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ABSTRACT

Distribution of Internet-of-Things sensors in wireless sensor networks (WSNs) often leads
to transmission conflicts and inefficiency of energy utilization, resulting in decreased
sensor communication and incomplete data for decision making. Utilizing hexagonal
topology and its properties such as one distance-to-neighbor, one distance-to-cluster, and
three-axis coordinates can be exploited for energy efficient optimization. Leveraging a
network optimization model created in AMPL with network simulation created in Contiki-
NG Cooja, this research demonstrates that WSNs with hexagonal network topology can
benefit from clustering which improves network lifetime, and therefore, enhances WSNs
reliability by reducing total network energy consumption. Additionally, dynamic clustering
further improves network lifetime for the WSN where the cluster-member hopping energy
cost and cluster-head transmission energy cost ratio is 33.5% or less.
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1. INTRODUCTION

Wireless Sensor Networks (WSNSs) are core enablers of the Internet of Things (IoT), supporting
sectors such as space, transportation, manufacturing, military systems, and modern applications
including habitat monitoring, precision agriculture, healthcare [20], and natural-disaster
detection. They collect large-scale physical data essential for monitoring, tracking, and decision-
making.

Improving WSN reliability has been a major research focus. In real deployments, sensor
distribution often creates transmission conflicts and inefficient energy use [1], leading to
reduced communication and incomplete datasets [2]. Even small data-loss rates, 5% or 20%, can
degrade recognition sensor performance to 45% and 84%, respectively, making the data
unreliable [38].

The network's ability to reliably deliver data, depends on the network topology and parameters,
and on the transmission properties of the device and of the medium [7]. While WSN reliability
is multifaceted depending on the specific application and requirements, in a broad sense WSN
reliability is characterized and assessed by sensing coverage, network connectivity, energy
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efficiency and data handling capacity [11],[12],[42].

Theoretical analysis shows that when using a fixed quantity of sensor nodes, a hexagonal
topology can attain maximal coverage [3]. Njoya et al. [17] in their study of WSNs employed
the hexagonal lattice to demonstrate a power-saving network design. In a recent study by Li et
al. [2] they employed the Fruchterman—Reingold Hexagon algorithm modified for WSN
deployment to take full advantage of sensors’ hardware capabilities. Similarly, dynamic
clustering is a groundbreaking method for designing energy efficient sensor network to achieve
reliable data transmission and scalability. While clustering protocols such as LEACH [23],
HEED [24], BSC [26], JCR [4], DCPVP [25] and others offer innovative solutions for load
balancing which improves network reliability; they do not impose upon unique features of the
network’s physical layer topology. With the advancement of routing protocols such as Routing
Protocol for Low-Power and Lossy Network (RPL), the objective functions assignment to
sensor nodes can now be dynamic, supporting multiple clustering patterns, and therefore, more
energy efficient when it comes to the energy cost of clustering [32], [33], [34].

Nevertheless, the mechanisms through which hexagonal topology may optimize network
lifetime are still largely unexplored. Moreover, it’s not clear whether and how, leveraging
hexagonal topology properties such as one-distance-to-neighbor, one distance-to-cluster and
three axis coordinates, the packet transmission can be achieved with improved energy
efficiency. In addition, the previous methods for dynamic clustering [23], [24], [25] did not lend
themselves to an analysis of the hexagonal topology’s impact on the total network energy
consumption and packet handling capacity.

Thus, the aim of this paper is to develop an optimization model showing that the Routing
Protocol for Low-Power and Lossy Network (RPL) protocol performs better with use of static
and dynamic clustering in hexagonal grid topology for large-scale WSNs deployments, in order
to enhance wireless sensors network (WSN) reliability. Specifically, the study shows that the
use of the optimization algorithm improves networks’ energy efficiency. With leveraging
unique hexagonal topology properties, this is achieved via optimization objective to maximize
network’s lifetime by selecting the most energy efficient cluster pattern for each time interval.

There are several contributions this study makes. It is the first study to systematically analyze
and demonstrate the combined value of three fundamental hexagonal-grid properties: (i) one-
distance-to-neighbor, (ii) one-distance-to-cluster, and (iii) three-axis coordinate symmetry.
While existing research overwhelmingly concentrates on the one-distance-to-neighbor feature,
primarily because it simplifies optimization, this work expands the scope of hexagonal topology
analysis in a novel and meaningful way. Secondly, by leveraging one distance-to-cluster, this
research contributes for the first time to a better understanding of the ways that the cluster heads
can be identified and the new WSNs can be deployed, as well as, the existing WSN can be
enhanced for higher reliability and longer lifetime. Furthermore, the three axis coordinates
provide symmetry and ease of traversing all of the node neighbors, used for dynamically
allocating cluster members and generating cluster patterns. Finally, this work opens promising
directions for future research, particularly the integration of Deep Reinforcement Learning to
refine cluster sizing and matching. Such approaches could enable WSNSs to learn from historical
data, automate decision processes, and significantly elevate overall network quality.

2. OVERVIEW & DISCUSSION OF LITERATURE

Although the origins of WSNs extend back several decades in military and industrial contexts
[22], recent advances in computing, along with their integration into 10T and Big Data
ecosystems, now enable large-scale data collection and analysis [6]. The following sections of
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the literature review (outlined in Figure 1) examine reliability, hexagonal topology, and
clustering in WSNs, and highlight the gap in existing research that motivates this study.

With sensors not only collecting data but also being interconnected with the broader internet,
modern WSNs have become more intelligent, leading to larger scale deployments and broader
versatility of applications [21]. As a result, in recent years, there has been extensive research on
WSNs reliability in terms of topics such as sensing coverage [1], [2], [8], [7], [11] and network
connectivity [1], [11], [14], [15], as well as data handling capacity [7], [42], and overall
network’s energy efficiency [8], [12]. However, most of the reliability research mentioned
above has been studied using the WSNs with flat communication topology. WSN flat topology
is when, from a communication perspective, all nodes are equal and routing is defined on
demand, while hierarchical topology is where there is a child-parent relationship between the
nodes, and communication hierarchy is defined before any communication takes place [19].
This hierarchical topology enables the use of clustering which has been researched in recent
years in terms of network connectivity, sensing coverage, energy efficiency and data handling
capacity.

Reliability
of WSNs (R)

Clustering (C)
LEGEND

[] Research Literature
[] Gap in Literature

Figure 1. Literature Review Diagram

From the physical network layer perspective, the WSNs can have ring, star, tree, grid/mesh or
fully-connected mesh topology [21]. Within grid topology deployments, patterns typically used
are random, triangular, square and hexagonal lattice [15]. Grid-based location information can
be used against insider treats in WSNs [5]. Hexagons have only one distance between a hexagon
center-point and its neighbors’, unlike the two distances for a square, and three distances for
triangular lattices. This one distance-to-neighbor property greatly simplifies performing
analysis, running optimization and smoothing over gradients [13]. Additionally, theoretical
evidence demonstrates that a hexagonal topology achieves maximum coverage using a set
number of sensor nodes [3]. The central focus of Tang’s work [3] was to show via simulation
studies, how the topology resulting from the virtual-force algorithm based on physical laws in a
dusty plasma system {VFA-DP) is much closer to a hexagon, compared to the previous VFA-LJ
(virtual-force algorithm based on the Lennard-Jones potential) algorithm. Consequently, the
goal in deploying mobile sensor networks is to establish a hexagonal network topology with
minimal energy consumption [3]. In order to further understand the effects of hexagonal
topology, Li et al. [2] employed the Fruchterman—Reingold Hexagon algorithm modified for
WSN deployment to take full advantage of sensors’ hardware capabilities. And according to
Njoya et al. [17] employing the hexagonal lattice enables a power-saving network design.

Clustering in WSNs is when sensor nodes are grouped into clusters based on predefined criteria
such as proximity, energy levels, or communication cost. It exploits a hierarchical
communication topology, where node within each cluster is elected as the cluster head (CH) and
the remaining nodes within a cluster are cluster members (CM). Dynamic clustering refers to
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the dynamic nature of a network where clusters are not static. Instead, they are dynamically
formed and reconfigured based on a predefined set of criteria such as energy consumption of
CHs as was first proposed in Low Energy Adaptive Clustering Hierarchy (LEACH) protocol
[23], [25]. Some clustering protocols maximize the network’s lifetime through the good
characteristics of stochastic fractal search optimization [9]. Dynamic clustering is a pivotal
concept that significantly enhances the reliability and scalability of WSNs. By reducing the
number of transmissions and utilizing data aggregation, dynamic clustering significantly
conserves energy, which is a critical concern in WSNs due to the limited battery life of sensor
nodes [19]. Since the foundation of network topology is based on CHs, the selection of CHs is
one of the essential problems in dynamic clustering. Hybrid Energy Efficient Distributed
(HEED) clustering protocol [24], [25] takes into account residual energy and communication
cost for selection of CHs, and improves the CHs distribution in comparison with LEACH.
Noting the substantial overhead during iterations in HEED, the Backoff Strategy Clustering
(BSC) protocol [26], [28] implements a random backoff timer to manage the selection of CHs.
In this protocol, nodes with shorter back-off times are more likely to become CHs. BSC
effectively produces a well-distributed set of CHs while significantly reducing the overhead
involved in their selection. The distributed clustering protocol based on voting and priority
(DCPVP) decreases the cluster construction time and consequently energy consumption, which
improves the lifetime of the network [25]. Hybrid Snake Whale Optimization (HSWO)
algorithm selects the most optimal cluster head from the clusters by eliminating the worst ones
with the consideration of constraints such as delay, energy, and distance [27], while using
decision-making algorithm Dempster-Shafer Theory (DST) for trusted clustering with the
Whale Optimization Algorithm (WOA) for routing, integrates trust management into routing
protocols for trust-aware clustering [18]. Meanwhile, Hoang et al. [37] use harmony search
algorithm (HSA) to select the CHs via centralized optimization, and Improved Q learning based
Artificial Bee Colony (IQ-ABC) algorithm can be used for the same purpose [43], while the
Termite Queen Optimization algorithm (TQOA) is used for determining optimal number of CHs
[41]. Animi et al. [29], Tian et al. [30] and Lin and Uster [31] discuss cluster size optimization
and efficient data forwarding in WSNs, while Yadawad and Joshi [10] propose reliable routing
and minimal delay of packet transmission by employing Weighted Practical Byzantine Fault
Tolerance (WPBFT) algorithm. However, when it comes to clustering in WSNs, the hexagonal
network topology is not considered, nor is the newer Routing Protocol for Low-Power and
Lossy Network (RPL). RPL’s Minimum Rank with Hysteresis Objective Function (MRHOF)
aims to select stable, high-quality links to reduce overall network traffic in order to improve
reliability, and it uses hysteresis to prevent frequent changes in CH (parent) selection, enhancing
network stability [39]. Optimization objective is to minimize the intra-cluster communication
cost and optimize the energy distribution of the network. Regardless of using the distributed or
search algorithms, this load balancing improves network reliability by distributing the energy
consumption among various nodes via rotating the role of the cluster head among cluster
members, ensuring that no single node bears the brunt of energy depletion.

As mentioned previously, only two studies to date investigated WSNs reliability in hexagonal
topology in terms of network sensing coverage [2] and network lifetime when deployed in a
circular coverage region [17]. No studies that examine the relationship between dynamic
clustering and hexagonal topology could be found. In addition, none of the previously
mentioned studies attempted to explore how dynamic clustering in hexagonal topology affects
energy efficiency of the network. Therefore, to the best of our knowledge, there has been no
research into how static clustering and dynamic clustering in hexagonal topology of WSNs
might affect its performance, and whether this might lead to improved energy efficiency. While
studies on dynamic clustering in other topologies have been conducted as reviewed above, the
topic of dynamic clustering in hexagonal topology is a notable omission from the current canon
of research into WSNs performance, especially given that the hexagonal lattice achieves
maximum coverage using a set number of sensor nodes [3]. In order to address this issue, this
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study aims to investigate how static and dynamic clustering in hexagonal topology improves
energy efficiency of WSNE.

3. PROPOSED APPROACH & METHODOLOGY

The proposed methodology approach provides a description of the Motivation for Hexagon
Topology (Section 3.1), Network Model (Section 3.2), Optimization Model (Section 3.3),
Network Simulation (Section 3.4), and is concluded by the Evaluation Approach (Section 3.5).
The overall approach, as shown in Figure 2, starts with calculating maximum cluster size N
based on the hopping energy and transmission energy for a hexagonal network size n (see
Section 3.2.3). Using the one distance-to-cluster property (see Section 3.1.2), all viable
clustering patterns are generated up to the cluster size N, for the given hexagonal network size
n. Once all clustering patterns are generated, network simulation is constructed to compute the
Network Lifetime with clusters and without clusters (see Section 3.4 and Section 3.5.1).
Network simulation is also used to simulate the data sensing activity for use in the optimization
model. Optimization model objective is to maximize network lifetime and is designed to select
the best clustering pattern for every data-sensing time interval until sensor nodes are depleted
(see Section 3.3.1 and Section 3.3.2). The optimization model aims to confirm the simulation
results in terms of network energy efficiency (see Section 3.3 and Section 3.5.2) and
demonstrate the effectiveness of the dynamic clustering in hexagonal topology (see Section
3.5.3).

All of the above components are discussed in the following subsections.
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Figure 2. Methodology approach flowchart
3.1. Motivation for Hexagonal Topology

While hexagonal lattice has been extensively used in telecommunications, medical imaging,
gaming, transportation and other industries, it has been largely omitted in large-scale WSNs
implementations. For example, rideshare companies like Uber and DiDi, use hexagonal grid to
assign drivers to riders (and deliveries) [13-14]. Uber’s platform combines the benefits of a
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hexagonal global grid system with a hierarchical indexing system to optimally match drivers to
riders. This is accomplished by pairing riders and drivers in a batch optimization, aiming to
minimize everyone’s wait time [13-14]. This efficient optimization is mainly possible because
of utilization of the hexagonal lattice and its unique properties.

This body of work aims to leverage these unique hexagonal grid properties for dynamic
optimization-based clustering in order to enhance network lifetime of wireless sensor networks.

3.1.1. One distance-to-neighbor property

In addition to regular and complete tessellation, the hexagon lattice has a unique distance property,
such that the distance between two adjacent hexagons is always the same [15]. Unlike the triangular
lattice that has three distances to its neighbors and the square lattice that has two distances to its
neighbors, the hexagonal lattice has only one distance to its neighbors as shown in Figure 3 [15].
This is an extremely useful property for network optimization as it is possible to efficiently account
for the number of hops and transmissions within the hexagonal network of sensors. One distance-to-
neighbor property (d) greatly simplifies performing analysis and smoothing over gradients [13].

Triangular: 3 Distances Square: 2 Distances Hexagonal: 1 Distance

Figure 3. Distances to its neighbors [15]
3.1.2. One distance-to-cluster property

For clustering in hexagonal topology, to have a uniform distance D for all cells in the network,
including the cluster heads, cluster size N must obey the following relation [35]:

N(a,b) = a?+ab+ b%,a =20,b >0

In the above equation a and b are the number of cells between adjacent cluster centers on a 60-
degree grid described in more detail in Section 3.1.3. For example, see Figure 4 for cluster size
N(a, b) = N(2, 3) = 19. Consequently, the distance D can be calculated using only the cluster
size N and the radius R of the cell itself using the following equation:

D= RxVv3*N

The above equation is useful for optimization modeling. For the purposes of dynamic clustering
with one base station in the center of the network region, only the patterns with one of the
cluster head’s centers being in a network center are considered. Those cluster sizes are N(a, b) =
7(2, 1), 19(3, 2), 37(4, 3), 61(5, 4), 91(6, 5), and so on.

In the event of the wireless sensor network having multiple base stations, the same cluster size
principle applies. In this case, network topology with multiple base stations would be treated as
tessellation of multiple WSNs with single base station. For example, wireless sensor network
with seven (7) base stations, would consider seven (7) distinct WSNs depicted in Figure 4 that
are tiled into a large hexagon.
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Cluster size Nz 5 = 19

Figure 4. Clusters uniform distance property
3.1.3. Three 60-degree axis property

One of the main benefits of the square lattice is the ability to easily identify location of all nodes
and their neighbors using the (x, y) coordinates, while effectively navigating the square grid.
The hexagonal lattice behaves similarly, leveraging three (3) 60-degree axis. The three
coordinates (p, q, r) effectively identify each node’s location and help navigate the hexagonal
grid, as depicted in Figure 5. Furthermore, the sum of the three coordinates (p, g, r) is always
zero.

Figure 5. Three axis and coordinates of hexagonal grid

The three 60-degree axis property along with its (p, g, r) coordinates, provides symmetry and
ease of traversing all of the node neighbors, used for efficiently allocating cluster members
dynamically and generating cluster patterns.

3.2. Network Model

Consider a WSN with homogenous nodes deployed in hexagonal, hierarchical mesh topology
with a single base station (also known as a sink node) placed in the center. Broadly speaking,
the homogeneous nodes have the same capability of sensing, processing and packet forwarding.
When placed in the hierarchical topology, the different roles are assigned to the nodes, and
communication takes place in a hierarchical manner. The hierarchical topology enables
formation of clusters, where cluster members communicate with cluster heads, and cluster heads
communicate directly with the base station (see Figure 6).
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Figure 6. Network topology with clusters
3.2.1. Model Assumptions

The sensor nodes are deployed in a circular region surrounding the base station (see Figure 6).
All nodes assume a short-range multi-hop communication in all six directions and can be
assigned a role of a cluster member or a cluster head. A cluster pattern is selected for each
communication round based on the node energy levels. Communication rounds take place in
predefined or motion-triggered time intervals that are part of the network configuration, and
continue until most of the nodes’ energy is depleted. The number of communication rounds
determines the lifetime of the network: the greater the number of rounds, the longer the network
lifetime.

3.2.2. Maximum cluster size and pattern generation

The sensor nodes are designed in such a way that the node’s data sensing activity is reflected in
the node’s energy level. The higher the data sensing activity the lower the node’s energy. As a
result, focusing on the conservation of energy prolongs the network's data sensing capability
and its lifetime. From the energy consumption perspective [36], there are two main parameters
to consider; hopping energy cost (h), and transmission energy cost (t). Hopping energy cost (h)
is the amount of energy required to transmit data from a node to its neighboring node. If the
node is a cluster member that is three (3) hops away from its cluster head, for example, it will
take 3*h amount of energy to transfer its data to the cluster head. Transmission energy cost (t) is
the amount of energy required for a cluster head to transmit its collected data to the base station.
While each WSN network design and application is unique, generally speaking, the
communication between sensor nodes consumes less energy than the data transmission to the
base station, so clustering optimizes the total energy that it takes to transmit the data collected
by the network. Given the network size in terms of the total number of sensor nodes (n), the
hopping energy cost (h) and the transmission energy cost (t), the maximum cluster size N for the
given network is the cluster pattern that consumes the least amount of communication energy
(i.e. the cluster pattern with the minimum total energy cost). The maximum total energy cost for
patterns created using different cluster sizes is the sum of the number of cluster heads multiplied
by the transmission cost (t) and the number of cluster members’ total hops multiplied by the
hopping energy cost. For example, if the network with 169 nodes (n = 169) has the hopping
energy cost h = 0.01, and transmission energy cost t = 0.2, then the maximum cluster size is N =
19 since the pattern with this cluster size consumes the least amount of communication energy,
with total energy cost = 4.580 (see Table 2).
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Table 1. Selecting the maximum cluster size

Network size (n) Node hop cost (h) Transmission cost (t)
169 0.01 0.2
Number of cluster members with hop-distance to their
Cluster Nun}ber respective cluster head To(;al Total
size N | 0 1 5 3 i A A . nodes  energy
clusters hop  hops hops ops 5hops 6 hops ops (n) cost
7 25 132 12 - - - - - 169 6.560
19 7 42 84 36 - - - - 169 4.580
37 7 30 54 78 - - - - 169 5.120

Once the maximum cluster size N is determined, and knowing that the position of the first
cluster head is the location of the base station in the center of the network, the (p, g, r)
coordinates of the remaining cluster heads and related cluster members can be computed, as
outlined in Section 3.1.3. For each cluster size N, there are two concentric cluster patterns that
obey the cluster properties as previously described in Section 3.1.2. Those are the patterns with
(a, b) and (b, a) distance from a cluster head to the next cluster head, where cluster size N obeys
the N(a, b) relation indicated in Section 3.1.2. In the stated equation a and b are the number of
cells between adjacent cluster centers on a 60-degree grid, as described in Section 3.1.3. Figure
7 illustrates the two patterns for cluster size N=19: Pattern A with N(2, 3) = 19 and pattern B
with N(3, 2) = 19. This is beneficial since the cluster heads use more energy (transmission
energy cost), and this pattern variation enables nodes’ role rotation, in order to exhaust nodes'
energy more evenly.

Pattern A Pattern B

Cluster size N3, = 19 Cluster size N5, =19

Figure 7. Two patterns for cluster size N = 19

Based on the maximum cluster size N, the remaining patterns with the smaller cluster sizes are
generated, and used once the nodes get depleted and can no longer support multi-hops required
by the maximum cluster size.

3.3. Optimization Model

The optimization model is implemented using a mathematical modeling language AMPL, which
is designed to represent and solve complex problems in large-scale mathematical computing,
such as optimization and scheduling tasks for extensive applications. The Gurobi solver is used
as the optimization solver to expedite the model runs.
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The main motivation for employing the hexagonal topology (as outlined in Section 3.1) is the
benefits and simplicity it lends for formulating the optimization model. Its unique properties
enable global definition of constraints for cluster head selection and cluster member assignment.
The ability to model network optimization on a higher level of abstraction results in energy
efficiency, interference reduction and scalability of the overall network.

As the number of cluster-heads increases, the more energy is being consumed, driven by the
cluster-head transmission energy cost which is typically significantly higher than the cluster-
member hopping energy cost. The goal of the optimization model is to start with the maximum
cluster size N patterns and only decrease the cluster size once the nodes have been depleted and
can no longer support multi-hops required by the larger cluster size(s).

Notation for the network optimization model is defined as follows:

= Index i represents the nodes, ranging from 0 to n

= Index j represents the patterns, ranging from 0 to p

= Index k represents the networks communication time intervals, ranging from O to r

= hop(i,j) is hop energy required for each cluster member per pattern

= trans(i,j) is transmission energy required for each cluster head per pattern

= Use(j) is a binary decision variable for selecting a cluster pattern per time interval r

= his a set parameter for hopping energy cost between adjacent cluster members

= tisaset parameter for transmission energy cost between cluster head and base station

3.3.1. Model Objective and Constraints

The overall optimization objective is maximization of the network’s lifetime. Therefore, for
each communication time interval the objective is to maximize the network’s current energy
level (Cg), by utilizing decision variable Use(j) to select the most energy efficient pattern for the
given time interval. Using the terminology above, the network lifetime may be maximized by
solving the following maximization problem:

n n b
Maximize Cy: Z Currentinterval(i) — Z Z Use(j) * (hop(i,j) * h + trans(i, j) x t)
i=0 i=0 j=0
, Subject to the constraints outlined below.

For each communication time interval, the model objective is solved subject to the following
constraints:

= Constraint 1: Select only one cluster pattern per time interval.
P

UseOnePattern: Z Use(j) =1
j=0

e Constraint 2: All cluster heads in selected pattern must have minimum energy required for
data transmission to the base station.
ClusterheadEnergy {(i,]) in ClusterHeads}:
Use(j) = Intervals(i, CurrentInterval) = trans(i,j) = Use(j) * trans(i, j)

e Constraint 3: Select a pattern with higher cluster head energy levels.
HigherEClusterheads {j in Patterns}:
Use(j) * max.min.ch < Use(j) * max(min. clusterheads(j))
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3.3.2. Model Algorithm

To tackle this specific optimization problem, a novel algorithm is designed and specifically
engineered from the ground up to select the most energy efficient pattern for each time interval
in order to optimize the lifetime of the wireless sensor network. The algorithm also considers
the two-index, non-linear parameter in Constraint 3 of the optimization and implements a
process to make it linear for the purpose of solving the optimization problem stated in Section
3.3.1 (Algorithm 1, lines 3-6 and lines 9-12).

Algorithm 1. Optimization model algorithm pseudocode for the network lifetime

Input

Nodes set (index i)

Patterns set (index j)

Intervals set (index K)

hop(i,j) matrix, hop energy required for each cluster member per pattern
trans(i,j) matrix, transmission energy required for each cluster head per pattern
ntwke(j,k) matrix, network energy level for each interval r

h is a set parameter for hopping energy cost between adjacent cluster members

t is a set parameter for transmission energy cost between cluster head and base station
Output

Ntwk_Patterns: array of patterns used for all rounds within the intervals r
Ntwk_Energy: array of network energy levels for all rounds within the intervals r

1. for each time interval (round) r in Intervals

2 if r =0 then

3 Let trans_energy _cost(r) =0

4. Identify a cluster head with minimum energy level for each pattern j
5. max_min_ch = maximum of cluster head minimums from step-4
6 Use max_min_ch in Constraint 3
7 Solve Optimization Ce
8

9

else

. Let trans_energy cost(r) = total_trans_cost(r-1)
10. Identify a cluster head with minimum energy level for each pattern j
11. max_min_ch = maximum of cluster head minimums from step-10
12. Use max_min_ch in Constraint 3
13. Solve Optimization Ce
14. end if
15. Display Use(j), pattern selection for current interval r
16. for i in Nodes
17. Let current_pattern_cost(i,r) = Zﬁ;o hop(i,j) * h + trans(i,j) *t
18. Let total_round_cost(i,r) = current_pattern_cost(i,r)
19. end for
20. Let total_pattern_cost(r) = X', total_round_cost(i,r)
21. Let total_trans_cost()] = total_pattern_cost(r-1) + total pattern_cost(r)
22. Display total_trans_cost, to be used in the next interval

23. Add pattern Use(j) to Ntwk_Patterns array

24, Add Ce optimization result to Ntwk_Energy array

25. if Cevalue < 0 then quit the algorithm

26. end for

27. Display Ntwk_TotalRounds, Ntwk_Patterns and Ntwk_Energy arrays
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3.4. Network Simulation

The network simulation was built using Contiki-NG OS Cooja simulator which concentrates on
network behavior. Cooja is a wireless sensor network simulator which permits the emulation of
real hardware platforms, and can simulate WSN clusters, including the interactions between
clustered sensor nodes and cluster heads. Cooja provides the necessary tools and flexibility to
simulate various network topologies, communication protocols, and behaviors found in
clustered WSNs [40].

The objective of the network simulation for this research is to evaluate the energy efficiency of
leveraging clusters in hexagonal network topology, and generating network sensing data to
evaluate the effectiveness of the optimization model.

3.4.1. Simulation protocols

The simulation is implemented using the Routing Protocol for Low-Power and Lossy Network
(RPL) network layer protocol with UDP transportation layer protocol. RPL is designed to
provide efficient multi-hop routing in Low-power and Lossy Networks (LLNs), which are
characteristic of many loT and WSN environments. When combined with User Datagram
Protocol (UDP), it facilitates the transmission of data packets across the network established by
RPL. Essentially, RPL organizes devices into a Destination-Oriented Directed Acyclic Graph
(DODAG) based on a set of routing metrics and objectives, optimizing the path for data packet
flow to a common destination (such as a cluster-head or sink node), while UDP is used to
transport data packets between nodes in this network.

3.4.2. Simulation nodes and parameters

In the context of Contiki Cooja, a "mote" is a virtual representation of a physical sensor node as
it exists in a real-world WSN. A mote in Cooja encapsulates both the hardware characteristics of
a sensor node (such as its microcontroller, radio, and sensors) and its software (the firmware
running on the node, including the operating system and application code). This abstraction
enables simulation and analysis of the behavior of sensor networks under various conditions
without the need for physical hardware. Simulation for this research employs Skymotes, since
they support applications based on high data rate sensors and low power networks.

Transmission and interference ranges are critical parameters for accurately modeling how radio
signals propagate and how they are affected by distance and other factors in a simulated
wireless sensor network. The transmission range defines the maximum distance at which a mote
(i.e. node) can successfully transmit a signal to another mote. If two motes are within each
other's transmission range, they can directly communicate without the signal being too weak to
be detected. This parameter is used to simulate the effective coverage area of a mote's radio
transmitter and is set to 14 meters in this simulation. The interference range is the distance
within which a mote can cause interference to the communication between other motes, even if
it is beyond the direct transmission range. Signals from a mote within this range can interfere
with or degrade the quality of communications between other motes that are actively
transmitting or receiving data. This parameter is critical for simulating more realistic network
behaviors, especially in dense networks where multiple transmissions might overlap. It helps to
model scenarios where communications might be corrupted or lost due to interference from
nearby motes. In this simulation interference range parameter is set to 20 meters, reflecting real-
world interference challenges in WSNs. These and other parameter values are listed in the Table
3.
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Table 2. Simulation settings and parameters

Parameter Value Description

Number of Motes 127 Total number of nodes in the network

Area Size D=140m, A=12730m? Diameter and m? area of the simulation area
Area Shape Hexagon Shape of the simulation area

BS Position Center Location of the base station

Mote Type Skymote Node application based on high data rate

sensors and low power networks
Transmission Range 14m Maximum distance for node transmission
Maximum  distance for communication

Interference Range 20m .
interference between the nodes

Simulation Time 2500 rounds Total duration of simulation

Network Protocol RPL Routing Protocol for Low-Power and Lossy
Network

Transportation Protocol ~ UDP User Datagram Protocol

3.4.3. Simulation objective functions

RPL is designed to facilitate routing in constrained networks, and it uses Objective Functions
(OFs) to determine the best path for data packets to travel through the network. Therefore, OFs
play a crucial role in configuring clusters in a wireless sensor network topology. The Minimum
Rank with Hysteresis Objective Function (MRHOF) aims to minimize the rank in the Directed
Acyclic Graph (DAG), considering link metrics such as expected transmission count (ETX). It
prefers stable, high-quality links to reduce overall network traffic in order to improve reliability.
MRHOF may use hysteresis to prevent frequent changes in CH (parent) selection, enhancing
network stability. (Jamil, et al., 2019) This OF is used for modeling a network without clusters,
and for modeling cluster-heads in the clustered network topology. Objective Function Zero
(OF0) is a simpler OF compared to MRHOF, primarily focusing on minimizing hop count, and
it is used for modeling cluster-members in the clustered network topology.

3.5. Evaluation Approach

3.5.1. Energy efficiency evaluation

Using the simulation implementation characteristics and parameters outlined above, wireless
sensor network simulations are configured consisting of 127 nodes (n=127) with and without
clusters. The maximum cluster size N is calculated for the network size n=127, as described in
Section 3.2.2, yielding the maximum cluster size N=19. Therefore, for the cluster configuration
there are two viable cluster sizes used: N=19 and N=7 nodes (Figure 8, Figure 9), yielding four
cluster patterns, two for each cluster size, as shown in Section 3.2.2. For the network
configuration without clusters the same corresponding network topology is employed where
sink nodes are positioned at the cluster-heads locations (Figure 8, Figure 9).

For a larger network size n the maximum cluster size N is also larger yielding a higher number
of cluster sizes and related cluster patterns. Nevertheless, the same principles described above
apply for the energy efficiency evaluation.

Analysis of simulations compares: (1) the cluster-head transmission energy in clustered topology
with sink-nodes transmission energy in non-clustered topology; (2) cluster-member hopping energy
in clustered topology with node hopping energy in non-clustered topology; and (3) transmission
energy used per packet in all four network topologies in order to evaluate which of the four
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simulation scenarios for the given hexagonal network (n=127) provides the most energy efficient

transmission.
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Figure 9. Network with N=7 layout, with clusters and without clusters
3.5.2. Optimization model validation

Optimization model validation aims to confirm the simulation results in terms of network
energy efficiency. To achieve this evaluation optimization model uses network sensing data
generated from simulation, along with the values for the transmission energy and hopping
energy parameters.

Network sensing data for the optimization model is generated using the simulation Radio RX %
data. This metric represents the percentage of time the radio of a mote is in the receiving (RX)
state, actively listening and receiving sensing data and data from other motes. Although
receiving data typically consumes less power than transmitting, using the Radio RX % data to
generate the network sensing data reflects the real-world scenario. For this research, Radio Rx
% from the network simulation (n=127) with clusters of two sizes (N=19 and N=7) was
collected and used to generate the network sensing data as an input into the network
optimization model.

The average cluster-head transmission energy parameter and the average cluster-member
hopping energy parameter from the network simulation (n=127) with clusters of two sizes
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(N=19 and N=7) were obtained from simulations and used as the input parameters for the
optimization model. Three optimization scenarios for the hexagonal network topology (n=127)
were considered: (1) topology with a static cluster size N=19; (2) topology with a static cluster
size N=7; and (3) topology with dynamic cluster sizes N=19 and N=7. The results were
compared with the network simulation outcome in order to confirm the network scenario that
provides the longest network lifetime.

3.5.3. Impact of transmission and hopping energy ratio

For dynamic clustering in the hexagonal network topology, cluster-head transmission energy
parameter needs to be the same for all cluster sizes (i.e. N=19 and N=7). Similarly, the cluster-
member hopping energy parameter needs to be the same for all cluster sizes. These two
assumptions are required since a network node can change its role between cluster-head and
cluster-member during the lifetime of the network. Analyzing the transmission energy and
hopping energy ratio, by using a range of values for both parameters, provides further
information about dynamic clustering effectiveness.

4. RESULTS & ANALYSIS

This section provides an overview of key metrics used for measuring clustering effectiveness in
hexagonal network topology, and explores impacts of transmission energy cost and hopping
energy cost on benefits of clustering in hexagonal topology for WSNs. As indicated in the
previous section, simulations are performed using Contiki Cooja simulator, and optimization
model is created in AMPL using Gurobi as an optimization solver.

This work is centered around determining the optimal cluster size and related cluster pattern
using a mathematical optimization model by maximizing network’s lifetime. Once the
maximum cluster size N is identified, all cluster sizes up to size N are considered for pattern
generation. The optimal pattern is selected for each data sensing time interval until most of the
nodes are depleted. Therefore, there are two key evaluation metrics that are used: (1)
transmission energy cost per packet when evaluating simulations; and (2) the number of rounds
(i.e. time intervals) in the optimization model before the total network’s energy is depleted.

For example purposes, this paper considers the wireless sensor network with 127 nodes
(n=127), with maximum cluster size N=19, and consequently two cluster sizes N=19 and N=7,
yielding four cluster patterns, two for each cluster size. For networks with a larger size n, the
maximum cluster size N increases, resulting in a greater variety of cluster sizes and associated
patterns. For example, consider a WSN with n=547 nodes; its maximum cluster size is N=91.
Therefore, for the network size n=547 the viable cluster sizes up to and including N=91 are:
N=7, N=19, N=37, N=61, and N=91. These five cluster sizes yield ten cluster patterns, two for
each cluster size, as outlined in Section 3.1.3. However, regardless of the network size n, the
principles outlined previously still govern the evaluation of energy efficiency and network
lifetime.

4.1. Evaluation of energy efficiency

Following the approach in Section 3.5.1, four distinct wireless sensor network simulations are
configured consisting of 127 nodes (n=127) with and without clusters. Analysis of simulations
compares: (1) the cluster-head transmission energy in clustered topology with sink-nodes
transmission energy in non-clustered topology; (2) cluster-member hopping energy in clustered
topology with node hopping energy in non-clustered topology; and (3) transmission energy used
per packet in all four network topologies, to evaluate which of the four simulation scenarios for
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the given hexagonal network (n=127) provides the most energy efficient transmission.

As shown in Table 4, when comparing the network configuration with cluster size N=19 with its
counterpart configuration without clustering (Figure 8), the total number of packets transmitted
in the same time period is 2.13% higher in the network with clusters. Additionally, the average
transmission energy cost per packet is lower in the network with clusters (0.000842). In the case
of cluster size N=7, comparing the network configuration with clusters (N=7) with its
counterpart configuration without clustering (Figure 9), the total number of packets transmitted
in the same time period is 7.27% higher in the network with clusters (Table 4). Additionally, the
average transmission energy cost per packet is lower in the network with clusters (0.000833).
Therefore, the clustering performs better for both network layouts (N=19 and N=7), and in this
network, cluster size N=7 provides the longest network lifetime, given the lowest average
transmission energy cost per packet.

Table 3. Average transmission energy costs per packet for various network configurations

Network size (n = 127) Total Packets Trans. Energy per Packet Packets %

With Clusters: N=19 2825 0.00084248 2.13%
Without Clusters: N=19 2766 0.00085322
With Clusters: N=7 2820 0.00083333 7.27%
Without Clusters: N=7 2629 0.00083682

The average cluster-head transmission energy cost and the average cluster-member hopping
energy cost from simulations above with cluster sizes N=19 and N=7 are used to run and
validate the optimization model.

4.2. Validation of Optimization Model

Adhering to the method described in Section 3.5.2 simulations along with the network data from
Section 4.1 are utilized to generate the network sensing data that is used as an input into the
optimization model. Additionally, as previously mentioned, the two key simulation parameters
utilized as the input to the optimization model are: the average cluster-head transmission energy
cost (0.3400 and 0.12368 respectively) and the average cluster-member hopping energy cost
(0.10208 and 0.07167 respectively) for cluster sizes N=19 and N=7, as shown in Table 5. The
optimization model results are then compared with the simulation results obtained in Section
4.1. Three optimization scenarios for the hexagonal network topology (n=127) were considered:
(1) topology with a static cluster size N=19; (2) topology with a static cluster size N=7; and (3)
topology with dynamic cluster sizes N=19 and N=7. As indicated in Table 5 and Figure 10,
optimization results were compared and the topology with a static cluster size N=7 provides the
longest network lifetime (i.e. has a maximum number of rounds). As shown, the network
optimization model has the same outcome as the network simulation result.

Table 4. Total number of rounds for clustered network configurations

Network size Transmission  Hopping Hop. Eand Trans. E Total
(n=127) Energy Energy Ratio Rounds

Static Clusters: N=19 0.34000 0.10208 0.30 1347

Static Clusters: N=7 0.12368 0.07167 0.58 1878

Dynamic Clusters: N=19 &

N=7 above above n/a 1430
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4.3. Impact of transmission and hopping energy ration

Network simulation results and optimization model output both demonstrate that clustering
improves the network lifetime, specifically when using static clustering with cluster size N=7
for this network example. As indicated in Table 5, the hopping energy cost and transmission
energy cost ratio for the cluster pattern with cluster size N=7 is 0.58 which is generally high for
large scale WSNs which typically have a ratio in 0.10-0.20 range [16]. Further examination is
required to determine when the dynamic clustering of all viable patterns (N=19 and N=7)
provides further benefits and even longer network lifetime. Using the procedure specified in
Section 3.5.3 to further analyze the cluster-member hopping energy cost and cluster-head
transmission energy cost ratio for dynamic clustering (N=19 and N=7) vs static clustering
(N=7), Table 6 outlines optimization model results using a range of values for both parameters.

Table 5. Network lifetime for a range of transmission and hopping energy values

Hop. E Total Rounds Total Rounds

Hopping Transmission and Dynamic Static
Energy Energy Trans. E  Clustering N7 Clustering N7
Ratio & N19

1 0.14 0.2 0.70 1194 2178
2 0.12 0.2 0.60 1316 2005 58.00%
3 0.10 0.2 0.50 1449 871
4 0.08 0.2 0.40 1585 1753 -——— 33.50%
5 0.06 0.2 0.30 1744 1649
6 0.04 0.2 0.20 1940 1556
7 0.02 0.2 0.10 2235 1475

As the network’s cluster-member hopping energy cost and cluster-head transmission energy
cost ratio decreases, the benefit of using static clustering also decreases while the effectiveness
of dynamic clustering increases (Figure 11).

Therefore, the dynamic clustering further improves network lifetime for the WSNs where the
cluster-member hopping energy cost and cluster-head transmission energy cost ratio is 33.5% or
less as shown in Figure 12. With older hierarchical protocols such as LEACH and HEED,
forming the clusters in a wireless sensor network has traditionally been costly in terms of energy
consumption. However, with the design advancement of efficient Objective Functions for RPL
routing protocol, the objective functions assignment can now be dynamic, supporting multiple
clustering patterns, and therefore, more energy efficient when it comes to the energy cost of
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clustering. [32-34]
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Figure 11. Network lifetime with dynamic vs static clustering
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Figure 12. Network lifetime with hopping energy and transmission energy ratio

5. CONCLUSION & FUTURE RESEARCH

This research demonstrates that WSNs with hexagonal network topology can benefit from
clustering which improves network lifetime, and therefore, enhances WSNs reliability by
reducing total network energy consumption. Additionally, dynamic clustering further improves
network lifetime for the WSN where the cluster-member hopping energy cost and cluster-head
transmission energy cost ratio is 33.5% or less. Future research in this area will focus on
incorporating multistate (active, idle, inactive, fail) nodes and their energy efficiency impact on
optimization of static and dynamic clustering in hexagonal network topology. Moreover, this
work will benefit from Deep Reinforcement Learning to enhance cluster sizing and matching,
and learn from the network’s data history, which will help automate and improve WSN quality.
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