-interpretation contract should have included: fault type,
confidence, fleet-wide occurrence patterns, and geographic scope.

Lesson 2: Validate semantic assumptions across the operational envelope. Design-time
assumptions (isolated failures, sufficient human capacity) became invalid on a scale. Apply the
feedback and learning layer proactively: validate semantic models under rare but high-
consequence scenarios using fault injection testing that evaluates interpretation appropriateness,
not just detection accuracy.

Lesson 3: Enable context-aware interpretation through distributed reasoning (Section 6,
Interpretation Layer). Individual vehicles lacked fleet-level awareness and infrastructure
context, causing scope semantics failure (Section 4). Implement distributed semantic reasoning
that aggregates fleet observations, integrates external context (power grid status, emergency
declarations), and distinguishes local anomalies from system-wide events through V2V and V21
semantic information exchange.

Lesson 4: Formalize system intent and multi-objective decision-making (Section 6, Decision
Layer). The system exhibited intent semantics failure (Section 4) by optimizing exclusively for
individual caution while violating traffic flow and emergency access objectives. Define explicit
intent hierarchies: normal operation prioritizes vehicle safety over traffic flow; emergencies
prioritize emergency response access. Enable context-shift recognition to adapt priorities
dynamically.

Lesson 5: Incorporate feasibility constraints and fallback strategies (Section 6, Action
Layer). The system selected human confirmation without verifying feasibility at scale. The
action layer must evaluate response feasibility (operator capacity, timing requirements), monitor
for unintended consequences, and invoke fallbacks when primary responses fail: "IF
confirmation queue > threshold THEN suspend service."

Lesson 6: Build semantic digital twins for proactive validation (Section 8.1). Traditional
simulation validates detection and control but not semantic correctness. Semantic digital twins
integrating physical and semantic models enable what-if analysis: simulating "100 simultaneous
signal failures" would have revealed the interpretation bottleneck and capacity constraints before
deployment.

Lesson 7: Establish feedback mechanisms for semantic drift detection (Section 6, Feedback
Layer). Semantic models valid at design time become invalid as contexts evolve. Implement
continuous monitoring of semantic correctness through metrics including context ambiguity
frequency, contract violation rates, response effectiveness, and prediction-versus-actual
divergence to detect emerging misalignments before incidents occur.

10.CONCLUSION

This paper has introduced Failure Semantics as a critical yet underrepresented dimension of
systems engineering, explaining why modern complex systems can fail despite accurate fault
detection. It demonstrated that failures arise not from diagnostic inaccuracies, but from semantic
mismatches between detection, interpretation, decision-making, and action, amplified by
temporal dynamics, context loss, human factors, and lifecycle evolution. By formalizing failure
semantics, presenting a taxonomy of semantic failure modes, and proposing a layered semantic
framework with explicit semantic contracts, this work shows that diagnostics-centric approaches
are necessary but insufficient for system correctness. The Waymo San Francisco case study
provided empirical validation of these concepts, demonstrating how syntactically correct fault
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detection combined with semantic interpretation failures produced system-level breakdowns with
safety and operational consequences. However, significant limitations constrain the framework's
immediate applicability and highlight directions for future research. The framework lacks formal
mathematical foundations, preventing rigorous verification of semantic correctness and limiting
integration with existing formal methods tools. Computational complexity remains unanalyzed,
raising questions about real-time feasibility in safety-critical embedded systems with strict timing
constraints. The framework introduces a meta-problemsemantic reasoning itself may failyet
provides no mechanisms for detecting when interpretation layers produce silent semantic failures
that are more subtle than traditional diagnostic errors. Semantic correctness depends critically on
complete and accurate context, but the framework does not address reasoning under context
uncertainty, partial observability, or information acquisition constraints inevitable in real
deployments. Constructing valid semantic models requires eliciting tacit knowledge, resolving
stakeholder disagreements, and validating requirements correctnesssociotechnical challenges the
framework acknowledges but does not directly solve.

Most critically, the proposal lacks empirical validation through prototype implementations,
controlled experiments, or quantitative assessments demonstrating that semantic contracts reduce
failures or justify their implementation complexity in production systems. Finally, practical
guidance on incremental adoption, integration with existing toolchains, and management of
increased design complexity remains underdeveloped. Despite these limitations, the failure of
semantics framework establishes essential conceptual foundations for addressing a fundamental
gap in systems engineering practice. Ensuring reliable and resilient system behavior requires
elevating semantic alignment across system layers, tools, and human interactions to a first-class
systems-engineering concern. Future research must address the identified limitations through
formal specification of semantic correctness, computational complexity analysis, methodologies
for semantic model validation, empirical studies quantifying semantic failure prevalence and
intervention effectiveness, and industrial case studies demonstrating practical deployment. By
bridging the gap between correct diagnostics and correct system response, failure semantics
offers a path toward systems that not only detect what is wrong but understand what it means and
respond appropriately toa capability increasingly critical as autonomous systems assume greater
responsibility in safety-critical and mission-critical domains.
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