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ABSTRACT 
 

Large language models are increasingly embedded in regulated and safety critical 

software, including clinical research platforms and healthcare information systems. While 

these features enable natural language search, summarization, and configuration 

assistance, they introduce risks such as hallucinations, harmful or out of scope advice, 

privacy and security issues, bias, instability under change, and adversarial misuse. Prior 

work on machine learning testing and AI assurance offers useful concepts but limited 
guidance for interactive, product embedded assistants. This paper proposes a risk-based 

testing framework for LLM features in regulated software: a six-category risk taxonomy, a 

layered test strategy mapping risks to concrete tests across guardrail, orchestration, and 

system layers, and a case study applying the approach to a Knowledgebase assistant in a 

clinical research platform. 
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1. INTRODUCTION 

 
Large language models (LLMs) have rapidly become core components of modern software 

systems, enabling natural language search, summarization, decision support, and conversational 
interfaces across many domains [4], [8]. In regulated settings such as healthcare, finance, and 

clinical research, these capabilities are increasingly embedded directly into workflows for 

clinicians, coordinators, and operations staff [20]–[22], [26]. While LLMs promise efficiency 
and improved usability, they also introduce new classes of failure modes. These failures are not 

only technical defects but can manifest as safety incidents, privacy breaches, or regulatory non-

compliance when they occur in high-stakes contexts [3], [21], [26]. 
 

A growing body of work has documented that LLMs can produce fluent yet factually incorrect 

content, a phenomenon often referred to as hallucination [4], [5], [7]. Benchmarks such as 

TruthfulQA and HELM show that even state of the art models struggle with factual consistency, 
especially on knowledge-intensive or domain specific queries [4], [5]. At the same time, 

research on alignment and safety has shown that models may generate harmful, biased, or 

otherwise inappropriate content unless carefully trained and constrained [8]–[10], [25], [30]. 
These risks are amplified in domains where outputs may influence clinical decisions, protocol 

configuration, patient communication, or financial actions [16], [20], [21], [26]. 

 

Software engineering and machine learning communities have proposed numerous techniques 
for testing and validating ML systems more broadly [1]–[3]. Surveys and safety frameworks 

highlight challenges such as non-determinism, data dependence, and unclear test oracles, and 
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advocate for combinations of model-centric validation, simulations, expert review, and post-

deployment monitoring [1]–[3], [17]–[19]. In safety-critical sectors, assurance frameworks like 
AMLAS and domain specific guidance from regulators further emphasize the need for 

structured safety arguments and evidence spanning the entire system lifecycle [17], [18], [20]–

[22], [24]. However, existing work primarily targets classifiers and perception models rather 

than interactive, generative LLM features. It provides limited guidance on how to derive test 
plans from LLM-specific risks such as jailbreak prompts, prompt injection, unstable behavior 

under model updates, and content policy violations [11]–[15]. 

 
In parallel, regulators and international bodies have begun to articulate expectations for 

trustworthy AI. FDA guidance for AI-enabled medical devices, the WHO framework for AI in 

health, and emerging AI risk management standards all stress robustness, transparency, bias 

control, and ongoing performance monitoring [20], [21], [24]–[26]. Yet these documents are 
largely technology agnostic; they describe what must be demonstrated but not how teams should 

concretely test and monitor LLM-based features embedded in software products. There is 

therefore a gap between high level regulatory principles and the day-to-day testing practices of 
engineering teams building LLM-enabled functionality. 

 

This paper addresses that gap by proposing a risk-based testing framework for LLM features in 
regulated software systems. We make three contributions. First, we synthesize prior work on 

LLM evaluation, safety, and AI assurance into a taxonomy of risk categories that is tailored to 

regulated environments, covering factual errors, harmful or out-of-scope advice, privacy and 

security leakage, bias and unfairness, instability under change, and adversarial misuse [3]–[5], 
[7]–[12], [16], [21], [25], [26], [30]. Second, we derive a structured test strategy that maps each 

risk category to specific test types and automation points, integrating traditional ML testing 

ideas with LLM-oriented techniques such as red teaming and prompt-based regression suites 
[1], [2], [11]–[15], [17], [19]. Third, we discuss how this strategy can be aligned with validation 

practices and governance expectations in healthcare and related regulated domains, outlining 

how the resulting test artefacts support safety arguments and audits [20]–[22], [24]–[26]. 
Together, these elements aim to provide practitioners with a pragmatic starting point for 

systematically testing LLM-based features when product failures have consequences beyond 

simple user dissatisfaction. 

 

1.1. Approach 
 

The work presented in this paper is based on a combination of narrative literature synthesis and 
design-oriented method development grounded in a concrete product scenario. Rather than 

conducting a formal systematic review, we focused on integrating insights from four strands of 

prior work that are directly relevant to testing LLM based features in regulated settings. 
 

First, we surveyed surveys and mapping studies on testing and validation of machine learning 

systems, including model centric testing techniques, lifecycle perspectives, and safety assurance 
frameworks for learning enabled components [1]–[3], [17]–[19]. These sources provided 

concepts such as test oracles for non-deterministic models, continuous validation, and structured 

safety arguments that informed the architectural decomposition and the emphasis on regression 

and monitoring. 
 

Second, we examined research on evaluation and safety of large language models, including 

holistic benchmarks, factuality tests, hallucination detection methods, alignment techniques, and 
red teaming practices [4]–[15]. From this body of work, we extracted recurring concerns about 

factual inconsistency, harmful content, adversarial prompts, and the limits of training time 

alignment as the sole safety measure. 
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Third, we reviewed literature and guidance on validation and governance of AI systems in 

healthcare and related regulated domains, including analyses of AI enabled medical devices, 
clinical validation approaches, and ethics and governance frameworks [3], [20]–[26], [28]. 

These texts clarified the expectations of regulators and professional bodies regarding evidence, 

documentation, bias monitoring, and lifecycle management. 

 
Fourth, the design of the test strategy was informed by practical experience with integrating and 

testing LLM based knowledgebase functionality in a clinical research software platform. This 

experience provided concrete examples of failure modes and test artefacts, which are reflected 
in the illustrative case in Section 4.4. 

 

The risk taxonomy in Section 3 was derived by clustering the concerns identified in the LLM 

safety and regulated AI literature into categories that are meaningful for software engineering 
teams responsible for embedded features. The test types in Section 4 were then constructed by 

mapping these categories onto known machine learning testing techniques and safety assurance 

practices, and by refining them through their application to the knowledgebase assistant. The 
resulting framework is thus a synthesis of existing research, regulatory expectations, and 

product level experience, rather than a purely theoretical construction. 

 

2. BACKGROUND 
 
This section summarizes prior work that informs how LLM features should be tested when they 

are embedded inside regulated products. We focus on (1) testing and assurance for machine 

learning systems and (2) evaluation and safety research for LLMs. 
 

2.1. Testing and validation of machine learning systems 
 
Traditional software testing relies on deterministic behavior and well-defined test oracles. 

Machine learning systems violate both assumptions. The same input may yield different outputs 

due to stochastic inference or retraining, and correct behavior is often defined statistically rather 
than as a single expected value. Recent surveys on machine learning testing highlight these 

challenges and propose new taxonomies of faults, test objectives, and test generation techniques 

[1]–[3]. Common themes include the need to test not only model code but also data pipelines, 
feature engineering, and model integration into larger software systems. 

 

Zhang et al. categorize machine learning specific faults such as label noise, data drift, and 

adversarial examples, and discuss approaches like metamorphic testing, differential testing, and 
data augmentation-based test generation to reveal them [1]. Riccio et al. provide a mapping 

study that shows how testing activities span the entire machine learning lifecycle from data 

collection to deployment, and that many proposed techniques focus on classification models 
with structured inputs [2]. Myllyaho et al. extend the discussion to validation at system level, 

identifying four broad families of validation methods for AI systems: model centered evaluation 

on curated datasets, simulation-based validation, prospective trials, and expert based assessment 

[3]. These works motivate a view of AI validation as a combination of offline evaluation, 
scenario based testing, and human review rather than a single pass test phase. 

 

In safety critical domains such as autonomous driving, the software assurance community has 
begun to translate these ideas into structured safety arguments and processes. Frameworks like 

AMLAS define how to construct a safety case for machine learning components, including 

hazard analysis, data management plans, and evidence of robustness under relevant operational 
conditions [17]. Burton et al. and related work emphasize that uncertainty in data and models 

must be explicitly represented in the assurance case and mitigated via redundancy, monitoring, 
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and fallback behaviors [18], [19]. Together, these foundations provide concepts that are directly 

relevant for large language model features, but they do not yet address the specific interaction 
patterns and failure modes of conversational or generative systems. 

 

2.2. Evaluation and Safety of Large Language Models 
 

Large language models have motivated a parallel line of research on evaluation that goes 

beyond traditional accuracy metrics. Liang et al. propose HELM, a holistic evaluation 

framework that organizes assessment along two axes: scenarios such as question answering, 
summarization, or dialogue, and desiderata such as accuracy, robustness, calibration, fairness, 

and efficiency [4]. Their empirical study of many models shows pronounced tradeoffs: a model 

that performs strongly on general knowledge may still behave poorly on safety or bias metrics. 
Benchmarks like MMLU and TruthfulQA further reveal that even frontier models struggle on 

broad expert level knowledge tests and can confidently reproduce common human 

misconceptions [5], [6]. 
 

Hallucination, the production of fluent but unsupported or incorrect statements, has emerged as 

a central concern for LLM evaluation. Methods such as SelfCheckGPT attempt zero resource 

detection of hallucinations by probing a model with variations of its own answer and measuring 
self-consistency [7]. These approaches illustrate the shift from simple output comparison to 

more complex oracles that consider internal reasoning or agreement across samples. At the same 

time, foundational reports on so called foundation models highlight that LLMs concentrate both 
capabilities and risks, including misuse, emergent behavior, and systemic biases [8]. Evaluation 

must therefore include not only task performance but also behavior under adversarial or unusual 

inputs. 
 

To reduce harmful or misaligned behavior, model providers have adopted alignment techniques 

such as reinforcement learning from human feedback and constitutional AI, where models are 

trained to follow natural language principles of helpful and harmless behavior [9], [10]. These 
methods significantly improve safety in many everyday interactions, yet subsequent work on 

red teaming and adversarial prompting has shown that aligned models remain vulnerable to 

carefully crafted prompts and jailbreak strategies [11]–[15]. Safety alignment at training time is 
therefore a necessary but not sufficient condition for deployment in regulated environments. 

External guardrails, domain specific constraints, and independent safety testing remain required 

to ensure that LLM based features behave acceptably when deeply embedded in socio technical 

systems such as clinical or financial workflows. 
 

3. RISK TAXONOMY FOR LLM FEATURES IN REGULATED DOMAINS 
 

When LLM based functionality is embedded in regulated software, failures are best understood 
as manifestations of specific risk categories rather than as generic defects. This section proposes 

a taxonomy of six interrelated categories that reflect both observed LLM behaviour and 

concerns raised in healthcare and AI governance literature [3]–[5], [7]–[10], [16], [21], [25], 

[26], [30]. The categories are not mutually exclusive, but they help structure test objectives and 
safety arguments in later sections. 

 

3.1. Factual Errors and Omissions 
 

Factual inconsistency is one of the most widely documented failure modes of LLMs. 

Benchmarks such as TruthfulQA and HELM show that models frequently produce answers that 
are fluent yet factually incorrect or unsupported, especially for knowledge intensive or 
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specialized queries [4], [5]. Methods like SelfCheckGPT treat hallucination as a first-class 

evaluation target and attempt to detect it through self-consistency checks [7]. 
 

In regulated domains, factual errors and omissions can have direct safety, financial, or 

compliance implications. Examples include incorrect interpretation of protocol inclusion 

criteria, wrong visit windows, incomplete lists of required documents, or misstatements about 
regulatory rules. Even if the LLM is not used for clinical diagnosis, inaccurate guidance about 

workflows or documentation can still trigger protocol deviations, billing errors, or audit findings 

[21], [26]. 
 

We define this category as any instance where an LLM output contradicts authoritative sources 

or omits critical facts that a competent domain expert would consider necessary for the intended 

task. This definition ties the risk explicitly to domain knowledge and supporting evidence rather 
than to surface plausibility alone. 

 

3.2. Harmful or Out of Scope Advice 
 

Safety and alignment research has shown that LLMs can generate content that is harmful, 

offensive, or inconsistent with provider policies unless carefully trained and constrained [8]–
[10]. Even when alignment methods such as reinforcement learning from human feedback or 

constitutional AI reduce unsafe behaviour in general use, red teaming studies demonstrate that 

models can still be prompted into giving disallowed advice, including self-harm instructions, 
hate speech, or detailed guidance on restricted activities [11]–[15]. 

 

In regulated software, a narrower but equally important concern is out of scope advice. For 
example, an LLM integrated into a clinical research platform may be intended only to answer 

questions about system configuration or documentation, but a user might ask for diagnostic 

recommendations or treatment choices. Providing such content could breach regulatory 

boundaries, professional practice norms, or institutional policies even if the information is 
technically correct [16], [26]. 

 

This category therefore covers both explicitly harmful content and any advice that goes beyond 
the declared functional scope of the feature. From a risk management perspective, systems 

should be designed to refuse or redirect such queries, making this an explicit target for testing 

and guardrail design. 

 

3.3. Privacy and Security Risks 
 
LLMs operating over sensitive data pose privacy and security risks even when the surrounding 

infrastructure complies with standard protections. Cybersecurity analyses of LLM use in 

healthcare highlight threats such as inadvertent disclosure of protected health information, 

model inversion or extraction attacks, and prompt injection that induces the system to reveal 
confidential content [16]. More broadly, AI trustworthiness frameworks emphasise that 

confidentiality, integrity, and availability must be considered alongside functional performance 

[25], [26]. 
 

In practical terms, privacy and security risks manifest when an LLM reproduces identifiers from 

input records in contexts where they should be masked, when logs capture sensitive prompts or 
outputs beyond authorised retention periods, or when external model APIs are used in ways that 

conflict with data residency or consent requirements [20], [26]. Prompt injection and other 

adversarial input patterns can also cause the model to ignore system instructions and leak 

information meant to remain hidden. 
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We treat this category as encompassing any behaviour that violates organisational or legal 
constraints on data handling, including both accidental memorisation and deliberate exfiltration 

via adversarial interaction. 

 

3.4. Bias and Unfairness 
 

Bias and inequity in medical AI have been extensively documented, with implications for 

clinical decision making and patient outcomes [30]. Governance bodies such as WHO explicitly 
list fairness and equity as core principles for AI in health and call for active monitoring of 

disparate performance across subgroups [26]. LLMs trained on large scale web data inherit and 

can amplify social biases present in their training corpora, which can surface in tone, content, or 
differing quality of advice. 

 

For LLM features in regulated software, bias and unfairness may appear in subtle ways. For 
instance, an assistant that helps staff draft patient communications might use systematically 

different language for certain demographic groups, or a configuration advisor might provide 

more complete guidance for large academic centres than for small community sites based on 

biased examples seen during training. Even if the model does not make clinical decisions 
directly, these patterns can contribute to unequal experiences or outcomes. 

 

We define this category as systematic differences in behaviour across protected or contextually 
salient groups that are not justified by clinically or operationally relevant factors. Addressing it 

requires targeted testing beyond aggregate accuracy metrics. 

 

3.5. Instability Under Change and Drift 
 

Machine learning literature distinguishes between data drift, where the input distribution 
changes over time, and concept drift, where the relationship between inputs and desired outputs 

evolves [3], [27]. Studies of clinical prediction models show that such drift can significantly 

degrade performance in practice if models are not regularly recalibrated or revalidated [21], 
[27]. 

 

For LLM features, instability arises at several levels. Model providers periodically release new 

versions with different capabilities and failure modes. Prompt templates and retrieval pipelines 
may be updated during product evolution. The data corpus used for retrieval augmented 

generation can change as documentation is updated. From the perspective of a regulated 

product, these changes can alter behaviour without any visible code modification in the host 
application. 

 

This category captures risks where the system passes tests at one point in time but later degrades 

due to updates or environmental changes. In regulated environments, this undermines 
assumptions of validated performance and may require re-assessment or even regulatory 

notification if behaviour shifts significantly [21], [24], [26]. A taxonomy that explicitly 

recognises instability as a risk encourages the design of regression tests and monitoring 
mechanisms that track behaviour over time rather than only at initial release. 

 

3.6. Adversarial and Misuse Risks 
 

Red teaming work has made it clear that LLMs are susceptible to a wide range of adversarial or 

misuse scenarios. Researchers have demonstrated jailbreak prompts that bypass safety 
instructions, universal trigger phrases that provoke policy violations, and transfer attacks that 
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work across multiple aligned models [11]–[13]. Surveys on red teaming methods describe 

systematic processes for exploring, establishing, and exploiting such vulnerabilities in order to 
improve defences [11]–[15]. 

 

In regulated software, adversarial behaviour may come from external attackers but also from 

insiders experimenting with the system, curious users, or even benign queries that inadvertently 
mimic attack patterns. Prompt injection can cause an LLM to ignore system constraints and act 

on untrusted instructions embedded in retrieved content. Combined with the other risk 

categories, adversarial prompts can turn otherwise unlikely failure modes into probable events, 
for example by forcing the model to reveal private information or to give out of scope medical 

advice [16]. 

 

We define this category as behaviour that results from intentional or unintentional exploitation 
of model or system weaknesses through crafted inputs or interactions. Recognising adversarial 

and misuse risks as a distinct category helps justify dedicated stress testing and red teaming 

efforts rather than assuming that normal functional tests will suffice. 
 

3.7. Summary of Risk Categories 
 
The six categories described above provide a structured lens for reasoning about LLM based 

features in regulated environments. In practice, individual incidents often span several 

categories, such as a jailbreak prompt that elicits both a factual error and a privacy breach. For 
testing and assurance, however, treating each category as a separate test objective allows teams 

to design focused artefacts such as golden query sets for factual accuracy, policy violation suites 

for harmful advice, privacy leakage tests, bias probes, regression dashboards for stability, and 
adversarial prompt corpora. The next section builds on this taxonomy to derive a concrete test 

strategy and architecture. 

 

4. TEST STRATEGY AND ARCHITECTURE FOR LLM FEATURES 
 
The risk taxonomy in Section 3 provides a vocabulary for describing failures, but engineering 

teams need concrete test artefacts and architectural patterns that operationalize these risks. In 

this section we propose a test strategy organized along two dimensions. The first is an 
architectural view that separates guardrails, LLM orchestration, and the surrounding application. 

The second is a mapping from each risk category to specific test types that can be automated 

and integrated into the software lifecycle. The design is informed by work on machine learning 

testing and safety assurance [1]–[3], [17]–[19] as well as LLM evaluation and red teaming [4], 
[5], [7], [11]–[15]. 

 

4.1. Architectural Layers for Testing LLM Features 
 

We consider LLM based functionality as a subsystem composed of three interconnected layers. 

Each layer has distinct responsibilities and corresponding test objectives. 
 

1. Guardrail and policy layer: This layer enforces organizational and regulatory 

constraints on what the system may accept and produce. It typically includes input 
validation, content filters, allow and block lists, and explicit policy checks for privacy, 

safety, and scope. In regulated domains this layer is the primary line of defense against 

harmful or out of scope advice, privacy leaks, and obvious policy violations [16], [20], 

[25], [26]. 
2. Prompt orchestration and retrieval layer: This layer constructs prompts, manages 

retrieval augmented generation, and post processes model outputs. It determines which 
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context is provided to the LLM, how instructions are phrased, and how responses are 

transformed into structured outputs. Errors here often manifest as factual inconsistencies, 
omissions, or unstable behavior across updates, since small changes in templates or 

retrieval logic can significantly affect outputs [4], [5], [7], [21]. 

3. System and user experience layer: This layer integrates the LLM functionality into the 

broader application, controls how and when the feature is invoked, and determines what 
the user sees. It includes user interface elements, explanation mechanisms, logging, and 

monitoring. Failures here can expose users to misinterpreted outputs, hide uncertainty, or 

fail to record evidence needed for audits and incident investigation [3], [20], [21], [24], 
[26]. 

 

From a safety assurance perspective, this decomposition aligns with the idea that safety 

arguments should cover both component internals and system context [17]–[19], [25]. The 
guardrail layer corresponds to explicit safety constraints, the orchestration layer to model 

centered validation, and the system layer to human factors and real world integration. Tests 

should be scoped to the layer most directly responsible for a given risk, while still recognizing 
cross layer interactions. 

 

4.2. Test Types Per Risk Category 
 

Using the six risk categories from Section 3, we now outline test types that can be attached to 

each category and mapped to the architectural layers above. In practice, organizations can start 
with a subset that addresses their highest risks, then expand coverage over time. 

 

4.2.1. Factual Accuracy and Completeness Tests 
 

To address factual errors and omissions, we propose golden-set-based tests and retrieval 

consistency tests. 

 
Golden sets comprise representative queries paired with reference answers or required facts 

curated by domain experts or derived from authoritative documents [3], [4], [5], [28]. For each 

query, the test harness checks that the LLM output satisfies constraints such as inclusion of 
specific values, absence of contradictions, and coverage of mandatory elements. For example, 

configuration queries about visit windows can be tested to ensure that the correct numerical 

ranges and conditions appear in the response. 

 
Retrieval consistency tests target systems that use retrieval augmented generation. For a given 

query and document set, the test verifies that the correct documents are retrieved and cited, and 

that the generated answer is consistent with those sources [4], [7]. Discrepancies where the 
model introduces content not grounded in retrieved documents are treated as hallucination 

candidates. 

 
These tests primarily exercise the orchestration and retrieval layer but rely on the system layer 

for appropriate logging and on the guardrail layer to block clearly unsupported claims. They can 

be run offline on large batches of recorded or synthetic queries and integrated into regression 

testing whenever prompts, retrieval logic, or model versions change. 
 

4.2.2. Harmful and out of Scope Advice Tests 

 
For harmful or out of scope advice, the main test artefact is a policy violation suite. This 

consists of prompts that intentionally probe boundaries the system must not cross, such as 

requests for diagnosis, treatment recommendations, or prohibited activities in the clinical or 
organizational context [9]–[12], [15], [16], [26]. 
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Expected behavior for each prompt is defined as refusal, safe redirection, or a policy compliant 
alternative. Automated checks can look for the presence of refusal patterns, disclaimers, and 

absence of disallowed keywords or phrases in outputs. Guardrail components such as content 

classifiers and rule-based filters can be unit tested with these prompts, while end to end tests 

validate that the combined guardrail and LLM output remains within scope. 
 

Red teaming literature suggests that such suites should be periodically expanded with new 

prompts discovered through manual or automated adversarial exploration, since static sets tend 
to become stale as models and usage evolve [11]–[15]. In regulated products, these suites also 

serve as evidence that known high risk behaviors have been explicitly tested and mitigated. 

 

4.2.3.  Privacy and Security Tests 
 

Privacy and security tests aim to detect leakage of sensitive information, improper handling of 

identifiers, and susceptibility to prompt injection. Inspired by security testing and healthcare 
specific analyses of LLM threats [16], [20], [25], [26], we recommend the following elements. 

First, synthetic sensitive data tests. Test inputs and retrieval corpora are seeded with synthetic 

identifiers, such as fictitious names, addresses, or record numbers that follow realistic formats. 
Prompts then attempt to elicit these values directly or indirectly, for example by asking for 

summaries, lists, or verbatim reproduction. Automated checks flag any occurrence of synthetic 

identifiers in contexts where they should not appear, indicating potential memorization or 

inappropriate exposure. 
 

Second, prompt injection tests. These tests construct inputs where untrusted text includes 

instructions to ignore previous policies, reveal hidden information, or execute unwanted actions, 
similar to those described in red teaming work [11]–[13]. The test passes only if the system 

honors system level constraints and ignores the injected instructions. This often involves unit 

tests on prompt sanitization and end to end tests on the combined pipeline. 
 

Third, logging and audit tests. Here the focus shifts to the system layer. Test cases verify that 

logs and telemetry appropriately mask or exclude sensitive content, and that audit records 

capture enough detail about prompts, model versions, and outputs to support incident 
investigation without exposing protected data [20], [24], [26]. 

 

4.2.4. Bias and Fairness Tests 
 

Bias and unfairness require tests that compare behavior across subgroups rather than evaluating 

individual outputs in isolation. Following recommendations from bias studies in medical AI and 
governance documents [26], [30], we propose paired prompt testing and subgroup performance 

analysis. 

 
Paired prompts are constructed by varying demographic attributes or other protected 

characteristics while keeping the substantive query constant. For example, prompts may 

describe otherwise identical patient scenarios differing only in age, gender, or ethnicity. Outputs 

are then analyzed for differences in tone, content, or recommendation completeness. Automated 
metrics can count occurrences of certain adjectives or measure length and structure, while 

domain experts perform qualitative review of a sample for more subtle patterns [30]. 

 
When the LLM produces structured outputs, such as suggestions for follow up steps or 

document lists, subgroup performance metrics can be defined analogously to classification 

performance metrics. For instance, one can compute the rate at which critical elements are 
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included for each subgroup. Significant discrepancies trigger investigation and potentially 

further data curation or prompt adjustments. 
These tests typically operate at the orchestration and system layers, but their design and 

interpretation are deeply tied to organizational commitments about equity and non-

discrimination. 

 

4.2.5. Stability and Regression Tests 

 

Instability under change motivates regression tests that track behavior over time. In line with 
continuous validation ideas from AI system assurance and clinical model monitoring [3], [21], 

[27], we propose maintaining a frozen regression suite and performing periodic differential 

evaluation. 

 
The regression suite combines elements from factual, policy, privacy, and bias tests into a 

compact set of high value cases that represent core workflows and previously observed failures. 

Whenever any of the following change, the suite is executed automatically: 
 

 LLM provider or model version. 

 Prompt templates or retrieval ranking algorithms. 
 Major updates to the underlying document corpus. 

 

For each new configuration, outputs are compared to prior baselines using the same oracles as 

in the original tests. The goal is not to enforce identical text but to detect breaches of constraints 
such as newly introduced factual errors, weakened refusals, increased leakage of sensitive 

patterns, or regression in bias metrics. In regulated settings, this process also supports 

documentation of how model updates are evaluated and either accepted or rolled back [20], [21], 
[24], [26]. 

 

4.2.6. Adversarial and Red Team Tests 
 

Finally, adversarial and misuse risks call for dedicated red team activities that complement the 

more structured test suites above. Building on work that uses LLMs themselves to generate 

challenging prompts and explores universal jailbreak attacks [11]–[15], organizations can adopt 
a two stage approach. 

 

In the exploration stage, testers or automated adversaries search for prompts and interaction 
patterns that cause the system to violate safety, privacy, or scope constraints. Successful attacks 

are triaged, and a subset is translated into reproducible test cases. In the consolidation stage, 

these cases are added to the policy, privacy, or factual suites as appropriate, effectively 

converting discovered vulnerabilities into regression tests. 
 

This approach turns red teaming from an ad hoc activity into a continuous source of new test 

cases. In regulated products, records of red team exercises and subsequent hardening can be 
included in safety arguments and risk registers [17], [19], [20], [25]. 

 

4.2.7. Summary Mapping of Risks to Test Types 
 

Table 1 summarises how the six risk categories from Section 3 map to concrete test types and 

architectural layers. It also indicates which tests are suitable for automation and which typically 

require expert review. 
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Table 1. Mapping of risk categories to test types and architectural layers 

 
Risk category Example failures 

in 

Knowledgebase 

assistant 

Primary test types Main 

architectural 

layers 

Automation 

potential 

Factual errors 

and omissions 

Mixing legacy and 

current 

workflows, 

missing required 

navigation steps, 

incorrect 

parameter ranges 

Golden query and 

answer sets; retrieval 

consistency tests; 

source alignment 

checks 

Orchestration 

and retrieval; 

system logging 

High for pattern 

and constraint 

checks; expert 

review for new 

domains 

Harmful or out 

of scope 

advice 

Clinical 

commentary when 

only product 

guidance is 

allowed, 
suggestions that 

undermine 

protocol or policy 

Policy violation 

suites; refusal pattern 

checks; safety and 
scope guardrail tests 

Guardrail and 

policy; end to 

end system 

High for refusal 

pattern and 

keyword 

checks; 

medium for 
nuanced 

content 

Privacy and 

security risks 

Echoing synthetic 

identifiers, 

reproducing 

internal examples 

verbatim, prompt 

injection 

overriding system 

instructions 

Synthetic sensitive 

data leakage tests; 

prompt injection tests; 

logging and audit 

tests 

Guardrail; 

orchestration 

sanitisation; 

system logging 

High for 

identifier 

patterns and 

injection 

behaviour; 

expert review 

for edge cases 

Bias and 

unfairness 

Richer guidance 

for large academic 
centres than for 

small community 

sites, uneven tone 

across site types 

or regions 

Paired prompt tests; 
subgroup 

performance 

comparison; language 

and tone analysis 

Orchestration; 

system UX and 

analytics 

Medium for 

automatic 
metrics; 

requires expert 

review for 

interpretation 

Instability 

under change 

and drift 

Degraded refusals 

and incomplete 

answers after 

LLM version 

swap or corpus 

update 

Frozen regression 

suite across versions; 

differential 

comparison; drift and 

trend monitoring 

Orchestration; 

system 

monitoring and 

deployment 

High for 

automated 

regression and 

alerting; expert 

review for 

acceptance 

decisions 

Adversarial 

and misuse 

risks 

Jailbreak prompts 

eliciting 
implementation 

speculation, 

instructions that 

circumvent 

guardrails, 

injected 

commands in logs 

Red team exploration; 

adversarial prompt 

corpora; conversion 

of attacks into 

regression tests 

Guardrail; 

orchestration; 

system access 

control 

Medium 
automation for 

replay suites; 

exploration 

remains partly 

manual or semi 

automated 
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4.3. Automation and Integration into the Software Lifecycle 
 
To be practical, the test strategy must fit into existing development and validation workflows 

rather than remaining a one-time exercise. Machine learning testing surveys emphasize the 

importance of integrating tests at multiple levels of the stack and throughout the lifecycle [1]–
[3]. For LLM features, we suggest the following integration points. 

 

At development time, unit tests cover guardrail functions, prompt construction utilities, retrieval 

and ranking components, and post processing logic. These tests resemble traditional software 
tests and can be run on every code change. 

 

At integration level, batch evaluation jobs run factual, policy, privacy, and bias suites against 
development and staging deployments. These jobs can be triggered by changes in configuration 

or dependencies, such as a new model version, and their reports act as gates for promotion to 

production. 
 

At system level, pre-release validation can incorporate scenario-based tests and, where 

appropriate, limited pilots or shadow deployments that compare LLM assisted workflows with 

baseline processes, following ideas from clinical validation and dynamic deployment of medical 
AI [3], [21], [27]. 

 

Post deployment, monitoring pipelines track key indicators such as user feedback, refusal rates, 
distribution of query types, and drift signals, and periodically rerun selected tests on live 

configurations. Alerts are raised when metrics cross thresholds or when tests that previously 

passed begin to fail. These mechanisms support continuous assurance in line with emerging 
expectations from regulators and governance frameworks [20], [21], [24]–[26]. 

 

Taken together, the layered architecture and mapped test types provide a blueprint for 

systematic testing of LLM features in regulated software. The next section connects these ideas 
more explicitly to validation and governance practices in healthcare and related domains. 

 

5. VALIDATION IN REGULATED AND SAFETY CRITICAL ENVIRONMENTS 
 
The test strategy in Section 4 outlines how to structure and automate checks for LLM based 

features at subsystem level. In regulated environments, however, testing is embedded in a 

broader validation and assurance process that spans the entire lifecycle of the product. This 

section connects the proposed strategy to existing practices and expectations in healthcare and 
related safety critical sectors, with an emphasis on how test artefacts contribute to safety 

arguments, clinical or operational evidence, and governance. 

 

5.1. Lessons from Medical Device AI Validation 
 

Over the past decade, regulatory and industry communities have accumulated experience with 
validation of AI enabled medical devices, particularly for image analysis and structured 

prediction tasks. Surveys of the regulatory landscape show a growing number of AI based 

devices cleared by agencies such as the FDA and notified under European frameworks, often 
classified as software as a medical device [22]–[24]. Higgins and Johner highlight that across 

pharmaceuticals, medical devices, and in vitro diagnostics, AI containing products are expected 

to follow discipline specific quality systems while also addressing novel questions about 

training data, performance drift, and human factors [20]. 
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Common themes in this literature include the need for validation datasets that reflect intended 

use, careful separation of training and test data, and demonstration of performance on clinically 
relevant endpoints rather than proxy metrics [20], [21], [28]. Homeyer et al. provide detailed 

recommendations for compiling test datasets in pathology, emphasizing coverage of case 

diversity, rarity, and technical variability so that performance estimates are meaningful when the 

tool is deployed [28]. Myllyaho et al. and Rosenthal et al. further point out that validation rarely 
ends at offline testing; simulation environments, prospective studies, and expert review of tool 

outputs in context play important roles in building confidence for high consequence use [3], 

[21]. 
 

These patterns suggest several implications for LLM features. First, golden sets and policy 

suites should be constructed to reflect the tasks and populations that the feature will actually 

support, not only synthetic or simplified examples. Second, performance should be assessed in 
terms that matter to the regulated domain, such as reduction in protocol deviations or error rates 

in documentation, rather than solely in generic language metrics. Third, where LLM outputs 

influence clinical workflows, it may be appropriate to include them in broader validation 
activities such as simulated user studies or limited real world pilots, in line with how other AI 

tools are assessed [20], [21]. 

 

5.2. Towards Trial Like Evaluation for LLM Features 
 

Traditional clinical AI validation often assumes a fixed model evaluated once in a prospective 
trial. Rosenthal et al. argue that this assumption is increasingly unrealistic as AI systems evolve 

after deployment and are adapted to local contexts [21]. They propose dynamic deployment 

paradigms in which models can be updated under trial governance, with continuous monitoring 
and adaptation rather than a single frozen evaluation. Similar concerns apply to LLM features, 

where model providers release new versions, organizations adjust prompts, and document 

corpora change over time. 

 
For LLM based features embedded into clinical or research platforms, full randomized trials 

may not always be feasible, yet some of the same principles can be applied at smaller scale. For 

high-risk use cases, organizations can use shadow deployments in which the LLM runs 
alongside existing workflows and its outputs are recorded but not acted upon initially. This 

allows assessment of factual accuracy, safety, and impact on workflow without patient risk, 

analogous to shadow mode validation in other AI systems [3], [21], [27]. 

 
Where LLM features directly influence user actions, such as suggesting configuration changes 

or summarizing protocol text, limited rollouts with careful monitoring and predefined stopping 

criteria can provide evidence of benefit and safety. Metrics might include error rates, time to 
complete tasks, user satisfaction, and incidence of safety incidents or near misses. These 

evaluations complement the pre release test suites by measuring performance under real use 

conditions, including unanticipated query types and user behaviors. The regression and 
monitoring mechanisms described in Section 4.2.5 and 4.3 then support ongoing surveillance, 

making validation a continuous process rather than a one time gate [3], [21], [27]. 

 

5.3. Governance, Documentation and Auditability 
 

Regulatory and governance frameworks for AI in health stress not only technical performance 
but also transparency, accountability, and risk management. The WHO guidance on ethics and 

governance of AI for health calls for clear documentation of data sources, model behavior, 

evaluation methods, and limitations, alongside explicit consideration of bias, equity, and human 

oversight [26]. Broader AI trustworthiness frameworks similarly emphasize risk identification, 
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control measures, and monitoring, supported by artefacts that can be examined by internal or 

external auditors [25]. 
 

Within this context, the test strategy proposed in Section 4 can be seen as a mechanism for 

generating and maintaining a structured set of assurance artefacts. Golden sets, policy suites, 

privacy and bias test results, regression reports, and records of red team exercises collectively 
provide evidence that concrete risks have been identified, probed, and mitigated. When 

associated with specific LLM configurations, prompt templates, and deployment environments, 

these artefacts also support traceability over time, which is critical when explaining how a given 
feature was validated at a particular point [20], [21], [24]–[26]. 

 

From a governance perspective, two additional aspects are important. First, responsibilities for 

designing, executing, and reviewing tests should be clearly assigned, for example distinguishing 
between development teams, independent validation or QA groups, and domain experts. This 

aligns with model risk management practices in finance and safety assurance approaches such 

as AMLAS, which advocate separation of roles and independent challenge of safety arguments 
[17], [19], [20], [25]. Second, organizations should define thresholds and decision rules that 

connect test results to actions, such as blocking release, requiring further review, or initiating 

incident response. Without such policies, even well-designed tests may fail to influence practice. 
Overall, aligning LLM testing with established validation and governance practices in regulated 

domains helps ensure that these features are treated as first class, safety relevant components 

rather than experimental add-ons. In the next section we discuss practical implications of 

adopting this framework, including tradeoffs and limitations. 
 

6. DISCUSSION AND IMPLICATIONS FOR PRACTICE 
 

The proposed framework translates high level concerns about LLM behaviour into concrete test 
objectives and artefacts for regulated software. In this section we reflect on practical 

implications, trade offs, and limitations of adopting such a framework in real organisations. 

 

6.1. Balancing Test Depth with Delivery Cadence 
 
One tension for product teams is the balance between thorough testing and the desire to deliver 
new LLM features and improvements rapidly. Machine learning testing surveys already 

highlight the cost of extensive data collection, expert labelling, and test maintenance [1]–[3]. 

For LLM based features, the need for curated golden sets, policy suites, and bias probes adds 
additional overhead. 

 

A pragmatic approach is to prioritize test development based on risk. High consequence 
behaviors, such as guidance that influences clinical workflows or access to sensitive data, 

should receive extensive factual, policy, and privacy testing. Lower risk interactions, such as 

convenience features that merely rephrase documentation, may initially be covered by lighter 

test suites and monitoring. Over time, organizations can expand coverage as resources allow. 
 

Change management can also be structured by defining tiers of change with corresponding test 

requirements, a pattern seen in medical AI validation and model risk management [20], [21], 
[24], [25]. For example, switching to a new LLM provider or altering the functional scope of the 

feature might trigger full regression and red team testing, while minor prompt tweaks might 

require only focused subsets of the suite and monitoring of key indicators. 
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6.2. Integrating Domain Expertise into Testing 

 
Many of the proposed tests, especially for factual accuracy, bias, and out of scope advice, rely 

on domain expertise. This mirrors observations from AI validation literature, where expert 
review and clinical judgement are central to assessing performance and safety [3], [20], [21], 

[28], [30]. For LLM features, domain experts are needed to curate golden answers, define 

prohibited topics, interpret borderline outputs, and assess fairness tradeoffs. 

 
This dependence on experts can become a bottleneck, particularly in organisations with limited 

specialist availability. One mitigation is to design test artefacts that maximise reuse of expert 

effort. For instance, a single expert review session can produce multiple test cases and reference 
answers that become part of the long lived golden set. Similarly, red team sessions with domain 

experts can generate prompt patterns and failure examples that later feed into automated suites.  

 

Another strategy is to combine expert input with automated tools. Techniques such as 
SelfCheckGPT and embedding based similarity can flag outputs that deviate from known 

patterns for expert review [4], [7]. This allows experts to focus on the most informative cases 

rather than manually checking every test. 
 

6.3. Limitations of Current Techniques and Residual Risk 

 
Despite expanding test coverage, some residual risks remain difficult to eliminate. Adversarial 

and misuse risks are particularly challenging, as new jailbreak prompts and attack strategies 
continue to emerge [11]–[15]. Red teaming can identify and mitigate many vulnerabilities, but it 

cannot guarantee complete coverage. Similarly, bias and fairness tests can reveal disparities 

across selected groups, yet may miss issues in untested contexts or interactions [26], [30]. 

 
Hallucination detection methods are also imperfect. Approaches that rely on self-consistency or 

external retrieval can reduce obvious factual errors, but they may fail when sources are 

ambiguous, incomplete, or themselves biased [4], [5], [7], [8]. This suggests that for high 
consequence decisions, LLM outputs should be treated as advisory and subject to human 

verification, in line with recommendations from governance bodies [21], [25], [26]. 

 
From a regulatory standpoint, it is unlikely that any test strategy will remove all uncertainty 

about LLM behavior. Instead, the goal is to reduce risk to an acceptable level, document the 

residual uncertainties, and put in place processes for monitoring, incident response, and 

improvement. Safety assurance frameworks for machine learning already adopt this stance, 
focusing on structured arguments and evidence rather than absolute guarantees [17]–[19], [25]. 

The proposed test framework aims to complement such assurance cases with concrete, 

repeatable checks for LLM features. 
 

6.4. Generalizability Beyond Healthcare 

 
Although the paper focuses on healthcare and clinical research as exemplar regulated domains, 

the underlying risk categories and test patterns are relevant to other sectors. Financial services, 

for example, face similar concerns about factual errors in regulatory guidance, privacy breaches 
in customer interactions, and bias in advisory outputs. Model risk management guidelines in 

banking already require independent validation, stress testing, and documentation that are 

conceptually aligned with the proposed approach [20], [24], [25]. 
 

Safety critical industries such as automotive and aviation may also adopt LLM components for 

documentation, maintenance support, or operator assistance. In these settings, the combination 
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of factual, policy, and adversarial tests, along with integration into safety cases, can support 

arguments that the LLM components do not undermine overall system safety [17]–[19]. 
Adapting the framework to such domains mainly involves tailoring risk scenarios and test 

artefacts to local regulations and operational practices. 

 

6.5. Threats to Validity 
 

As with any conceptual framework, several threats to validity should be noted. First, the 

taxonomy of risks is derived from existing literature and emerging practice, and may not fully 
capture all relevant failure modes, especially as LLM capabilities and usage patterns evolve [4], 

[8], [11]–[15]. Second, the described test types assume access to logs, configuration control, and 

some level of influence over model selection and prompts, which may not hold for all 
deployments, particularly when using externally hosted models with limited transparency. 

 

Third, while the framework draws on principles from medical AI validation and safety 
assurance, it has not yet been empirically evaluated across multiple organizations or use cases. 

Comparative studies that assess its impact on defect rates, incident occurrence, and regulatory 

reviews would strengthen confidence in its effectiveness. Finally, the framework does not 

prescribe specific metrics or thresholds, leaving room for inconsistent interpretations. Future 
work could refine quantitative indicators and decision rules for different risk levels and 

application types. 

 

7. CONCLUSION 
 
Large language models are increasingly embedded into software products used in regulated and 

safety critical domains. Their strengths in natural language understanding and generation come 

with distinctive risks, including hallucinated content, harmful or out of scope advice, privacy 
and security issues, bias, instability under change, and vulnerability to adversarial prompts. 

Existing machine learning testing and AI validation literature provides valuable foundations but 

does not fully address the interactive, generative, and rapidly evolving nature of LLM features 
in these settings. 

 

This paper has proposed a risk-based taxonomy tailored to LLM features in regulated software, 

along with a corresponding test strategy and architectural decomposition. By mapping each risk 
category to concrete test types and associating them with guardrail, orchestration, and system 

layers, the framework offers a blueprint for designing golden sets, policy suites, privacy and 

bias probes, regression suites, and red team exercises that can be integrated into existing 
development and validation workflows. 

 

Connecting this strategy to practices in medical device AI validation and broader governance 
frameworks underscores that testing is only one element of assurance. Test artefacts must be 

complemented by clear roles, decision rules, monitoring, and documentation to satisfy 

regulatory and organizational expectations. Nonetheless, systematic testing is a necessary 

foundation for any credible safety argument about LLM based features. 
 

Future work includes empirical evaluation of the framework in real deployments, development 

of shared benchmarks and test corpora for regulated use cases, and exploration of how 
automated tools can support test maintenance as models, prompts, and regulations evolve. As 

LLMs continue to be adopted in high stakes contexts, collaborative efforts between software 

engineers, domain experts, and regulators will be essential to ensure that their benefits are 

realized without compromising safety, privacy, or fairness. 
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