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ABSTRACT 
 

Distribution of Internet-of-Things sensors in wireless sensor networks (WSNs) often leads 

to transmission conflicts and inefficiency of energy utilization, resulting in decreased 

sensor communication and incomplete data for decision making. Utilizing hexagonal 

topology and its properties such as one distance-to-neighbor, one distance-to-cluster, and 

three-axis coordinates can be exploited for energy efficient optimization. Leveraging a 

network optimization model created in AMPL with network simulation created in Contiki-
NG Cooja, this research demonstrates that WSNs with hexagonal network topology can 

benefit from clustering which improves network lifetime, and therefore, enhances WSNs 

reliability by reducing total network energy consumption. Additionally, dynamic clustering 

further improves network lifetime for the WSN where the cluster-member hopping energy 

cost and cluster-head transmission energy cost ratio is 33.5% or less. 
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1. INTRODUCTION 
 
Wireless Sensor Networks (WSNs) are core enablers of the Internet of Things (IoT), supporting 

sectors such as space, transportation, manufacturing, military systems, and modern applications 

including habitat monitoring, precision agriculture, healthcare [20], and natural-disaster 

detection. They collect large-scale physical data essential for monitoring, tracking, and decision-
making. 

 

Improving WSN reliability has been a major research focus. In real deployments, sensor 
distribution often creates transmission conflicts and inefficient energy use [1], leading to 

reduced communication and incomplete datasets [2]. Even small data-loss rates, 5% or 20%, can 

degrade recognition sensor performance to 45% and 84%, respectively, making the data 
unreliable [38]. 

 

The network's ability to reliably deliver data, depends on the network topology and parameters, 

and on the transmission properties of the device and of the medium [7]. While WSN reliability 
is multifaceted depending on the specific application and requirements, in a broad sense WSN 

reliability is characterized and assessed by sensing coverage, network connectivity, energy 
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efficiency and data handling capacity [11],[12],[42]. 

 
Theoretical analysis shows that when using a fixed quantity of sensor nodes, a hexagonal 

topology can attain maximal coverage [3]. Njoya et al. [17] in their study of WSNs employed 

the hexagonal lattice to demonstrate a power-saving network design. In a recent study by Li et 

al. [2] they employed the Fruchterman–Reingold Hexagon algorithm modified for WSN 
deployment to take full advantage of sensors’ hardware capabilities. Similarly, dynamic 

clustering is a groundbreaking method for designing energy efficient sensor network to achieve 

reliable data transmission and scalability. While clustering protocols such as LEACH [23], 
HEED [24], BSC [26], JCR [4], DCPVP [25] and others offer innovative solutions for load 

balancing which improves network reliability; they do not impose upon unique features of the 

network’s physical layer topology. With the advancement of routing protocols such as Routing 

Protocol for Low-Power and Lossy Network (RPL), the objective functions assignment to 
sensor nodes can now be dynamic, supporting multiple clustering patterns, and therefore, more 

energy efficient when it comes to the energy cost of clustering [32], [33], [34]. 

 
Nevertheless, the mechanisms through which hexagonal topology may optimize network 

lifetime are still largely unexplored. Moreover, it’s not clear whether and how, leveraging 

hexagonal topology properties such as one-distance-to-neighbor, one distance-to-cluster and 
three axis coordinates, the packet transmission can be achieved with improved energy 

efficiency. In addition, the previous methods for dynamic clustering [23], [24], [25] did not lend 

themselves to an analysis of the hexagonal topology’s impact on the total network energy 

consumption and packet handling capacity. 
 

Thus, the aim of this paper is to develop an optimization model showing that the Routing 

Protocol for Low-Power and Lossy Network (RPL) protocol performs better with use of static 
and dynamic clustering in hexagonal grid topology for large-scale WSNs deployments, in order 

to enhance wireless sensors network (WSN) reliability. Specifically, the study shows that the 

use of the optimization algorithm improves networks’ energy efficiency. With leveraging 
unique hexagonal topology properties, this is achieved via optimization objective to maximize 

network’s lifetime by selecting the most energy efficient cluster pattern for each time interval. 

 

There are several contributions this study makes. It is the first study to systematically analyze 
and demonstrate the combined value of three fundamental hexagonal-grid properties: (i) one-

distance-to-neighbor, (ii) one-distance-to-cluster, and (iii) three-axis coordinate symmetry. 

While existing research overwhelmingly concentrates on the one-distance-to-neighbor feature, 
primarily because it simplifies optimization, this work expands the scope of hexagonal topology 

analysis in a novel and meaningful way. Secondly, by leveraging one distance-to-cluster, this 

research contributes for the first time to a better understanding of the ways that the cluster heads 

can be identified and the new WSNs can be deployed, as well as, the existing WSN can be 
enhanced for higher reliability and longer lifetime. Furthermore, the three axis coordinates 

provide symmetry and ease of traversing all of the node neighbors, used for dynamically 

allocating cluster members and generating cluster patterns. Finally, this work opens promising 
directions for future research, particularly the integration of Deep Reinforcement Learning to 

refine cluster sizing and matching. Such approaches could enable WSNs to learn from historical 

data, automate decision processes, and significantly elevate overall network quality. 
 

2. OVERVIEW & DISCUSSION OF LITERATURE 
 

Although the origins of WSNs extend back several decades in military and industrial contexts 

[22], recent advances in computing, along with their integration into IoT and Big Data 
ecosystems, now enable large-scale data collection and analysis [6]. The following sections of 
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the literature review (outlined in Figure 1) examine reliability, hexagonal topology, and 

clustering in WSNs, and highlight the gap in existing research that motivates this study. 
 

With sensors not only collecting data but also being interconnected with the broader internet, 

modern WSNs have become more intelligent, leading to larger scale deployments and broader 

versatility of applications [21]. As a result, in recent years, there has been extensive research on 
WSNs reliability in terms of topics such as sensing coverage [1], [2], [8], [7], [11] and network 

connectivity [1], [11], [14], [15], as well as data handling capacity [7], [42], and overall 

network’s energy efficiency [8], [12]. However, most of the reliability research mentioned 
above has been studied using the WSNs with flat communication topology. WSN flat topology 

is when, from a communication perspective, all nodes are equal and routing is defined on 

demand, while hierarchical topology is where there is a child-parent relationship between the 

nodes, and communication hierarchy is defined before any communication takes place [19]. 
This hierarchical topology enables the use of clustering which has been researched in recent 

years in terms of network connectivity, sensing coverage, energy efficiency and data handling 

capacity.  

 
 
 
 

 

 

 
 

 

 
 

 

 
Figure 1. Literature Review Diagram 

 

From the physical network layer perspective, the WSNs can have ring, star, tree, grid/mesh or 

fully-connected mesh topology [21]. Within grid topology deployments, patterns typically used 

are random, triangular, square and hexagonal lattice [15]. Grid-based location information can 
be used against insider treats in WSNs [5]. Hexagons have only one distance between a hexagon 

center-point and its neighbors’, unlike the two distances for a square, and three distances for 

triangular lattices. This one distance-to-neighbor property greatly simplifies performing 
analysis, running optimization and smoothing over gradients [13]. Additionally, theoretical 

evidence demonstrates that a hexagonal topology achieves maximum coverage using a set 

number of sensor nodes [3]. The central focus of Tang’s work [3] was to show via simulation 
studies, how the topology resulting from the virtual-force algorithm based on physical laws in a 

dusty plasma system {VFA-DP) is much closer to a hexagon, compared to the previous VFA-LJ 

(virtual-force algorithm based on the Lennard-Jones potential) algorithm. Consequently, the 

goal in deploying mobile sensor networks is to establish a hexagonal network topology with 
minimal energy consumption [3]. In order to further understand the effects of hexagonal 

topology, Li et al. [2] employed the Fruchterman–Reingold Hexagon algorithm modified for 

WSN deployment to take full advantage of sensors’ hardware capabilities. And according to 
Njoya et al. [17] employing the hexagonal lattice enables a power-saving network design. 

 

Clustering in WSNs is when sensor nodes are grouped into clusters based on predefined criteria 
such as proximity, energy levels, or communication cost. It exploits a hierarchical 

communication topology, where node within each cluster is elected as the cluster head (CH) and 

the remaining nodes within a cluster are cluster members (CM). Dynamic clustering refers to 
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the dynamic nature of a network where clusters are not static. Instead, they are dynamically 

formed and reconfigured based on a predefined set of criteria such as energy consumption of 
CHs as was first proposed in Low Energy Adaptive Clustering Hierarchy (LEACH) protocol 

[23], [25]. Some clustering protocols maximize the network’s lifetime through the good 

characteristics of stochastic fractal search optimization [9]. Dynamic clustering is a pivotal 

concept that significantly enhances the reliability and scalability of WSNs. By reducing the 
number of transmissions and utilizing data aggregation, dynamic clustering significantly 

conserves energy, which is a critical concern in WSNs due to the limited battery life of sensor 

nodes [19]. Since the foundation of network topology is based on CHs, the selection of CHs is 
one of the essential problems in dynamic clustering. Hybrid Energy Efficient Distributed 

(HEED) clustering protocol [24], [25] takes into account residual energy and communication 

cost for selection of CHs, and improves the CHs distribution in comparison with LEACH. 

Noting the substantial overhead during iterations in HEED, the Backoff Strategy Clustering 
(BSC) protocol [26], [28] implements a random backoff timer to manage the selection of CHs. 

In this protocol, nodes with shorter back-off times are more likely to become CHs. BSC 

effectively produces a well-distributed set of CHs while significantly reducing the overhead 
involved in their selection. The distributed clustering protocol based on voting and priority 

(DCPVP) decreases the cluster construction time and consequently energy consumption, which 

improves the lifetime of the network [25]. Hybrid Snake Whale Optimization (HSWO) 
algorithm selects the most optimal cluster head from the clusters by eliminating the worst ones 

with the consideration of constraints such as delay, energy, and distance [27], while using 

decision-making algorithm Dempster-Shafer Theory (DST) for trusted clustering with the 

Whale Optimization Algorithm (WOA) for routing, integrates trust management into routing 
protocols for trust-aware clustering [18]. Meanwhile, Hoang et al. [37] use harmony search 

algorithm (HSA) to select the CHs via centralized optimization, and Improved Q learning based 

Artificial Bee Colony (IQ-ABC) algorithm can be used for the same purpose [43], while the 
Termite Queen Optimization algorithm (TQOA) is used for determining optimal number of CHs 

[41]. Animi et al. [29], Tian et al. [30] and Lin and Üster [31] discuss cluster size optimization 

and efficient data forwarding in WSNs, while Yadawad and Joshi [10] propose reliable routing 
and minimal delay of packet transmission by employing Weighted Practical Byzantine Fault 

Tolerance (WPBFT) algorithm. However, when it comes to clustering in WSNs, the hexagonal 

network topology is not considered, nor is the newer Routing Protocol for Low-Power and 

Lossy Network (RPL). RPL’s Minimum Rank with Hysteresis Objective Function (MRHOF) 
aims to select stable, high-quality links to reduce overall network traffic in order to improve 

reliability, and it uses hysteresis to prevent frequent changes in CH (parent) selection, enhancing 

network stability [39]. Optimization objective is to minimize the intra-cluster communication 
cost and optimize the energy distribution of the network. Regardless of using the distributed or 

search algorithms, this load balancing improves network reliability by distributing the energy 

consumption among various nodes via rotating the role of the cluster head among cluster 

members, ensuring that no single node bears the brunt of energy depletion. 
 

As mentioned previously, only two studies to date investigated WSNs reliability in hexagonal 

topology in terms of network sensing coverage [2] and network lifetime when deployed in a 
circular coverage region [17]. No studies that examine the relationship between dynamic 

clustering and hexagonal topology could be found. In addition, none of the previously 

mentioned studies attempted to explore how dynamic clustering in hexagonal topology affects 
energy efficiency of the network. Therefore, to the best of our knowledge, there has been no 

research into how static clustering and dynamic clustering in hexagonal topology of WSNs 

might affect its performance, and whether this might lead to improved energy efficiency. While 

studies on dynamic clustering in other topologies have been conducted as reviewed above, the 
topic of dynamic clustering in hexagonal topology is a notable omission from the current canon 

of research into WSNs performance, especially given that the hexagonal lattice achieves 

maximum coverage using a set number of sensor nodes [3]. In order to address this issue, this 
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study aims to investigate how static and dynamic clustering in hexagonal topology improves 

energy efficiency of WSNs. 
 

3. PROPOSED APPROACH & METHODOLOGY 
 

The proposed methodology approach provides a description of the Motivation for Hexagon 

Topology (Section 3.1), Network Model (Section 3.2), Optimization Model (Section 3.3), 
Network Simulation (Section 3.4), and is concluded by the Evaluation Approach (Section 3.5).  

The overall approach, as shown in Figure 2, starts with calculating maximum cluster size N 

based on the hopping energy and transmission energy for a hexagonal network size n (see 
Section 3.2.3). Using the one distance-to-cluster property (see Section 3.1.2), all viable 

clustering patterns are generated up to the cluster size N, for the given hexagonal network size 

n. Once all clustering patterns are generated, network simulation is constructed to compute the 

Network Lifetime with clusters and without clusters (see Section 3.4 and Section 3.5.1). 
Network simulation is also used to simulate the data sensing activity for use in the optimization 

model. Optimization model objective is to maximize network lifetime and is designed to select 

the best clustering pattern for every data-sensing time interval until sensor nodes are depleted 
(see Section 3.3.1 and Section 3.3.2). The optimization model aims to confirm the simulation 

results in terms of network energy efficiency (see Section 3.3 and Section 3.5.2) and 

demonstrate the effectiveness of the dynamic clustering in hexagonal topology (see Section 

3.5.3). 
 

All of the above components are discussed in the following subsections. 

 

 
 

Figure 2. Methodology approach flowchart 

 

3.1. Motivation for Hexagonal Topology 
 

While hexagonal lattice has been extensively used in telecommunications, medical imaging, 

gaming, transportation and other industries, it has been largely omitted in large-scale WSNs 

implementations. For example, rideshare companies like Uber and DiDi, use hexagonal grid to 
assign drivers to riders (and deliveries) [13-14]. Uber’s platform combines the benefits of a 
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hexagonal global grid system with a hierarchical indexing system to optimally match drivers to 

riders. This is accomplished by pairing riders and drivers in a batch optimization, aiming to 
minimize everyone’s wait time [13-14]. This efficient optimization is mainly possible because 

of utilization of the hexagonal lattice and its unique properties. 

 

This body of work aims to leverage these unique hexagonal grid properties for dynamic 
optimization-based clustering in order to enhance network lifetime of wireless sensor networks. 

 

3.1.1. One distance-to-neighbor property 
 

In addition to regular and complete tessellation, the hexagon lattice has a unique distance property, 

such that the distance between two adjacent hexagons is always the same [15]. Unlike the triangular 

lattice that has three distances to its neighbors and the square lattice that has two distances to its 
neighbors, the hexagonal lattice has only one distance to its neighbors as shown in Figure 3 [15]. 

This is an extremely useful property for network optimization as it is possible to efficiently account 

for the number of hops and transmissions within the hexagonal network of sensors. One distance-to-
neighbor property (d) greatly simplifies performing analysis and smoothing over gradients [13]. 

 

 
 

Figure 3. Distances to its neighbors [15] 

 
3.1.2. One distance-to-cluster property 

 
For clustering in hexagonal topology, to have a uniform distance D for all cells in the network, 

including the cluster heads, cluster size N must obey the following relation [35]: 

 

𝑁(𝑎, 𝑏) =  𝑎2 + 𝑎𝑏 +  𝑏2, 𝑎 ≥ 0, 𝑏 ≥ 0 
 
In the above equation a and b are the number of cells between adjacent cluster centers on a 60-

degree grid described in more detail in Section 3.1.3. For example, see Figure 4 for cluster size 
N(a, b) = N(2, 3) = 19. Consequently, the distance D can be calculated using only the cluster 

size N and the radius R of the cell itself using the following equation: 

 

𝐷 =  𝑅 ∗ √3 ∗ 𝑁 
 
The above equation is useful for optimization modeling. For the purposes of dynamic clustering 
with one base station in the center of the network region, only the patterns with one of the 

cluster head’s centers being in a network center are considered. Those cluster sizes are N(a, b) = 

7(2, 1), 19(3, 2), 37(4, 3), 61(5, 4), 91(6, 5), and so on. 

 
In the event of the wireless sensor network having multiple base stations, the same cluster size 

principle applies. In this case, network topology with multiple base stations would be treated as 

tessellation of multiple WSNs with single base station. For example, wireless sensor network 
with seven (7) base stations, would consider seven (7) distinct WSNs depicted in Figure 4 that 

are tiled into a large hexagon. 
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Figure 4. Clusters uniform distance property 

 

3.1.3. Three 60-degree axis property 

 

One of the main benefits of the square lattice is the ability to easily identify location of all nodes 

and their neighbors using the (x, y) coordinates, while effectively navigating the square grid. 
The hexagonal lattice behaves similarly, leveraging three (3) 60-degree axis. The three 

coordinates (p, q, r) effectively identify each node’s location and help navigate the hexagonal 

grid, as depicted in Figure 5. Furthermore, the sum of the three coordinates (p, q, r) is always 
zero. 

 

 
 

Figure 5. Three axis and coordinates of hexagonal grid 

 
The three 60-degree axis property along with its (p, q, r) coordinates, provides symmetry and 

ease of traversing all of the node neighbors, used for efficiently allocating cluster members 
dynamically and generating cluster patterns. 

 

3.2. Network Model 
 

Consider a WSN with homogenous nodes deployed in hexagonal, hierarchical mesh topology 

with a single base station (also known as a sink node) placed in the center. Broadly speaking, 
the homogeneous nodes have the same capability of sensing, processing and packet forwarding. 

When placed in the hierarchical topology, the different roles are assigned to the nodes, and 

communication takes place in a hierarchical manner. The hierarchical topology enables 

formation of clusters, where cluster members communicate with cluster heads, and cluster heads 
communicate directly with the base station (see Figure 6).  
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Figure 6. Network topology with clusters 

 

3.2.1. Model Assumptions 

 

The sensor nodes are deployed in a circular region surrounding the base station (see Figure 6). 

All nodes assume a short-range multi-hop communication in all six directions and can be 
assigned a role of a cluster member or a cluster head. A cluster pattern is selected for each 

communication round based on the node energy levels. Communication rounds take place in 

predefined or motion-triggered time intervals that are part of the network configuration, and 
continue until most of the nodes’ energy is depleted. The number of communication rounds 

determines the lifetime of the network: the greater the number of rounds, the longer the network 

lifetime. 
 

3.2.2. Maximum cluster size and pattern generation 

 

The sensor nodes are designed in such a way that the node’s data sensing activity is reflected in 
the node’s energy level. The higher the data sensing activity the lower the node’s energy. As a 

result, focusing on the conservation of energy prolongs the network's data sensing capability 

and its lifetime. From the energy consumption perspective [36], there are two main parameters 
to consider; hopping energy cost (h), and transmission energy cost (t). Hopping energy cost (h) 

is the amount of energy required to transmit data from a node to its neighboring node. If the 

node is a cluster member that is three (3) hops away from its cluster head, for example, it will 
take 3*h amount of energy to transfer its data to the cluster head. Transmission energy cost (t) is 

the amount of energy required for a cluster head to transmit its collected data to the base station.  

While each WSN network design and application is unique, generally speaking, the 

communication between sensor nodes consumes less energy than the data transmission to the 
base station, so clustering optimizes the total energy that it takes to transmit the data collected 

by the network. Given the network size in terms of the total number of sensor nodes (n), the 

hopping energy cost (h) and the transmission energy cost (t), the maximum cluster size N for the 
given network is the cluster pattern that consumes the least amount of communication energy 

(i.e. the cluster pattern with the minimum total energy cost). The maximum total energy cost for 

patterns created using different cluster sizes is the sum of the number of cluster heads multiplied 

by the transmission cost (t) and the number of cluster members’ total hops multiplied by the 
hopping energy cost. For example, if the network with 169 nodes (n = 169) has the hopping 

energy cost h = 0.01, and transmission energy cost t = 0.2, then the maximum cluster size is N = 

19 since the pattern with this cluster size consumes the least amount of communication energy, 
with total energy cost = 4.580 (see Table 2). 
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Table 1. Selecting the maximum cluster size 

 
Network size (n) 

169 
Node hop cost (h) 

0.01 
Transmission cost (t) 

0.2 

                      

Cluster 

size N 

Number 

of 

clusters 

Number of cluster members with hop-distance to their 

respective cluster head 
Total 

nodes 

(n) 

Total 

energy 

cost 
1 

hop 

2 

hops 

3 

hops 
4 hops 5 hops 6 hops 7 hops 

7 25 132 12 - - - - - 169 6.560 

19 7 42 84 36 - - - - 169 4.580 

37 7 30 54 78 - - - - 169 5.120 

 

Once the maximum cluster size N is determined, and knowing that the position of the first 

cluster head is the location of the base station in the center of the network, the (p, q, r) 
coordinates of the remaining cluster heads and related cluster members can be computed, as 

outlined in Section 3.1.3. For each cluster size N, there are two concentric cluster patterns that 

obey the cluster properties as previously described in Section 3.1.2. Those are the patterns with 
(a, b) and (b, a) distance from a cluster head to the next cluster head, where cluster size N obeys 

the N(a, b) relation indicated in Section 3.1.2. In the stated equation a and b are the number of 

cells between adjacent cluster centers on a 60-degree grid, as described in Section 3.1.3. Figure 

7 illustrates the two patterns for cluster size N=19: Pattern A with N(2, 3) = 19 and pattern B 
with N(3, 2) = 19. This is beneficial since the cluster heads use more energy (transmission 

energy cost), and this pattern variation enables nodes’ role rotation, in order to exhaust nodes' 

energy more evenly. 

 

 
 

Figure 7. Two patterns for cluster size N = 19 

 
Based on the maximum cluster size N, the remaining patterns with the smaller cluster sizes are 

generated, and used once the nodes get depleted and can no longer support multi-hops required 

by the maximum cluster size. 
 

3.3. Optimization Model 
 
The optimization model is implemented using a mathematical modeling language AMPL, which 

is designed to represent and solve complex problems in large-scale mathematical computing, 

such as optimization and scheduling tasks for extensive applications. The Gurobi solver is used 
as the optimization solver to expedite the model runs. 
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The main motivation for employing the hexagonal topology (as outlined in Section 3.1) is the 

benefits and simplicity it lends for formulating the optimization model. Its unique properties 
enable global definition of constraints for cluster head selection and cluster member assignment. 

The ability to model network optimization on a higher level of abstraction results in energy 

efficiency, interference reduction and scalability of the overall network. 

 
As the number of cluster-heads increases, the more energy is being consumed, driven by the 

cluster-head transmission energy cost which is typically significantly higher than the cluster-

member hopping energy cost. The goal of the optimization model is to start with the maximum 
cluster size N patterns and only decrease the cluster size once the nodes have been depleted and 

can no longer support multi-hops required by the larger cluster size(s). 
 

Notation for the network optimization model is defined as follows: 
 

 Index i represents the nodes, ranging from 0 to n 

 Index j represents the patterns, ranging from 0 to p 

 Index k represents the networks communication time intervals, ranging from 0 to r 
 hop(i,j) is hop energy required for each cluster member per pattern 

 trans(i,j) is transmission energy required for each cluster head per pattern 

 Use(j) is a binary decision variable for selecting a cluster pattern per time interval r 
 h is a set parameter for hopping energy cost between adjacent cluster members 

 t is a set parameter for transmission energy cost between cluster head and base station 

 

3.3.1. Model Objective and Constraints 

 

The overall optimization objective is maximization of the network’s lifetime. Therefore, for 

each communication time interval the objective is to maximize the network’s current energy 
level (CE), by utilizing decision variable Use(j) to select the most energy efficient pattern for the 

given time interval. Using the terminology above, the network lifetime may be maximized by 

solving the following maximization problem: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶𝐸 : ∑ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑖) −  ∑ ∑ 𝑈𝑠𝑒(𝑗) ∗ (ℎ𝑜𝑝(𝑖, 𝑗) ∗ ℎ + 𝑡𝑟𝑎𝑛𝑠(𝑖, 𝑗) ∗ 𝑡)

𝑝

𝑗=0

𝑛

𝑖=0

𝑛

𝑖=0

 

, subject to the constraints outlined below. 

 
For each communication time interval, the model objective is solved subject to the following 

constraints: 

 
 Constraint 1: Select only one cluster pattern per time interval. 

𝑈𝑠𝑒𝑂𝑛𝑒𝑃𝑎𝑡𝑡𝑒𝑟𝑛: ∑ 𝑈𝑠𝑒(𝑗) = 1

𝑝

𝑗=0

 

  

 Constraint 2: All cluster heads in selected pattern must have minimum energy required for 
data transmission to the base station. 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟ℎ𝑒𝑎𝑑𝐸𝑛𝑒𝑟𝑔𝑦 {(𝑖, 𝑗) 𝑖𝑛 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠}: 
𝑈𝑠𝑒(𝑗) ∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠(𝑖, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ∗ 𝑡𝑟𝑎𝑛𝑠(𝑖, 𝑗)  ≥ 𝑈𝑠𝑒(𝑗) ∗ 𝑡𝑟𝑎𝑛𝑠(𝑖, 𝑗) 

 

 Constraint 3: Select a pattern with higher cluster head energy levels. 

𝐻𝑖𝑔ℎ𝑒𝑟𝐸𝐶𝑙𝑢𝑠𝑡𝑒𝑟ℎ𝑒𝑎𝑑𝑠 {𝑗 𝑖𝑛 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠}: 
       𝑈𝑠𝑒(𝑗) ∗ 𝑚𝑎𝑥. 𝑚𝑖𝑛. 𝑐ℎ ≤ 𝑈𝑠𝑒(𝑗) ∗ 𝑚𝑎𝑥 (𝑚𝑖𝑛. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟ℎ𝑒𝑎𝑑𝑠(𝑗)) 
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3.3.2. Model Algorithm 

 
To tackle this specific optimization problem, a novel algorithm is designed and specifically 

engineered from the ground up to select the most energy efficient pattern for each time interval 

in order to optimize the lifetime of the wireless sensor network. The algorithm also considers 

the two-index, non-linear parameter in Constraint 3 of the optimization and implements a 
process to make it linear for the purpose of solving the optimization problem stated in Section 

3.3.1 (Algorithm 1, lines 3-6 and lines 9-12). 

 
Algorithm 1. Optimization model algorithm pseudocode for the network lifetime 

_____________________________________________________________________________

Input 
Nodes set (index i) 
Patterns set (index j) 

Intervals set (index k) 

hop(i,j) matrix, hop energy required for each cluster member per pattern 

trans(i,j) matrix, transmission energy required for each cluster head per pattern 
ntwke(j,k) matrix, network energy level for each interval r 

h is a set parameter for hopping energy cost between adjacent cluster members 

t is a set parameter for transmission energy cost between cluster head and base station 

Output 
Ntwk_Patterns: array of patterns used for all rounds within the intervals r 

Ntwk_Energy: array of network energy levels for all rounds within the intervals r 
 

1. for each time interval (round) r in Intervals 

2. if r = 0 then  

3.  Let trans_energy _cost(r) = 0 
4.  Identify a cluster head with minimum energy level for each pattern j  

5.   max_min_ch = maximum of cluster head minimums from step-4 

6.  Use max_min_ch in Constraint 3 

7.  Solve Optimization CE 
8. else 

9.  Let trans_energy cost(r) = total_trans_cost(r-1) 

10.  Identify a cluster head with minimum energy level for each pattern j  
11.   max_min_ch = maximum of cluster head minimums from step-10 

12.  Use max_min_ch in Constraint 3  

13.  Solve Optimization CE 

14. end if 
15. Display Use(j), pattern selection for current interval r 

16. for i in Nodes 

17.  Let current_pattern_cost(i,r) = ∑ ℎ𝑜𝑝(𝑖, 𝑗) ∗ ℎ + 𝑡𝑟𝑎𝑛𝑠(𝑖, 𝑗) ∗ 𝑡𝑝
𝑗=0  

18.  Let total_round_cost(i,r) = current_pattern_cost(i,r) 

19. end for 

20. Let total_pattern_cost(r) = ∑ 𝑡𝑜𝑡𝑎𝑙_𝑟𝑜𝑢𝑛𝑑_𝑐𝑜𝑠𝑡(𝑖, 𝑟)    
𝑛
𝑖=0  

21. Let total_trans_cost()] = total_pattern_cost(r-1) + total_pattern_cost(r)  
22. Display total_trans_cost, to be used in the next interval  

23. Add pattern Use(j) to Ntwk_Patterns array 

24. Add CE optimization result to Ntwk_Energy array 

25.  if CE value < 0 then quit the algorithm 
26. end for 

27. Display Ntwk_TotalRounds, Ntwk_Patterns and Ntwk_Energy arrays 
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3.4. Network Simulation 
 
The network simulation was built using Contiki-NG OS Cooja simulator which concentrates on 

network behavior. Cooja is a wireless sensor network simulator which permits the emulation of 

real hardware platforms, and can simulate WSN clusters, including the interactions between 
clustered sensor nodes and cluster heads. Cooja provides the necessary tools and flexibility to 

simulate various network topologies, communication protocols, and behaviors found in 

clustered WSNs [40]. 

 
The objective of the network simulation for this research is to evaluate the energy efficiency of 

leveraging clusters in hexagonal network topology, and generating network sensing data to 

evaluate the effectiveness of the optimization model. 
 

3.4.1. Simulation protocols 

 
The simulation is implemented using the Routing Protocol for Low-Power and Lossy Network 

(RPL) network layer protocol with UDP transportation layer protocol. RPL is designed to 

provide efficient multi-hop routing in Low-power and Lossy Networks (LLNs), which are 

characteristic of many IoT and WSN environments. When combined with User Datagram 
Protocol (UDP), it facilitates the transmission of data packets across the network established by 

RPL. Essentially, RPL organizes devices into a Destination-Oriented Directed Acyclic Graph 

(DODAG) based on a set of routing metrics and objectives, optimizing the path for data packet 
flow to a common destination (such as a cluster-head or sink node), while UDP is used to 

transport data packets between nodes in this network. 

 

3.4.2. Simulation nodes and parameters 

 

In the context of Contiki Cooja, a "mote" is a virtual representation of a physical sensor node as 

it exists in a real-world WSN. A mote in Cooja encapsulates both the hardware characteristics of 
a sensor node (such as its microcontroller, radio, and sensors) and its software (the firmware 

running on the node, including the operating system and application code). This abstraction 

enables simulation and analysis of the behavior of sensor networks under various conditions 
without the need for physical hardware. Simulation for this research employs Skymotes, since 

they support applications based on high data rate sensors and low power networks. 

 

Transmission and interference ranges are critical parameters for accurately modeling how radio 
signals propagate and how they are affected by distance and other factors in a simulated 

wireless sensor network. The transmission range defines the maximum distance at which a mote 

(i.e. node) can successfully transmit a signal to another mote. If two motes are within each 
other's transmission range, they can directly communicate without the signal being too weak to 

be detected. This parameter is used to simulate the effective coverage area of a mote's radio 

transmitter and is set to 14 meters in this simulation. The interference range is the distance 
within which a mote can cause interference to the communication between other motes, even if 

it is beyond the direct transmission range. Signals from a mote within this range can interfere 

with or degrade the quality of communications between other motes that are actively 

transmitting or receiving data. This parameter is critical for simulating more realistic network 
behaviors, especially in dense networks where multiple transmissions might overlap. It helps to 

model scenarios where communications might be corrupted or lost due to interference from 

nearby motes. In this simulation interference range parameter is set to 20 meters, reflecting real-
world interference challenges in WSNs. These and other parameter values are listed in the Table 

3. 
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Table 2. Simulation settings and parameters 

 

Parameter Value Description 

Number of Motes 127 Total number of nodes in the network 

Area Size D=140m, A=12730m2 Diameter and m2 area of the simulation area 

Area Shape Hexagon Shape of the simulation area 

BS Position Center Location of the base station 

Mote Type Skymote 
Node application based on high data rate 
sensors and low power networks 

Transmission Range 14m Maximum distance for node transmission 

Interference Range 20m 
Maximum distance for communication 

interference between the nodes 

Simulation Time 2500 rounds Total duration of simulation 

Network Protocol RPL 
Routing Protocol for Low-Power and Lossy 

Network 

Transportation Protocol UDP User Datagram Protocol 

 

3.4.3.  Simulation objective functions 

 

RPL is designed to facilitate routing in constrained networks, and it uses Objective Functions 

(OFs) to determine the best path for data packets to travel through the network. Therefore, OFs 
play a crucial role in configuring clusters in a wireless sensor network topology. The Minimum 

Rank with Hysteresis Objective Function (MRHOF) aims to minimize the rank in the Directed 

Acyclic Graph (DAG), considering link metrics such as expected transmission count (ETX). It 
prefers stable, high-quality links to reduce overall network traffic in order to improve reliability. 

MRHOF may use hysteresis to prevent frequent changes in CH (parent) selection, enhancing 

network stability. (Jamil, et al., 2019) This OF is used for modeling a network without clusters, 

and for modeling cluster-heads in the clustered network topology. Objective Function Zero 
(OF0) is a simpler OF compared to MRHOF, primarily focusing on minimizing hop count, and 

it is used for modeling cluster-members in the clustered network topology. 

 

3.5. Evaluation Approach 
 

3.5.1. Energy efficiency evaluation 
 

Using the simulation implementation characteristics and parameters outlined above, wireless 

sensor network simulations are configured consisting of 127 nodes (n=127) with and without 
clusters. The maximum cluster size N is calculated for the network size n=127, as described in 

Section 3.2.2, yielding the maximum cluster size N=19. Therefore, for the cluster configuration 

there are two viable cluster sizes used: N=19 and N=7 nodes (Figure 8, Figure 9), yielding four 
cluster patterns, two for each cluster size, as shown in Section 3.2.2. For the network 

configuration without clusters the same corresponding network topology is employed where 

sink nodes are positioned at the cluster-heads locations (Figure 8, Figure 9). 

 
For a larger network size n the maximum cluster size N is also larger yielding a higher number 

of cluster sizes and related cluster patterns. Nevertheless, the same principles described above 

apply for the energy efficiency evaluation. 
 

Analysis of simulations compares: (1) the cluster-head transmission energy in clustered topology 

with sink-nodes transmission energy in non-clustered topology; (2) cluster-member hopping energy 

in clustered topology with node hopping energy in non-clustered topology; and (3) transmission 
energy used per packet in all four network topologies in order to evaluate which of the four 
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simulation scenarios for the given hexagonal network (n=127) provides the most energy efficient 

transmission. 
 

 
 

Figure 8. Network with N=19 layout, with clusters and without clusters 

 

 
 

Figure 9. Network with N=7 layout, with clusters and without clusters 

 

3.5.2. Optimization model validation 

 

Optimization model validation aims to confirm the simulation results in terms of network 
energy efficiency. To achieve this evaluation optimization model uses network sensing data 

generated from simulation, along with the values for the transmission energy and hopping 

energy parameters. 

 
Network sensing data for the optimization model is generated using the simulation Radio RX % 

data. This metric represents the percentage of time the radio of a mote is in the receiving (RX) 

state, actively listening and receiving sensing data and data from other motes. Although 
receiving data typically consumes less power than transmitting, using the Radio RX % data to 

generate the network sensing data reflects the real-world scenario. For this research, Radio Rx 

% from the network simulation (n=127) with clusters of two sizes (N=19 and N=7) was 
collected and used to generate the network sensing data as an input into the network 

optimization model. 

 

The average cluster-head transmission energy parameter and the average cluster-member 
hopping energy parameter from the network simulation (n=127) with clusters of two sizes 
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(N=19 and N=7) were obtained from simulations and used as the input parameters for the 

optimization model. Three optimization scenarios for the hexagonal network topology (n=127) 
were considered: (1) topology with a static cluster size N=19; (2) topology with a static cluster 

size N=7; and (3) topology with dynamic cluster sizes N=19 and N=7. The results were 

compared with the network simulation outcome in order to confirm the network scenario that 

provides the longest network lifetime. 
 

3.5.3. Impact of transmission and hopping energy ratio 
 
For dynamic clustering in the hexagonal network topology, cluster-head transmission energy 

parameter needs to be the same for all cluster sizes (i.e. N=19 and N=7). Similarly, the cluster-

member hopping energy parameter needs to be the same for all cluster sizes. These two 
assumptions are required since a network node can change its role between cluster-head and 

cluster-member during the lifetime of the network. Analyzing the transmission energy and 

hopping energy ratio, by using a range of values for both parameters, provides further 
information about dynamic clustering effectiveness. 

 

4. RESULTS & ANALYSIS  
 

This section provides an overview of key metrics used for measuring clustering effectiveness in 
hexagonal network topology, and explores impacts of transmission energy cost and hopping 

energy cost on benefits of clustering in hexagonal topology for WSNs. As indicated in the 

previous section, simulations are performed using Contiki Cooja simulator, and optimization 
model is created in AMPL using Gurobi as an optimization solver. 

  

This work is centered around determining the optimal cluster size and related cluster pattern 

using a mathematical optimization model by maximizing network’s lifetime. Once the 
maximum cluster size N is identified, all cluster sizes up to size N are considered for pattern 

generation. The optimal pattern is selected for each data sensing time interval until most of the 

nodes are depleted. Therefore, there are two key evaluation metrics that are used: (1) 
transmission energy cost per packet when evaluating simulations; and (2) the number of rounds 

(i.e. time intervals) in the optimization model before the total network’s energy is depleted. 

 
For example purposes, this paper considers the wireless sensor network with 127 nodes 

(n=127), with maximum cluster size N=19, and consequently two cluster sizes N=19 and N=7, 

yielding four cluster patterns, two for each cluster size. For networks with a larger size n, the 

maximum cluster size N increases, resulting in a greater variety of cluster sizes and associated 
patterns. For example, consider a WSN with n=547 nodes; its maximum cluster size is N=91. 

Therefore, for the network size n=547 the viable cluster sizes up to and including N=91 are: 

N=7, N=19, N=37, N=61, and N=91. These five cluster sizes yield ten cluster patterns, two for 
each cluster size, as outlined in Section 3.1.3. However, regardless of the network size n, the 

principles outlined previously still govern the evaluation of energy efficiency and network 

lifetime. 

 

4.1. Evaluation of energy efficiency 
 
Following the approach in Section 3.5.1, four distinct wireless sensor network simulations are 

configured consisting of 127 nodes (n=127) with and without clusters. Analysis of simulations 

compares: (1) the cluster-head transmission energy in clustered topology with sink-nodes 

transmission energy in non-clustered topology; (2) cluster-member hopping energy in clustered 
topology with node hopping energy in non-clustered topology; and (3) transmission energy used 

per packet in all four network topologies, to evaluate which of the four simulation scenarios for 
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the given hexagonal network (n=127) provides the most energy efficient transmission. 

 
As shown in Table 4, when comparing the network configuration with cluster size N=19 with its 

counterpart configuration without clustering (Figure 8), the total number of packets transmitted 

in the same time period is 2.13% higher in the network with clusters. Additionally, the average 

transmission energy cost per packet is lower in the network with clusters (0.000842). In the case 
of cluster size N=7, comparing the network configuration with clusters (N=7) with its 

counterpart configuration without clustering (Figure 9), the total number of packets transmitted 

in the same time period is 7.27% higher in the network with clusters (Table 4). Additionally, the 
average transmission energy cost per packet is lower in the network with clusters (0.000833). 

Therefore, the clustering performs better for both network layouts (N=19 and N=7), and in this 

network, cluster size N=7 provides the longest network lifetime, given the lowest average 

transmission energy cost per packet. 
 

Table 3. Average transmission energy costs per packet for various network configurations 

 

Network size (n = 127) Total Packets Trans. Energy per Packet Packets % 

With Clusters: N=19 2825 0.00084248 2.13% 

Without Clusters: N=19 2766 0.00085322   

With Clusters: N=7 2820 0.00083333 7.27% 

Without Clusters: N=7 2629 0.00083682   

 

The average cluster-head transmission energy cost and the average cluster-member hopping 
energy cost from simulations above with cluster sizes N=19 and N=7 are used to run and 

validate the optimization model. 

 

4.2. Validation of Optimization Model 
 

Adhering to the method described in Section 3.5.2 simulations along with the network data from 
Section 4.1 are utilized to generate the network sensing data that is used as an input into the 

optimization model. Additionally, as previously mentioned, the two key simulation parameters 

utilized as the input to the optimization model are: the average cluster-head transmission energy 
cost (0.3400 and 0.12368 respectively) and the average cluster-member hopping energy cost 

(0.10208 and 0.07167 respectively) for cluster sizes N=19 and N=7, as shown in Table 5. The 

optimization model results are then compared with the simulation results obtained in Section 

4.1. Three optimization scenarios for the hexagonal network topology (n=127) were considered: 
(1) topology with a static cluster size N=19; (2) topology with a static cluster size N=7; and (3) 

topology with dynamic cluster sizes N=19 and N=7. As indicated in Table 5 and Figure 10, 

optimization results were compared and the topology with a static cluster size N=7 provides the 
longest network lifetime (i.e. has a maximum number of rounds). As shown, the network 

optimization model has the same outcome as the network simulation result. 

 
Table 4. Total number of rounds for clustered network configurations 

 
Network size Transmission Hopping Hop. E and Trans. E Total 

(n = 127) Energy Energy Ratio Rounds 

Static Clusters: N=19 0.34000 0.10208 0.30 1347 

Static Clusters: N=7 0.12368 0.07167 0.58 1878 

Dynamic Clusters: N=19 & 
N=7 

above above n/a 1430 
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Figure 10. Network lifetime by clustering pattern 

 

4.3. Impact of transmission and hopping energy ration 
 

Network simulation results and optimization model output both demonstrate that clustering 

improves the network lifetime, specifically when using static clustering with cluster size N=7 

for this network example. As indicated in Table 5, the hopping energy cost and transmission 
energy cost ratio for the cluster pattern with cluster size N=7 is 0.58 which is generally high for 

large scale WSNs which typically have a ratio in 0.10-0.20 range [16]. Further examination is 

required to determine when the dynamic clustering of all viable patterns (N=19 and N=7) 
provides further benefits and even longer network lifetime. Using the procedure specified in 

Section 3.5.3 to further analyze the cluster-member hopping energy cost and cluster-head 

transmission energy cost ratio for dynamic clustering (N=19 and N=7) vs static clustering 

(N=7), Table 6 outlines optimization model results using a range of values for both parameters. 
  

Table 5. Network lifetime for a range of transmission and hopping energy values 

 

 
Hopping 

Energy 

Transmission 

Energy 

Hop. E 

and 

Trans. E 

Ratio 

Total Rounds 

Dynamic 

Clustering N7 

& N19 

Total Rounds      

Static 

Clustering N7 
 

1 0.14 0.2 0.70 1194 2178 
 

2 0.12 0.2 0.60 1316 2005 58.00% 

3 0.10 0.2 0.50 1449 1871  

4 0.08 0.2 0.40 1585 1753 33.50% 

5 0.06 0.2 0.30 1744 1649 
 

6 0.04 0.2 0.20 1940 1556 
 

7 0.02 0.2 0.10 2235 1475 
 

 
As the network’s cluster-member hopping energy cost and cluster-head transmission energy 

cost ratio decreases, the benefit of using static clustering also decreases while the effectiveness 

of dynamic clustering increases (Figure 11). 
 

Therefore, the dynamic clustering further improves network lifetime for the WSNs where the 

cluster-member hopping energy cost and cluster-head transmission energy cost ratio is 33.5% or 
less as shown in Figure 12. With older hierarchical protocols such as LEACH and HEED, 

forming the clusters in a wireless sensor network has traditionally been costly in terms of energy 

consumption. However, with the design advancement of efficient Objective Functions for RPL 

routing protocol, the objective functions assignment can now be dynamic, supporting multiple 
clustering patterns, and therefore, more energy efficient when it comes to the energy cost of 
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clustering. [32-34] 

 

 
 

Figure 11. Network lifetime with dynamic vs static clustering 

 

 
 

Figure 12. Network lifetime with hopping energy and transmission energy ratio 

 

5. CONCLUSION & FUTURE RESEARCH 
 
This research demonstrates that WSNs with hexagonal network topology can benefit from 

clustering which improves network lifetime, and therefore, enhances WSNs reliability by 

reducing total network energy consumption. Additionally, dynamic clustering further improves 

network lifetime for the WSN where the cluster-member hopping energy cost and cluster-head 
transmission energy cost ratio is 33.5% or less. Future research in this area will focus on 

incorporating multistate (active, idle, inactive, fail) nodes and their energy efficiency impact on 

optimization of static and dynamic clustering in hexagonal network topology. Moreover, this 
work will benefit from Deep Reinforcement Learning to enhance cluster sizing and matching, 

and learn from the network’s data history, which will help automate and improve WSN quality. 
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