RISK-BASED TEST FRAMEWORK FOR LILM
FEATURES IN REGULATED SOFTWARE

Zhiyin Zhou
New York, USA

ABSTRACT

Large language models are increasingly embedded in regulated and safety critical
software, including clinical research platforms and healthcare information systems. While
these features enable natural language search, summarization, and configuration
assistance, they introduce risks such as hallucinations, harmful or out of scope advice,
privacy and security issues, bias, instability under change, and adversarial misuse. Prior
work on machine learning testing and Al assurance offers useful concepts but limited
guidance for interactive, product embedded assistants. This paper proposes a risk-based
testing framework for LLM features in regulated software: a six-category risk taxonomy, a
layered test strategy mapping risks to concrete tests across guardrail, orchestration, and
system layers, and a case study applying the approach to a Knowledgebase assistant in a
clinical research platform.

KEYWORDS

Large language models, software testing, regulated software, healthcare, risk-based
testing, safety assurance, red teaming, regression testing

1. INTRODUCTION

Large language models (LLMs) have rapidly become core components of modern software
systems, enabling natural language search, summarization, decision support, and conversational
interfaces across many domains [4], [8]. In regulated settings such as healthcare, finance, and
clinical research, these capabilities are increasingly embedded directly into workflows for
clinicians, coordinators, and operations staff [20]-[22], [26]. While LLMs promise efficiency
and improved usability, they also introduce new classes of failure modes. These failures are not
only technical defects but can manifest as safety incidents, privacy breaches, or regulatory non-
compliance when they occur in high-stakes contexts [3], [21], [26].

A growing body of work has documented that LLMs can produce fluent yet factually incorrect
content, a phenomenon often referred to as hallucination [4], [5], [7]. Benchmarks such as
Truthful QA and HELM show that even state of the art models struggle with factual consistency,
especially on knowledge-intensive or domain specific queries [4], [5]. At the same time,
research on alignment and safety has shown that models may generate harmful, biased, or
otherwise inappropriate content unless carefully trained and constrained [8]-[10], [25], [30].
These risks are amplified in domains where outputs may influence clinical decisions, protocol
configuration, patient communication, or financial actions [16], [20], [21], [26].

Software engineering and machine learning communities have proposed numerous techniques
for testing and validating ML systems more broadly [1]-[3]. Surveys and safety frameworks
highlight challenges such as non-determinism, data dependence, and unclear test oracles, and

David C. Wyld et al. (Eds): CSML, AISCA, DNLP, SOEA, NET, BDHI, SIPO — 2026
pp. 107-124, 2026. CS & IT - CSCP 2026 DOI: 10.5121/csit.2026.160209

https://airccse.org/cscp.html
https://airccse.org/csit/V16N02.html
https://doi.org/10.5121/csit.2026.160209

108 Computer Science & Information Technology (CS & IT)

advocate for combinations of model-centric validation, simulations, expert review, and post-
deployment monitoring [1]-[3], [17]-[19]. In safety-critical sectors, assurance frameworks like
AMLAS and domain specific guidance from regulators further emphasize the need for
structured safety arguments and evidence spanning the entire system lifecycle [17], [18], [20]-
[22], [24]. However, existing work primarily targets classifiers and perception models rather
than interactive, generative LLM features. It provides limited guidance on how to derive test
plans from LLM-specific risks such as jailbreak prompts, prompt injection, unstable behavior
under model updates, and content policy violations [11]-[15].

In parallel, regulators and international bodies have begun to articulate expectations for
trustworthy Al. FDA guidance for Al-enabled medical devices, the WHO framework for Al in
health, and emerging Al risk management standards all stress robustness, transparency, bias
control, and ongoing performance monitoring [20], [21], [24]-[26]. Yet these documents are
largely technology agnostic; they describe what must be demonstrated but not how teams should
concretely test and monitor LLM-based features embedded in software products. There is
therefore a gap between high level regulatory principles and the day-to-day testing practices of
engineering teams building LLM-enabled functionality.

This paper addresses that gap by proposing a risk-based testing framework for LLM features in
regulated software systems. We make three contributions. First, we synthesize prior work on
LLM evaluation, safety, and Al assurance into a taxonomy of risk categories that is tailored to
regulated environments, covering factual errors, harmful or out-of-scope advice, privacy and
security leakage, bias and unfairness, instability under change, and adversarial misuse [3]-[5],
[71-112], [16], [21], [25], [26], [30]. Second, we derive a structured test strategy that maps each
risk category to specific test types and automation points, integrating traditional ML testing
ideas with LLM-oriented techniques such as red teaming and prompt-based regression suites
[1], [2], [11]-[15], [17], [19]. Third, we discuss how this strategy can be aligned with validation
practices and governance expectations in healthcare and related regulated domains, outlining
how the resulting test artefacts support safety arguments and audits [20]-[22], [24]-[26].
Together, these elements aim to provide practitioners with a pragmatic starting point for
systematically testing LLM-based features when product failures have consequences beyond
simple user dissatisfaction.

1.1. Approach

The work presented in this paper is based on a combination of narrative literature synthesis and
design-oriented method development grounded in a concrete product scenario. Rather than
conducting a formal systematic review, we focused on integrating insights from four strands of
prior work that are directly relevant to testing LLM based features in regulated settings.

First, we surveyed surveys and mapping studies on testing and validation of machine learning
systems, including model centric testing techniques, lifecycle perspectives, and safety assurance
frameworks for learning enabled components [1]-[3], [17]-[19]. These sources provided
concepts such as test oracles for non-deterministic models, continuous validation, and structured
safety arguments that informed the architectural decomposition and the emphasis on regression
and monitoring.

Second, we examined research on evaluation and safety of large language models, including
holistic benchmarks, factuality tests, hallucination detection methods, alignment techniques, and
red teaming practices [4]-[15]. From this body of work, we extracted recurring concerns about
factual inconsistency, harmful content, adversarial prompts, and the limits of training time
alignment as the sole safety measure.

Computer Science & Information Technology (CS & IT) 109

Third, we reviewed literature and guidance on validation and governance of Al systems in
healthcare and related regulated domains, including analyses of Al enabled medical devices,
clinical validation approaches, and ethics and governance frameworks [3], [20]-[26], [28].
These texts clarified the expectations of regulators and professional bodies regarding evidence,
documentation, bias monitoring, and lifecycle management.

Fourth, the design of the test strategy was informed by practical experience with integrating and
testing LLM based knowledgebase functionality in a clinical research software platform. This
experience provided concrete examples of failure modes and test artefacts, which are reflected
in the illustrative case in Section 4.4.

The risk taxonomy in Section 3 was derived by clustering the concerns identified in the LLM
safety and regulated Al literature into categories that are meaningful for software engineering
teams responsible for embedded features. The test types in Section 4 were then constructed by
mapping these categories onto known machine learning testing techniques and safety assurance
practices, and by refining them through their application to the knowledgebase assistant. The
resulting framework is thus a synthesis of existing research, regulatory expectations, and
product level experience, rather than a purely theoretical construction.

2. BACKGROUND

This section summarizes prior work that informs how LLM features should be tested when they
are embedded inside regulated products. We focus on (1) testing and assurance for machine
learning systems and (2) evaluation and safety research for LLMs.

2.1. Testing and validation of machine learning systems

Traditional software testing relies on deterministic behavior and well-defined test oracles.
Machine learning systems violate both assumptions. The same input may yield different outputs
due to stochastic inference or retraining, and correct behavior is often defined statistically rather
than as a single expected value. Recent surveys on machine learning testing highlight these
challenges and propose new taxonomies of faults, test objectives, and test generation techniques
[1]-[3]. Common themes include the need to test not only model code but also data pipelines,
feature engineering, and model integration into larger software systems.

Zhang et al. categorize machine learning specific faults such as label noise, data drift, and
adversarial examples, and discuss approaches like metamorphic testing, differential testing, and
data augmentation-based test generation to reveal them [1]. Riccio et al. provide a mapping
study that shows how testing activities span the entire machine learning lifecycle from data
collection to deployment, and that many proposed techniques focus on classification models
with structured inputs [2]. Myllyaho et al. extend the discussion to validation at system level,
identifying four broad families of validation methods for Al systems: model centered evaluation
on curated datasets, simulation-based validation, prospective trials, and expert based assessment
[3]. These works motivate a view of Al validation as a combination of offline evaluation,
scenario based testing, and human review rather than a single pass test phase.

In safety critical domains such as autonomous driving, the software assurance community has
begun to translate these ideas into structured safety arguments and processes. Frameworks like
AMLAS define how to construct a safety case for machine learning components, including
hazard analysis, data management plans, and evidence of robustness under relevant operational
conditions [17]. Burton et al. and related work emphasize that uncertainty in data and models
must be explicitly represented in the assurance case and mitigated via redundancy, monitoring,

110 Computer Science & Information Technology (CS & IT)

and fallback behaviors [18], [19]. Together, these foundations provide concepts that are directly
relevant for large language model features, but they do not yet address the specific interaction
patterns and failure modes of conversational or generative systems.

2.2. Evaluation and Safety of Large Language Models

Large language models have motivated a parallel line of research on evaluation that goes
beyond traditional accuracy metrics. Liang et al. propose HELM, a holistic evaluation
framework that organizes assessment along two axes: scenarios such as question answering,
summarization, or dialogue, and desiderata such as accuracy, robustness, calibration, fairness,
and efficiency [4]. Their empirical study of many models shows pronounced tradeoffs: a model
that performs strongly on general knowledge may still behave poorly on safety or bias metrics.
Benchmarks like MMLU and Truthful QA further reveal that even frontier models struggle on
broad expert level knowledge tests and can confidently reproduce common human
misconceptions [5], [6].

Hallucination, the production of fluent but unsupported or incorrect statements, has emerged as
a central concern for LLM evaluation. Methods such as SelfCheckGPT attempt zero resource
detection of hallucinations by probing a model with variations of its own answer and measuring
self-consistency [7]. These approaches illustrate the shift from simple output comparison to
more complex oracles that consider internal reasoning or agreement across samples. At the same
time, foundational reports on so called foundation models highlight that LLMs concentrate both
capabilities and risks, including misuse, emergent behavior, and systemic biases [8]. Evaluation
must therefore include not only task performance but also behavior under adversarial or unusual
inputs.

To reduce harmful or misaligned behavior, model providers have adopted alignment techniques
such as reinforcement learning from human feedback and constitutional Al, where models are
trained to follow natural language principles of helpful and harmless behavior [9], [10]. These
methods significantly improve safety in many everyday interactions, yet subsequent work on
red teaming and adversarial prompting has shown that aligned models remain vulnerable to
carefully crafted prompts and jailbreak strategies [11]-[15]. Safety alignment at training time is
therefore a necessary but not sufficient condition for deployment in regulated environments.
External guardrails, domain specific constraints, and independent safety testing remain required
to ensure that LLM based features behave acceptably when deeply embedded in socio technical
systems such as clinical or financial workflows.

3. RISK TAXONOMY FOR LLM FEATURES IN REGULATED DOMAINS

When LLM based functionality is embedded in regulated software, failures are best understood
as manifestations of specific risk categories rather than as generic defects. This section proposes
a taxonomy of six interrelated categories that reflect both observed LLM behaviour and
concerns raised in healthcare and Al governance literature [3]-[5], [7]-[10], [16], [21], [25],
[26], [30]. The categories are not mutually exclusive, but they help structure test objectives and
safety arguments in later sections.

3.1. Factual Errors and Omissions
Factual inconsistency is one of the most widely documented failure modes of LLMs.

Benchmarks such as Truthful QA and HELM show that models frequently produce answers that
are fluent yet factually incorrect or unsupported, especially for knowledge intensive or

Computer Science & Information Technology (CS & IT) 111

specialized queries [4], [5]. Methods like SelfCheckGPT treat hallucination as a first-class
evaluation target and attempt to detect it through self-consistency checks [7].

In regulated domains, factual errors and omissions can have direct safety, financial, or
compliance implications. Examples include incorrect interpretation of protocol inclusion
criteria, wrong visit windows, incomplete lists of required documents, or misstatements about
regulatory rules. Even if the LLM is not used for clinical diagnosis, inaccurate guidance about
workflows or documentation can still trigger protocol deviations, billing errors, or audit findings
[21], [26].

We define this category as any instance where an LLM output contradicts authoritative sources
or omits critical facts that a competent domain expert would consider necessary for the intended
task. This definition ties the risk explicitly to domain knowledge and supporting evidence rather
than to surface plausibility alone.

3.2. Harmful or Out of Scope Advice

Safety and alignment research has shown that LLMs can generate content that is harmful,
offensive, or inconsistent with provider policies unless carefully trained and constrained [8]—
[10]. Even when alignment methods such as reinforcement learning from human feedback or
constitutional Al reduce unsafe behaviour in general use, red teaming studies demonstrate that
models can still be prompted into giving disallowed advice, including self-harm instructions,
hate speech, or detailed guidance on restricted activities [11]-[15].

In regulated software, a narrower but equally important concern is out of scope advice. For
example, an LLM integrated into a clinical research platform may be intended only to answer
questions about system configuration or documentation, but a user might ask for diagnostic
recommendations or treatment choices. Providing such content could breach regulatory
boundaries, professional practice norms, or institutional policies even if the information is
technically correct [16], [26].

This category therefore covers both explicitly harmful content and any advice that goes beyond
the declared functional scope of the feature. From a risk management perspective, systems
should be designed to refuse or redirect such queries, making this an explicit target for testing
and guardrail design.

3.3. Privacy and Security Risks

LLMs operating over sensitive data pose privacy and security risks even when the surrounding
infrastructure complies with standard protections. Cybersecurity analyses of LLM use in
healthcare highlight threats such as inadvertent disclosure of protected health information,
model inversion or extraction attacks, and prompt injection that induces the system to reveal
confidential content [16]. More broadly, Al trustworthiness frameworks emphasise that
confidentiality, integrity, and availability must be considered alongside functional performance
[25], [26].

In practical terms, privacy and security risks manifest when an LLM reproduces identifiers from
input records in contexts where they should be masked, when logs capture sensitive prompts or
outputs beyond authorised retention periods, or when external model APls are used in ways that
conflict with data residency or consent requirements [20], [26]. Prompt injection and other
adversarial input patterns can also cause the model to ignore system instructions and leak
information meant to remain hidden.

112 Computer Science & Information Technology (CS & IT)

We treat this category as encompassing any behaviour that violates organisational or legal
constraints on data handling, including both accidental memorisation and deliberate exfiltration
via adversarial interaction.

3.4. Bias and Unfairness

Bias and inequity in medical Al have been extensively documented, with implications for
clinical decision making and patient outcomes [30]. Governance bodies such as WHO explicitly
list fairness and equity as core principles for Al in health and call for active monitoring of
disparate performance across subgroups [26]. LLMs trained on large scale web data inherit and
can amplify social biases present in their training corpora, which can surface in tone, content, or
differing quality of advice.

For LLM features in regulated software, bias and unfairness may appear in subtle ways. For
instance, an assistant that helps staff draft patient communications might use systematically
different language for certain demographic groups, or a configuration advisor might provide
more complete guidance for large academic centres than for small community sites based on
biased examples seen during training. Even if the model does not make clinical decisions
directly, these patterns can contribute to unequal experiences or outcomes.

We define this category as systematic differences in behaviour across protected or contextually
salient groups that are not justified by clinically or operationally relevant factors. Addressing it
requires targeted testing beyond aggregate accuracy metrics.

3.5. Instability Under Change and Drift

Machine learning literature distinguishes between data drift, where the input distribution
changes over time, and concept drift, where the relationship between inputs and desired outputs
evolves [3], [27]. Studies of clinical prediction models show that such drift can significantly
degrade performance in practice if models are not regularly recalibrated or revalidated [21],
[27].

For LLM features, instability arises at several levels. Model providers periodically release new
versions with different capabilities and failure modes. Prompt templates and retrieval pipelines
may be updated during product evolution. The data corpus used for retrieval augmented
generation can change as documentation is updated. From the perspective of a regulated
product, these changes can alter behaviour without any visible code modification in the host
application.

This category captures risks where the system passes tests at one point in time but later degrades
due to updates or environmental changes. In regulated environments, this undermines
assumptions of validated performance and may require re-assessment or even regulatory
notification if behaviour shifts significantly [21], [24], [26]. A taxonomy that explicitly
recognises instability as a risk encourages the design of regression tests and monitoring
mechanisms that track behaviour over time rather than only at initial release.

3.6. Adversarial and Misuse Risks
Red teaming work has made it clear that LLMs are susceptible to a wide range of adversarial or

misuse scenarios. Researchers have demonstrated jailbreak prompts that bypass safety
instructions, universal trigger phrases that provoke policy violations, and transfer attacks that

Computer Science & Information Technology (CS & IT) 113

work across multiple aligned models [11]-[13]. Surveys on red teaming methods describe
systematic processes for exploring, establishing, and exploiting such vulnerabilities in order to
improve defences [11]-[15].

In regulated software, adversarial behaviour may come from external attackers but also from
insiders experimenting with the system, curious users, or even benign queries that inadvertently
mimic attack patterns. Prompt injection can cause an LLM to ignore system constraints and act
on untrusted instructions embedded in retrieved content. Combined with the other risk
categories, adversarial prompts can turn otherwise unlikely failure modes into probable events,
for example by forcing the model to reveal private information or to give out of scope medical
advice [16].

We define this category as behaviour that results from intentional or unintentional exploitation
of model or system weaknesses through crafted inputs or interactions. Recognising adversarial
and misuse risks as a distinct category helps justify dedicated stress testing and red teaming
efforts rather than assuming that normal functional tests will suffice.

3.7. Summary of Risk Categories

The six categories described above provide a structured lens for reasoning about LLM based
features in regulated environments. In practice, individual incidents often span several
categories, such as a jailbreak prompt that elicits both a factual error and a privacy breach. For
testing and assurance, however, treating each category as a separate test objective allows teams
to design focused artefacts such as golden query sets for factual accuracy, policy violation suites
for harmful advice, privacy leakage tests, bias probes, regression dashboards for stability, and
adversarial prompt corpora. The next section builds on this taxonomy to derive a concrete test
strategy and architecture.

4. TEST STRATEGY AND ARCHITECTURE FOR LLM FEATURES

The risk taxonomy in Section 3 provides a vocabulary for describing failures, but engineering
teams need concrete test artefacts and architectural patterns that operationalize these risks. In
this section we propose a test strategy organized along two dimensions. The first is an
architectural view that separates guardrails, LLM orchestration, and the surrounding application.
The second is a mapping from each risk category to specific test types that can be automated
and integrated into the software lifecycle. The design is informed by work on machine learning
testing and safety assurance [1]-[3], [17]-[19] as well as LLM evaluation and red teaming [4],

[51, [7], [11}H15].
4.1. Architectural Layers for Testing LLM Features

We consider LLM based functionality as a subsystem composed of three interconnected layers.
Each layer has distinct responsibilities and corresponding test objectives.

1. Guardrail and policy layer: This layer enforces organizational and regulatory
constraints on what the system may accept and produce. It typically includes input
validation, content filters, allow and block lists, and explicit policy checks for privacy,
safety, and scope. In regulated domains this layer is the primary line of defense against
harmful or out of scope advice, privacy leaks, and obvious policy violations [16], [20],
[25], [26].

2. Prompt orchestration and retrieval layer: This layer constructs prompts, manages
retrieval augmented generation, and post processes model outputs. It determines which

114 Computer Science & Information Technology (CS & IT)

context is provided to the LLM, how instructions are phrased, and how responses are
transformed into structured outputs. Errors here often manifest as factual inconsistencies,
omissions, or unstable behavior across updates, since small changes in templates or
retrieval logic can significantly affect outputs [4], [5], [7], [21].

3. System and user experience layer: This layer integrates the LLM functionality into the
broader application, controls how and when the feature is invoked, and determines what
the user sees. It includes user interface elements, explanation mechanisms, logging, and
monitoring. Failures here can expose users to misinterpreted outputs, hide uncertainty, or
fail to record evidence needed for audits and incident investigation [3], [20], [21], [24],
[26].

From a safety assurance perspective, this decomposition aligns with the idea that safety
arguments should cover both component internals and system context [17]-[19], [25]. The
guardrail layer corresponds to explicit safety constraints, the orchestration layer to model
centered validation, and the system layer to human factors and real world integration. Tests
should be scoped to the layer most directly responsible for a given risk, while still recognizing
cross layer interactions.

4.2. Test Types Per Risk Category

Using the six risk categories from Section 3, we now outline test types that can be attached to
each category and mapped to the architectural layers above. In practice, organizations can start
with a subset that addresses their highest risks, then expand coverage over time.

4.2.1. Factual Accuracy and Completeness Tests

To address factual errors and omissions, we propose golden-set-based tests and retrieval
consistency tests.

Golden sets comprise representative queries paired with reference answers or required facts
curated by domain experts or derived from authoritative documents [3], [4], [5], [28]. For each
query, the test harness checks that the LLM output satisfies constraints such as inclusion of
specific values, absence of contradictions, and coverage of mandatory elements. For example,
configuration queries about visit windows can be tested to ensure that the correct numerical
ranges and conditions appear in the response.

Retrieval consistency tests target systems that use retrieval augmented generation. For a given
query and document set, the test verifies that the correct documents are retrieved and cited, and
that the generated answer is consistent with those sources [4], [7]. Discrepancies where the
model introduces content not grounded in retrieved documents are treated as hallucination
candidates.

These tests primarily exercise the orchestration and retrieval layer but rely on the system layer
for appropriate logging and on the guardrail layer to block clearly unsupported claims. They can
be run offline on large batches of recorded or synthetic queries and integrated into regression
testing whenever prompts, retrieval logic, or model versions change.

4.2.2. Harmful and out of Scope Advice Tests

For harmful or out of scope advice, the main test artefact is a policy violation suite. This
consists of prompts that intentionally probe boundaries the system must not cross, such as
requests for diagnosis, treatment recommendations, or prohibited activities in the clinical or
organizational context [9]-[12], [15], [16], [26].

Computer Science & Information Technology (CS & IT) 115

Expected behavior for each prompt is defined as refusal, safe redirection, or a policy compliant
alternative. Automated checks can look for the presence of refusal patterns, disclaimers, and
absence of disallowed keywords or phrases in outputs. Guardrail components such as content
classifiers and rule-based filters can be unit tested with these prompts, while end to end tests
validate that the combined guardrail and LLM output remains within scope.

Red teaming literature suggests that such suites should be periodically expanded with new
prompts discovered through manual or automated adversarial exploration, since static sets tend
to become stale as models and usage evolve [11]-[15]. In regulated products, these suites also
serve as evidence that known high risk behaviors have been explicitly tested and mitigated.

4.2.3. Privacy and Security Tests

Privacy and security tests aim to detect leakage of sensitive information, improper handling of
identifiers, and susceptibility to prompt injection. Inspired by security testing and healthcare
specific analyses of LLM threats [16], [20], [25], [26], we recommend the following elements.
First, synthetic sensitive data tests. Test inputs and retrieval corpora are seeded with synthetic
identifiers, such as fictitious names, addresses, or record numbers that follow realistic formats.
Prompts then attempt to elicit these values directly or indirectly, for example by asking for
summaries, lists, or verbatim reproduction. Automated checks flag any occurrence of synthetic
identifiers in contexts where they should not appear, indicating potential memorization or
inappropriate exposure.

Second, prompt injection tests. These tests construct inputs where untrusted text includes
instructions to ignore previous policies, reveal hidden information, or execute unwanted actions,
similar to those described in red teaming work [11]-[13]. The test passes only if the system
honors system level constraints and ignores the injected instructions. This often involves unit
tests on prompt sanitization and end to end tests on the combined pipeline.

Third, logging and audit tests. Here the focus shifts to the system layer. Test cases verify that
logs and telemetry appropriately mask or exclude sensitive content, and that audit records
capture enough detail about prompts, model versions, and outputs to support incident
investigation without exposing protected data [20], [24], [26].

4.2 4. Bias and Fairness Tests

Bias and unfairness require tests that compare behavior across subgroups rather than evaluating
individual outputs in isolation. Following recommendations from bias studies in medical Al and
governance documents [26], [30], we propose paired prompt testing and subgroup performance
analysis.

Paired prompts are constructed by varying demographic attributes or other protected
characteristics while keeping the substantive query constant. For example, prompts may
describe otherwise identical patient scenarios differing only in age, gender, or ethnicity. Outputs
are then analyzed for differences in tone, content, or recommendation completeness. Automated
metrics can count occurrences of certain adjectives or measure length and structure, while
domain experts perform qualitative review of a sample for more subtle patterns [30].

When the LLM produces structured outputs, such as suggestions for follow up steps or
document lists, subgroup performance metrics can be defined analogously to classification
performance metrics. For instance, one can compute the rate at which critical elements are

116 Computer Science & Information Technology (CS & IT)

included for each subgroup. Significant discrepancies trigger investigation and potentially
further data curation or prompt adjustments.

These tests typically operate at the orchestration and system layers, but their design and
interpretation are deeply tied to organizational commitments about equity and non-
discrimination.

4.2.5. Stability and Regression Tests

Instability under change motivates regression tests that track behavior over time. In line with
continuous validation ideas from Al system assurance and clinical model monitoring [3], [21],
[27], we propose maintaining a frozen regression suite and performing periodic differential
evaluation.

The regression suite combines elements from factual, policy, privacy, and bias tests into a
compact set of high value cases that represent core workflows and previously observed failures.
Whenever any of the following change, the suite is executed automatically:

e LLM provider or model version.
e Prompt templates or retrieval ranking algorithms.
e Major updates to the underlying document corpus.

For each new configuration, outputs are compared to prior baselines using the same oracles as
in the original tests. The goal is not to enforce identical text but to detect breaches of constraints
such as newly introduced factual errors, weakened refusals, increased leakage of sensitive
patterns, or regression in bias metrics. In regulated settings, this process also supports
documentation of how model updates are evaluated and either accepted or rolled back [20], [21],
[24], [26].

4.2.6. Adversarial and Red Team Tests

Finally, adversarial and misuse risks call for dedicated red team activities that complement the
more structured test suites above. Building on work that uses LLMs themselves to generate
challenging prompts and explores universal jailbreak attacks [11]-[15], organizations can adopt
a two stage approach.

In the exploration stage, testers or automated adversaries search for prompts and interaction
patterns that cause the system to violate safety, privacy, or scope constraints. Successful attacks
are triaged, and a subset is translated into reproducible test cases. In the consolidation stage,
these cases are added to the policy, privacy, or factual suites as appropriate, effectively
converting discovered vulnerabilities into regression tests.

This approach turns red teaming from an ad hoc activity into a continuous source of new test
cases. In regulated products, records of red team exercises and subsequent hardening can be
included in safety arguments and risk registers [17], [19], [20], [25].

4.2.7. Summary Mapping of Risks to Test Types
Table 1 summarises how the six risk categories from Section 3 map to concrete test types and

architectural layers. It also indicates which tests are suitable for automation and which typically
require expert review.

Computer Science & Information Technology (CS & IT)

117

Table 1. Mapping of risk categories to test types and architectural layers

Risk category

Example failures
in
Knowledgebase
assistant

Primary test types

Main
architectural
layers

Automation
potential

Factual errors
and omissions

Mixing legacy and
current
workflows,
missing required
navigation steps,
incorrect
parameter ranges

Golden query and
answer sets; retrieval
consistency tests;
source alignment
checks

Orchestration
and retrieval;
system logging

High for pattern
and constraint
checks; expert
review for new
domains

Clinical
commentary when

High for refusal

only product Policy violation pattern and
Harmful or out 'y prod . y Guardrail and keyword
guidance is suites; refusal pattern .)
of scope . policy; end to checks;
advice allowed, checks; safety and end system medium for
suggestions that scope guardrail tests s
. nuanced
undermine
. content
protocol or policy
!Echo_ln_g synthetic High for
identifiers, . - . o
; Synthetic sensitive . identifier
reproducing) Guardrail,
. . data leakage tests; . patterns and
Privacy and internal examples N . | orchestration e
T i prompt injection tests; T injection
security risks | verbatim, prompt . . sanitisation; S
logging and audit behaviour;

injection
overriding system
instructions

tests

system logging

expert review
for edge cases

Richer guidance

. .) Medium for
for large academic | Paired prompt tests; automatic
. centres than for subgroup Orchestration; L
Bias and . metrics;
. small community | performance system UX and .
unfairness . S . requires expert
sites, uneven tone | comparison; language | analytics review for
across site types and tone analysis - .
. interpretation
or regions
Degraded refusals . High for
. Frozen regression . automated
. and incomplete . .| Orchestration; -
Instability Suite across versions; regression and
answers after - ; system o
under change . differential - alerting; expert
. LLM version S monitoring and .
and drift comparison; drift and review for
swap or corpus L deployment
trend monitoring acceptance
update o
decisions
Jailbreak prompts
eliciting Medium
implementation Red team exploration; . automation for
. . . Guardrail; -
Adversarial speculation, adversarial prompt . replay suites;
; ; .) : orchestration; .
and misuse instructions that corpora; conversion exploration
X . ; system access .
risks circumvent of attacks into remains partly
. . control .
guardrails, regression tests manual or semi
injected automated

commands in logs

118 Computer Science & Information Technology (CS & IT)
4.3. Automation and Integration into the Software Lifecycle

To be practical, the test strategy must fit into existing development and validation workflows
rather than remaining a one-time exercise. Machine learning testing surveys emphasize the
importance of integrating tests at multiple levels of the stack and throughout the lifecycle [1]-
[3]. For LLM features, we suggest the following integration points.

At development time, unit tests cover guardrail functions, prompt construction utilities, retrieval
and ranking components, and post processing logic. These tests resemble traditional software
tests and can be run on every code change.

At integration level, batch evaluation jobs run factual, policy, privacy, and bias suites against
development and staging deployments. These jobs can be triggered by changes in configuration
or dependencies, such as a new model version, and their reports act as gates for promotion to
production.

At system level, pre-release validation can incorporate scenario-based tests and, where
appropriate, limited pilots or shadow deployments that compare LLM assisted workflows with
baseline processes, following ideas from clinical validation and dynamic deployment of medical
Al [3], [21], [27].

Post deployment, monitoring pipelines track key indicators such as user feedback, refusal rates,
distribution of query types, and drift signals, and periodically rerun selected tests on live
configurations. Alerts are raised when metrics cross thresholds or when tests that previously
passed begin to fail. These mechanisms support continuous assurance in line with emerging
expectations from regulators and governance frameworks [20], [21], [24]-[26].

Taken together, the layered architecture and mapped test types provide a blueprint for
systematic testing of LLM features in regulated software. The next section connects these ideas
more explicitly to validation and governance practices in healthcare and related domains.

5. VALIDATION IN REGULATED AND SAFETY CRITICAL ENVIRONMENTS

The test strategy in Section 4 outlines how to structure and automate checks for LLM based
features at subsystem level. In regulated environments, however, testing is embedded in a
broader validation and assurance process that spans the entire lifecycle of the product. This
section connects the proposed strategy to existing practices and expectations in healthcare and
related safety critical sectors, with an emphasis on how test artefacts contribute to safety
arguments, clinical or operational evidence, and governance.

5.1. Lessons from Medical Device Al Validation

Over the past decade, regulatory and industry communities have accumulated experience with
validation of Al enabled medical devices, particularly for image analysis and structured
prediction tasks. Surveys of the regulatory landscape show a growing number of Al based
devices cleared by agencies such as the FDA and notified under European frameworks, often
classified as software as a medical device [22]-[24]. Higgins and Johner highlight that across
pharmaceuticals, medical devices, and in vitro diagnostics, Al containing products are expected
to follow discipline specific quality systems while also addressing novel questions about
training data, performance drift, and human factors [20].

Computer Science & Information Technology (CS & IT) 119

Common themes in this literature include the need for validation datasets that reflect intended
use, careful separation of training and test data, and demonstration of performance on clinically
relevant endpoints rather than proxy metrics [20], [21], [28]. Homeyer et al. provide detailed
recommendations for compiling test datasets in pathology, emphasizing coverage of case
diversity, rarity, and technical variability so that performance estimates are meaningful when the
tool is deployed [28]. Myllyaho et al. and Rosenthal et al. further point out that validation rarely
ends at offline testing; simulation environments, prospective studies, and expert review of tool
outputs in context play important roles in building confidence for high consequence use [3],
[21].

These patterns suggest several implications for LLM features. First, golden sets and policy
suites should be constructed to reflect the tasks and populations that the feature will actually
support, not only synthetic or simplified examples. Second, performance should be assessed in
terms that matter to the regulated domain, such as reduction in protocol deviations or error rates
in documentation, rather than solely in generic language metrics. Third, where LLM outputs
influence clinical workflows, it may be appropriate to include them in broader validation
activities such as simulated user studies or limited real world pilots, in line with how other Al
tools are assessed [20], [21].

5.2. Towards Trial Like Evaluation for LLM Features

Traditional clinical Al validation often assumes a fixed model evaluated once in a prospective
trial. Rosenthal et al. argue that this assumption is increasingly unrealistic as Al systems evolve
after deployment and are adapted to local contexts [21]. They propose dynamic deployment
paradigms in which models can be updated under trial governance, with continuous monitoring
and adaptation rather than a single frozen evaluation. Similar concerns apply to LLM features,
where model providers release new versions, organizations adjust prompts, and document
corpora change over time.

For LLM based features embedded into clinical or research platforms, full randomized trials
may not always be feasible, yet some of the same principles can be applied at smaller scale. For
high-risk use cases, organizations can use shadow deployments in which the LLM runs
alongside existing workflows and its outputs are recorded but not acted upon initially. This
allows assessment of factual accuracy, safety, and impact on workflow without patient risk,
analogous to shadow mode validation in other Al systems [3], [21], [27].

Where LLM features directly influence user actions, such as suggesting configuration changes
or summarizing protocol text, limited rollouts with careful monitoring and predefined stopping
criteria can provide evidence of benefit and safety. Metrics might include error rates, time to
complete tasks, user satisfaction, and incidence of safety incidents or near misses. These
evaluations complement the pre release test suites by measuring performance under real use
conditions, including unanticipated query types and user behaviors. The regression and
monitoring mechanisms described in Section 4.2.5 and 4.3 then support ongoing surveillance,
making validation a continuous process rather than a one time gate [3], [21], [27].

5.3. Governance, Documentation and Auditability

Regulatory and governance frameworks for Al in health stress not only technical performance
but also transparency, accountability, and risk management. The WHO guidance on ethics and
governance of Al for health calls for clear documentation of data sources, model behavior,
evaluation methods, and limitations, alongside explicit consideration of bias, equity, and human
oversight [26]. Broader Al trustworthiness frameworks similarly emphasize risk identification,

120 Computer Science & Information Technology (CS & IT)

control measures, and monitoring, supported by artefacts that can be examined by internal or
external auditors [25].

Within this context, the test strategy proposed in Section 4 can be seen as a mechanism for
generating and maintaining a structured set of assurance artefacts. Golden sets, policy suites,
privacy and bias test results, regression reports, and records of red team exercises collectively
provide evidence that concrete risks have been identified, probed, and mitigated. When
associated with specific LLM configurations, prompt templates, and deployment environments,
these artefacts also support traceability over time, which is critical when explaining how a given
feature was validated at a particular point [20], [21], [24]-[26].

From a governance perspective, two additional aspects are important. First, responsibilities for
designing, executing, and reviewing tests should be clearly assigned, for example distinguishing
between development teams, independent validation or QA groups, and domain experts. This
aligns with model risk management practices in finance and safety assurance approaches such
as AMLAS, which advocate separation of roles and independent challenge of safety arguments
[17], [19], [20], [25]. Second, organizations should define thresholds and decision rules that
connect test results to actions, such as blocking release, requiring further review, or initiating
incident response. Without such policies, even well-designed tests may fail to influence practice.
Overall, aligning LLM testing with established validation and governance practices in regulated
domains helps ensure that these features are treated as first class, safety relevant components
rather than experimental add-ons. In the next section we discuss practical implications of
adopting this framework, including tradeoffs and limitations.

6. DISCUSSION AND IMPLICATIONS FOR PRACTICE

The proposed framework translates high level concerns about LLM behaviour into concrete test
objectives and artefacts for regulated software. In this section we reflect on practical
implications, trade offs, and limitations of adopting such a framework in real organisations.

6.1. Balancing Test Depth with Delivery Cadence

One tension for product teams is the balance between thorough testing and the desire to deliver
new LLM features and improvements rapidly. Machine learning testing surveys already
highlight the cost of extensive data collection, expert labelling, and test maintenance [1]-[3].
For LLM based features, the need for curated golden sets, policy suites, and bias probes adds
additional overhead.

A pragmatic approach is to prioritize test development based on risk. High consequence
behaviors, such as guidance that influences clinical workflows or access to sensitive data,
should receive extensive factual, policy, and privacy testing. Lower risk interactions, such as
convenience features that merely rephrase documentation, may initially be covered by lighter
test suites and monitoring. Over time, organizations can expand coverage as resources allow.

Change management can also be structured by defining tiers of change with corresponding test
requirements, a pattern seen in medical Al validation and model risk management [20], [21],
[24], [25]. For example, switching to a new LLM provider or altering the functional scope of the
feature might trigger full regression and red team testing, while minor prompt tweaks might
require only focused subsets of the suite and monitoring of key indicators.

Computer Science & Information Technology (CS & IT) 121
6.2. Integrating Domain Expertise into Testing

Many of the proposed tests, especially for factual accuracy, bias, and out of scope advice, rely
on domain expertise. This mirrors observations from Al validation literature, where expert
review and clinical judgement are central to assessing performance and safety [3], [20], [21],
[28], [30]. For LLM features, domain experts are needed to curate golden answers, define
prohibited topics, interpret borderline outputs, and assess fairness tradeoffs.

This dependence on experts can become a bottleneck, particularly in organisations with limited
specialist availability. One mitigation is to design test artefacts that maximise reuse of expert
effort. For instance, a single expert review session can produce multiple test cases and reference
answers that become part of the long lived golden set. Similarly, red team sessions with domain
experts can generate prompt patterns and failure examples that later feed into automated suites.

Another strategy is to combine expert input with automated tools. Techniques such as
SelfCheckGPT and embedding based similarity can flag outputs that deviate from known
patterns for expert review [4], [7]. This allows experts to focus on the most informative cases
rather than manually checking every test.

6.3. Limitations of Current Techniques and Residual Risk

Despite expanding test coverage, some residual risks remain difficult to eliminate. Adversarial
and misuse risks are particularly challenging, as new jailoreak prompts and attack strategies
continue to emerge [11]-[15]. Red teaming can identify and mitigate many vulnerabilities, but it
cannot guarantee complete coverage. Similarly, bias and fairness tests can reveal disparities
across selected groups, yet may miss issues in untested contexts or interactions [26], [30].

Hallucination detection methods are also imperfect. Approaches that rely on self-consistency or
external retrieval can reduce obvious factual errors, but they may fail when sources are
ambiguous, incomplete, or themselves biased [4], [5], [7], [8]. This suggests that for high
consequence decisions, LLM outputs should be treated as advisory and subject to human
verification, in line with recommendations from governance bodies [21], [25], [26].

From a regulatory standpoint, it is unlikely that any test strategy will remove all uncertainty
about LLM behavior. Instead, the goal is to reduce risk to an acceptable level, document the
residual uncertainties, and put in place processes for monitoring, incident response, and
improvement. Safety assurance frameworks for machine learning already adopt this stance,
focusing on structured arguments and evidence rather than absolute guarantees [17]-[19], [25].
The proposed test framework aims to complement such assurance cases with concrete,
repeatable checks for LLM features.

6.4. Generalizability Beyond Healthcare

Although the paper focuses on healthcare and clinical research as exemplar regulated domains,
the underlying risk categories and test patterns are relevant to other sectors. Financial services,
for example, face similar concerns about factual errors in regulatory guidance, privacy breaches
in customer interactions, and bias in advisory outputs. Model risk management guidelines in
banking already require independent validation, stress testing, and documentation that are
conceptually aligned with the proposed approach [20], [24], [25].

Safety critical industries such as automotive and aviation may also adopt LLM components for
documentation, maintenance support, or operator assistance. In these settings, the combination

122 Computer Science & Information Technology (CS & IT)

of factual, policy, and adversarial tests, along with integration into safety cases, can support
arguments that the LLM components do not undermine overall system safety [17]-[19].
Adapting the framework to such domains mainly involves tailoring risk scenarios and test
artefacts to local regulations and operational practices.

6.5. Threats to Validity

As with any conceptual framework, several threats to validity should be noted. First, the
taxonomy of risks is derived from existing literature and emerging practice, and may not fully
capture all relevant failure modes, especially as LLM capabilities and usage patterns evolve [4],
[8], [11]-[15]. Second, the described test types assume access to logs, configuration control, and
some level of influence over model selection and prompts, which may not hold for all
deployments, particularly when using externally hosted models with limited transparency.

Third, while the framework draws on principles from medical Al validation and safety
assurance, it has not yet been empirically evaluated across multiple organizations or use cases.
Comparative studies that assess its impact on defect rates, incident occurrence, and regulatory
reviews would strengthen confidence in its effectiveness. Finally, the framework does not
prescribe specific metrics or thresholds, leaving room for inconsistent interpretations. Future
work could refine quantitative indicators and decision rules for different risk levels and
application types.

7. CONCLUSION

Large language models are increasingly embedded into software products used in regulated and
safety critical domains. Their strengths in natural language understanding and generation come
with distinctive risks, including hallucinated content, harmful or out of scope advice, privacy
and security issues, bias, instability under change, and vulnerability to adversarial prompts.
Existing machine learning testing and Al validation literature provides valuable foundations but
does not fully address the interactive, generative, and rapidly evolving nature of LLM features
in these settings.

This paper has proposed a risk-based taxonomy tailored to LLM features in regulated software,
along with a corresponding test strategy and architectural decomposition. By mapping each risk
category to concrete test types and associating them with guardrail, orchestration, and system
layers, the framework offers a blueprint for designing golden sets, policy suites, privacy and
bias probes, regression suites, and red team exercises that can be integrated into existing
development and validation workflows.

Connecting this strategy to practices in medical device Al validation and broader governance
frameworks underscores that testing is only one element of assurance. Test artefacts must be
complemented by clear roles, decision rules, monitoring, and documentation to satisfy
regulatory and organizational expectations. Nonetheless, systematic testing is a necessary
foundation for any credible safety argument about LLM based features.

Future work includes empirical evaluation of the framework in real deployments, development
of shared benchmarks and test corpora for regulated use cases, and exploration of how
automated tools can support test maintenance as models, prompts, and regulations evolve. As
LLMs continue to be adopted in high stakes contexts, collaborative efforts between software
engineers, domain experts, and regulators will be essential to ensure that their benefits are
realized without compromising safety, privacy, or fairness.

Computer Science & Information Technology (CS & IT) 123
REFERENCES

[1] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing: Survey, landscapes and
horizons,” IEEE Transactions on Software Engineering, vol. 48, no. 1, pp. 1-36, 2022.

[2] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and P. Tonella, “Testing machine
learning based systems: A systematic mapping,” Empirical Softw. Eng., vol. 25, no. 6, pp. 5193-
5254, 2020.

[3] L. Myllyaho, M. Raatikainen, T. Ménnisto, T. Mikkonen, and J. K. Nurminen, “Systematic literature
review of validation methods for Al systems,” J. Syst. Softw., vol. 181, Art. no. 111050, 2021, doi:
10.1016/j.jss.2021.111050.

[4] P. Liang et al., “Holistic evaluation of language models,” arXiv preprint, arXiv:2211.09110, 2022,
doi: 10.48550/arXiv.2211.09110.

[5] S. Lin, J. Hilton, and O. Evans, “Truthful QA: Measuring how models mimic human falsehoods,” in
Proc. 60th Annual Meeting of the Association for Computational Linguistics (ACL), 2022, pp. 3214—
3252. Available: https://aclanthology.org/2022.acl-long.229

[6] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt, “Measuring
massive multitask language understanding,” in Proc. Int. Conf. Learn. Representations (ICLR), 2021.
[Online]. Available: https://openreview.net/forum?id=d7KBjmI3GmQ

[7] P. Manakul, A. Liusie, and M. J. F. Gales, “SelfCheckGPT: Zero-resource black-box hallucination
detection for generative large language models,” arXiv preprint, arXiv:2303.08896, 2023. [Online].
Available: https://arxiv.org/abs/2303.08896

[8] R. Bommasani et al., “On the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021. Available: https://arxiv.org/abs/2108.07258

[9] L. Ouyang et al., “Training language models to follow instructions with human feedback,” in
Advances in Neural Information Processing Systems (NeurlPS), 2022. [Online]. Available:
https://openreview.net/forum?id=TG8KACXEON

[10] Y. Bai et al., “Constitutional Al: Harmlessness from Al feedback,” arXiv preprint arXiv:2212.08073,
2022. Available: https://arxiv.org/abs/2212.08073

[11] E. Perez, S. Huang, F. Song, T. Cai, R. Ring, J. Aslanides, A. Glaese, N. McAleese, and G. Irving,
“Red Teaming Language Models with Language Models,” in Proc. 2022 Conf. Empirical Methods
in Natural Language Processing (EMNLP), Abu Dhabi, United Arab Emirates, Dec. 2022, pp.
3419-3448, doi: 10.18653/v1/2022.emnlp-main.225.

[12] S. Casper, J. Lin, J. Kwon, G. Culp, and D. Hadfield-Menell, “Explore, establish, exploit: Red
teaming language models from scratch,” arXiv preprint arXiv:2306.09442, 2023. Available:
https://arxiv.org/abs/2306.09442

[13] A. Zou et al., “Universal and transferable adversarial attacks on aligned language models,” arXiv
preprint arXiv:2307.15043, 2023. Available: https://arxiv.org/abs/2307.15043

[14] M. S. Jabbar, S. Al-Azani, A. Alotaibi, and M. Ahmed, “Red teaming large language models: A
comprehensive review and critical analysis,” Information Processing and Management, vol. 62, no.
6, Art. no. 104239, 2025, doi: 10.1016/j.ipm.2025.104239

[15] A. Purpura, S. Wadhwa, J. Zymet, A. Gupta, A. Luo, M. K. Rad, S. Shinde, and M. S. Sorower, “An
end-to-end overview of red teaming for large language models,” arXiv preprint arXiv:2503.01742,
2025.

[16] T. A. D’ Antonoli et al., “Cybersecurity threats and mitigation strategies for large language models in
health care,” Radiology: Artificial Intelligence, wvol. 7, no. 4, 240739, 2025, doi:
10.1148/ryai.240739.

[17] C. Paterson, R. Hawkins, C. Picardi, Y. Jia, R. Calinescu, and 1. Habli, “Safety assurance of
Machine Learning for autonomous systems,” Reliability Engineering & System Safety, vol. 264, pt.
A, Art. no. 111311, 2025, doi: 10.1016/j.ress.2025.111311.

[18] S. Burton and B. Herd, “Addressing uncertainty in the safety assurance of machine-learning,”
Frontiers in Computer Science, vol. 5, Art. no. 1132580, Apr. 6, 2023, doi:
10.3389/fcomp.2023.1132580.

[19] Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe, and X. Huang,
“Reliability assessment and safety arguments for machine learning components in assuring learning-
enabled autonomous systems,” arXiv preprint arXiv:2112.00646, 2021, doi:
10.48550/arXiv.2112.00646.

124
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Computer Science & Information Technology (CS & IT)

D. C. Higgins and C. Johner, “Validation of artificial intelligence containing products across the regulated
healthcare industries,” Therapeutic Innovation and Regulatory Science, vol. 57, no. 4, pp. 797-809, 2023,
doi: 10.1007/s43441-023-00530-4.

J. T. Rosenthal, A. Beecy, and M. R. Sabuncu, “Rethinking clinical trials for medical Al with dynamic
deployments of adaptive systems,” NPJ Digital Medicine, vol. 8, no. 1, Art. no. 252, 2025, doi:
10.1038/s41746-025-01674-3.

R. Singh, M. Bapna, A. Diab, E. Ruiz, and W. Lotter, “How Al is used in FDA-authorized medical
devices: A taxonomy across 1,016 authorizations,” NPJ Digital Medicine, vol. 8, 2025, doi:
10.1038/s41746-025-01800-1.

G. Joshi, A. Jain, S. R. Araveeti, S. Adhikari, H. Garg, and M. Bhandari, “FDA-approved artificial
intelligence and machine learning (Al/ML)-enabled medical devices: An updated landscape,” Electronics,
vol. 13, no. 3, Art. no. 498, 2024, doi: 10.3390/electronics13030498.

W. P. Chen, W. G. Teng, C. B. Kuo, Y. J. Yen, J. Y. Lian, M. Sing, and P. T. Chen, “Regulatory insights
from 27 years of artificial intelligence/machine learning-enabled medical device recalls in the United
States: Implications for future governance,” JMIR Medical Informatics, vol. 13, Art. no. e67552, 2025,
doi: 10.2196/67552.

N. Polemi, I. Praga, K. Kioskli, and A. Bécue, “Challenges and efforts in managing Al trustworthiness
risks: A state of knowledge,” Frontiers in Big Data, vol. 7, 2024, doi: 10.3389/fdata.2024.1381163.
World Health Organization, Ethics and Governance of Artificial Intelligence for Health: Guidance on
Large Multi-Modal Models. Geneva, Switzerland: World Health Organization, 2024. [Online]. Available:
https://iris.who.int/handle/10665/375579

K. Rahmani, R. Thapa, P. Tsou, S. Chetty, G. Barnes, C. Lam, and C. Tso, “Assessing the effects of data
drift on the performance of machine learning models used in clinical sepsis prediction,” International
Journal of Medical Informatics, vol. 173, Art. no. 104930, 2022, doi: 10.1016/j.ijmedinf.2022.104930.

A. Homeyer, C. Geilller, L. O. Schwen, et al., “Recommendations on compiling test datasets for
evaluating artificial intelligence solutions in pathology,” Modern Pathology, vol. 35, pp. 1759-1769,
2022, doi: 10.1038/541379-022-01147-y.

F. Bolanos Burgos, A. Salatino, F. Osborne, and E. Motta, “Atrtificial intelligence for literature reviews:
Opportunities and challenges,” Artificial Intelligence Review, vol. 57, no. 9, Art. no. 259, 2024, doi:
10.1007/s10462-024-10902-3.

J. L. Cross, M. A. Choma, and J. A. Onofrey, “Bias in medical Al: Implications for clinical decision-
making,” PLOS Digital Health, Nov. 2024, doi: 10.1371/journal.pdig.0000651.

Z. Zhou, “Beyond chat: A framework for LLMs as human-centered support systems,” in Cryptography
and Information Security Trends 2025 (CRYPIS 2025). Sep. 2025, pp. 271-289, doi:
10.5121/csit.2025.151721.

W. Sun, Q. Shen, Y. Gao, Q. Mao, T. Qi, and S. Xu, “Objective over architecture: Fraud detection under
extreme imbalance in bank account opening,” Computation, vol. 13, no. 12, Art. no. 290, 2025, doi:
10.3390/computation13120290.

G. Lan, H. A. Inan, S. Abdelnabi, J. Kulkarni, L. Wutschitz, R. Shokri, C. G. Brinton, and R. Sim,
“Contextual integrity in LLMs via reasoning and reinforcement learning,” in Proc. 39th Annu. Conf.
Neural Inf. Process. Syst. (NeurlPS 2025), San Diego, CA, USA, 2025. [Online]. Available:
https://openreview.net/forum?id=Xm571XquU0n

Y. Lou, H. Hu, S. Ma, Z. Zhang, L. Wang, J. Ge, and X. Tao, “DRF: LLM-AGENT Dynamic Reputation
Filtering Framework,” in Proc. Int. Conf. Neural Inf. Process. (ICONIP). Springer, 2025, pp. 127-141.
Y. Li, Y. Li, K. Zhang, F. Zhang, C. Yang, Z. Guo, W. Ding, and T. Huang, “Achieving fair medical
image segmentation in foundation models with adversarial visual prompt tuning,” Information Sciences,
vol. 720, Art. no. 122501, pp. 1-16, 2025, doi: 10.1016/j.ins.2025.122501.

J. Zhang, W. Zhang, C. Tan, X. Li, and Q. Sun, “YOLO-PPA based efficient traffic sign detection for
cruise control in autonomous driving,” arXiv preprint, arXiv:2409.03320, 2024. [Online]. Available:
https://arxiv.org/abs/2409.03320

M. Hu, J. Wang, W. Zhao, Q. Zeng, and L. Luo, “FlowMalTrans: Unsupervised binary code translation
for malware detection using flow-adapter architecture,” in Findings of the Association for Computational
Linguistics: EMNLP 2025, Suzhou, China, Nov. 2025, pp. 3251-3272, doi: 10.18653/v1/2025.findings-
emnlp.173.

©2026 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

	Abstract
	Keywords
	3. Risk taxonomy for LLM features in regulated domains
	4. Test Strategy and Architecture for LLM Features
	5. Validation in Regulated and Safety Critical Environments
	6. Discussion and Implications for Practice
	7. Conclusion

