PERFORMANCE IMPACT FACTORS FOR THE
KNAPSACK ALGORITHM BASED ON
DYNAMIC PROGRAMMING

David Kuhlen! and Andreas Speck?

IMoénkhofer Weg 239, 23562 Liibeck, Germany, david kuhlen@th-luebeck.de
2Hermann-Rodewald-Strafe 3, 24118 Kiel, Germany, aspe@informatik.uni-kiel.de

ABSTRACT

The knapsack problem is a classical optimization problem in computer science that can be efficiently
solved using an algorithm based on dynamic programming. This study investigates the tmpact
of technical factors such as the number of elements, the size of the knapsack, or the sorting of
elements on the performance of the algorithm. Performance refers to the speed of the algorithm
implementation in solving the problem. The analysis focuses on so-called Performance Impact
Factors, which are the selected influences that can affect the speed of the algorithm. While the
size of the considered knapsack represents a parameterization/configuration, the number of items
1s directly related to the problem itself; therefore, the term Performance Impact Factors is generally
used. The investigation is based on a simulation experiment. The analysis of the simulation
experiment data shows that as the total number of elements and the knapsack capacity increase,
the algorithm’s runtime also increases. In this context, an increase in knapsack capacity has a
more pronounced negative effect on the algorithm’s runtime. An examination of sorting strategies
further reveals that a prior sorting of elements by value in descending order can lead to significant
deteriorations in runtime.

KEYWORDS

Dynamic Programming, Knapsack Problem, Performance

1. INTRODUCTION

The knapsack problem is a classical problem in computer science, categorized as an opti-
mization problem. In the knapsack problem, a list of items with known values and weights
is considered, and the goal is to select an optimal subset of items with the highest possible
total value without exceeding a specified weight limit [7, p. 213]. To solve this problem,
an algorithm exists that can be implemented using either divide-and-conquer or dynamic
programming techniques [7, p. 213]. The range of tasks requiring the application of the
knapsack algorithm is broad. Possible areas of application include the optimization of
machine utilization, weight-optimized product manufacturing, or solving classical selection
problems.

Solving the knapsack problem using dynamic programming offers significant performance
advantages. The focus of this study is the implementation of an algorithm for solving the
knapsack problem using dynamic programming. This algorithm will hereafter be referred
to in simplified terms as the Knapsack Algorithm (KSA).

It should also be noted that, in addition to implementing the algorithm in recursive form
and using dynamic programming, other implementation variants are conceivable but are
not considered in this study. This study focuses on the 0/1 knapsack algorithm. In further

David C. Wyld et al. gEdS?: CSML, AISCA, DNLP, SOEA, NET, BDHI, SIPO - 2026 .
pp. 137-150, 2026. CS & IT - CSCP 2026 DOI: 10.5121/csit.2026.160211

https://doi.org/10.5121/csit.2026.160211
https://airccse.org/csit/V16N02.html
https://airccse.org/cscp.html

138 Computer Science & Information Technology (CS & IT)
research, the analysis could be extended to other knapsack variants or alternative algorithm

implementation approaches.

This paper investigates factors that influence the performance of the Knapsack Algorithm.
The following research questions are examined:

e RQ1: What influence does the sorting of items by value or weight have on the
performance of the KSA?

e RQ2: What influence does the total number of items have on the performance of
the KSA?

« RQ3: What influence does the size of the knapsack have on the performance of the
KSA?

This study does not aim to provide exact statements regarding the speed of the KSA. The
precise performance depends on many factors, such as the programming language used
for implementation and the specifications of the computer system on which the KSA is
executed. Instead, the objective is to demonstrate the extent to which the aforementioned
technical factors affect the algorithm’s performance.

The following chapter presents related work from the current state of research. Chapter
three explains the methodology. This is followed by a presentation of the results that
address the above-mentioned research questions. The paper concludes with a summary
and an outlook.

2. RELATED WORK

Toth describes algorithms that solve the 0-1 knapsack problem using dynamic programming
and compares them [I2]. This comparison focuses on the speed of the algorithms when
solving the problem for different quantities of items (n = 50...200) [12, p. 44]. In this way,
Toth identifies the DPT1 and DPT2 versions of the algorithm as advantageous for solving
“hard problems” [12] p. 44].

A comprehensive overview of various algorithms that solve the knapsack problem can be
found in [7]. According to Martello and Toth, the application of dynamic programming for
implementing the KSA results in an exact solution to the problem [7, p. 213|. According
to Martello and Toth, the runtime complexity of the KSA usually ranges from O(n) to
O(nlogn) |7, p. 216]. Many KSA algorithms require a preliminary sorting based on the
ratio of value to weight in descending order, as stated by Martello and Toth [7, p. 219].
Although solving the knapsack problem using dynamic programming does not require
sorting, sorting by the aforementioned value-to-weight ratio can positively influence speed
[T, p. 227].

Similar to the approach taken in this study, Martello and Toth also test the algorithm’s
performance through an experiment based on random test data |7, p. 213|. In this exper-
iment, the total number of items ranges from 50 to 10,000 [7, p. 228|. Martello and Toth
test the runtime of the algorithms and compare different algorithm versions [7, p. 229
ff.]. While the performance of the KSA based on dynamic programming surpasses that of
branch-and-bound algorithms, Martello and Toth report that dynamic programming could
not be considered for large problems due to the associated memory consumption [7, p.
230].

Numerous other studies examine the performance of algorithms for solving the knapsack
problem. Bertsimas and Demir investigate solutions for multidimensional knapsack prob-
lems [I]. Rong et al. analyze the performance of dynamically programmed KSAs in solving
the “discounted 0-1 knapsack problems” [9]. Clautiaux et al. examine the runtime behavior

Computer Science & Information Technology (CS & IT) 139

of a solution to the “temporal knapsack problem” [2]. Furthermore, reference should be
made to the research conducted by [111 5] [6].

3. ANALYSIS

This study addresses the 0-1 knapsack problem, in which an item is either entirely selected
or not selected at all [T, p. 214]. According to Martello and Toth, the problem is sometimes
interpreted to include an upper limit on the value of knapsacks [7, p. 213|. Such a value
constraint is not considered in the following. Furthermore, this study does not address the
“multiple knapsack problem”, where the aim is to optimize the total value across several
knapsacks [T, p. 242].

private Knapsack buildOptimalKnapsack(int c) {

int n = allltems.size() - 1;
int i = n;
int z = 1;
for (int rc = 0; rc <= c; rct++) |
if (rc < g(i))
f[n] [rc] = new Knapsack();
else {
f[n] [rc] = new Knapsack();

f[n] [rc].add(o(i));
}
}
for (1 =n - 1; 1 >= z; i--) {
for (int rc = 0; rc <= c; rc++) {
if (rc < g(i)) {
fli]l[rc] = £[1i + 1] [xc];
} else {
if (f[i + 1] [rc].sumValue() >

fli + 1] [(rc - g(i))].sumValue() + w(i)) {
flil[rc] = f[i + 1][rcl;
} else {
Knapsack tR = f[i + 1][(rc - g(i))].clone();
tR.add(o(i));
f[i] [rc] = tR;

}
}

}
}
if (c < g(i))

return f[z][c];
if (flz][c].sumValue() > flz][(c - g(i))].sumValue() + w(i))

return f(z][c];
Knapsack r2 = flz][(c - g(i))].clone();
r2.add(o(i));
return r2;

Figure 1: Implementation of the KSA using dynamic programming based on the explana-
tions by [10, p. 234 f.].

The knapsack problem can be solved using either recursive programming or dynamic pro-
gramming. In the algorithm textbook by Saake and Sattler, both the recursive and the
dynamic programming versions of the knapsack algorithm are described [10, pp. 233-235].
The code in [I| presents the implementation of the KSA using dynamic programming, based
on the algorithm described by Saake and Sattler [10, p. 234 f.|. This corresponds to the
implementation of the buildOptimalKnapsack method in the DynamicProgrammingSolver
class, see Figure [4]

Solving the knapsack problem using dynamic programming is similar to the recursive ver-
sion of the algorithm. Therefore, a brief discussion of the recursive solution, illustrated in
Figure [2] is useful. The recursive version of the algorithm is based on the description in
[10, p. 233|. The recursion terminates once the final item in the list has been processed.
During execution, the algorithm evaluates for each item whether adding it would result in
a higher total value than excluding it. The activity diagram in Figure [2|illustrates the flow
of the recursive algorithm.

The implementation of the KSA using dynamic programming relies on the maintenance
of an intermediate table. This is a matrix in which the optimal combination of items is

140 Computer Science & Information Technology (CS & IT)

_ —>—tru = true

false
false
. return max(
>—true N
optimalKnapsackirclonel) <1, r - ()
)

return
optimalKnapsack(r, i+1, rc)

Figure 2: Depiction of the procedure of a recursive algorithm for solving the knapsack
problem. Own illustration, created with Microsoft(C) Visio©) [4]

[N
re<gli
true=>] leerer Rucksack auf f{n]irc]

Rucksack mit Objekt i auf
false finllre]

fliire] = max(
fli+1]irc);
fli+1)ire-g(i)
)
=
exceeds
capacity? [~
() S—— return fl1]{c); O]
max on the basis
__--1 ofthevalue
return max (-
L fcl;
false flal(cgl; O
)

Figure 3: Depiction of the KSA procedure as an activity diagram, implemented using
dynamic programming. Own illustration, created with Microsoft(C) Visio(C) [4]

Computer Science & Information Technology (CS & IT) 141

stored for various possible remaining capacities of the knapsack. The algorithm iterates
through the entire list of items row by row. During execution, it checks whether adding
the current item to an optimal knapsack, into which it would still fit, would yield a higher
total value than leaving the knapsack unchanged. The diagram in [3]illustrates the process
as an activity diagram, based on the algorithm description from [10, p. 234 f.|.

Before implementing the KSA in an object-oriented programming language, it is important
to note that Java typically uses call-by-reference. As a result, separate processing of object
lists can lead to side effects. To address this, a clone () method was created for a Knapsack.
This method creates a new knapsack with the same capacity as the original and a copy of
all items contained in the original.

4. METHOD

To address research questions RQ1 through RQ3, a simulation experiment was conducted.
For this purpose, a simulation software application was developed in the Java programming
language. The program created will hereinafter be referred to as KSApp (Knapsack Solving
App). Figure 4] presents the structure of the experimental software in the form of a class
diagram. For simplicity, the diagram does not display Exceptions or test classes containing
JUnit test cases.

The execution entry point of KSApp is the KnapsackSimulationApp class. This class
creates a controller (ExperimentController) and transfers control to it. In collaboration
with the View, the controller implements a textual interface (console application). Through
this interface, users can configure and start a simulation experiment. During configuration,
information is provided such as the name and path of the CSV results file, along with
domain-specific settings concerning the experiment’s procedure.

To address research questions RQ1-RQ3, the experiment classes VaryCapacityCPExp-
-eriment (VC) and VaryNumberOfElementsCPExperiment (VE) were created. These ex-
tend the abstract Experiment class and implement the execute method. This method
defines the execution flow of the experiment. In the VaryCapacityCPExperiment, the knap-
sack’s capacity is incrementally varied, while all other parameters remain unchanged from
the base configuration (=KnapsackConfiguration) (ceteris paribus). In the VaryNumber0f -
-ElementsCPExperiment, the total number of elements is varied step by step, while all
other parameters remain constant relative to the base configuration (ceteris paribus). Fig-
ure [p| illustrates the process flow of the VC experiment, which addresses RQ3. The process
flow of the VE experiment, which addresses RQ2, is shown in Figure [7}

142 Computer Science & Information Technology (CS & IT)

Table 1: Basic Configuration
knapsackCapacity | 100
numberOfObjects | 2000
maxWeight 15
max Value 15

Each experiment refers to the base settings, which are presented in Table [l These base
settings are used unless the respective experiment specifies a variation. The property
knapsackCapacity defines the standard knapsack size, number0OfObjects indicates the
usual number of items considered, maxWeight defines the maximum weight per item, and
maxValue the maximum value per item.

Within the execute methods, the solve method is called. This method performs one
run of the experiment and generates a result dataset. To address research questions
RQ1-RQ3, the cycle time (CT) is measured. Figure @ illustrates the procedure used
to generate the result dataset. It shows that the system time is recorded before and af-
ter executing the solve method of the selected strategy (ISolveKnapsackProblem) via
System.currentTimeMillis(). The algorithm’s runtime is calculated as the difference
between end time and start time in milliseconds. Moreover, the code in Figure [6] clarifies
that the init method is executed before the start time is recorded, meaning that the
runtime of the init method is not included in the performance measurement.

As shown in Figures[0] [7], and 5] the solution to the knapsack problem is based on an im-
plementation of ISolveKnapsackProblem. Figure [4]illustrates that this interface is imple-
mented by a Solver, which provides base functionality to both the DynamicProgramming-
-Solver and the RecursiveSolver, the latter implementing the actual algorithms for de-
termining an optimal knapsack. This study does not further examine the RecursiveSolver.
To address research question RQ1, subclasses of the KnapsackDynamicProgrammingSolver
were developed. These subclasses—DynamicProgrammingSolverSortByValueASC, Dynamic-
-ProgrammingSolverSortByValueDESC, DynamicProgrammingSolverSortByWeightASC, and
DynamicProgrammingSolverSortByWeightDESC - differ in the implementation of the init
method. As shown in the source code in Figure[6] this init method is executed before the
actual knapsack algorithm is applied. Consequently, the init method performs prepara-
tory tasks, such as sorting the items. An implementation of the init method is included
as a note in Figure [4

The experiment was executed on a Windows Server 2012 R2 with an Intel Xeon CPU
ES3-1225 v5 running at 3.3GHz and equipped with 8 GB RAM, using Oracle JDK 17.0.2
[8]. It was executed in two variants, each using one of the experiment classes VC and
VE. In each experiment, n=100 was set, meaning that each configuration was executed 99
times, which is why the value n = 99 is used in the following for simplicity. In the VC
variant, the knapsack capacity was varied from 10 to 500 in increments of 10. In the VE
variant, the total number of items was varied from 100 to 10,000 in increments of 100. As
shown in Figures 5| and [7] the respective upper limit is not included in the experiment. As
a result, 24,500 data records were generated for the evaluation of the VC experiment, and
49,500 data records for the VE experiment.

5. RESULTS

To analyze the results, KSApp generates a separate CSV file for each experiment variant
(VC and VE). This CSV file contains data per sorting strategy and experiment run in the

143

Computer Science & Information Technology (CS & IT)

re—
e
e
oo Z
e
_____ e
e
yyyyy w
e
s
-
P
==
..... [o]
p— pm—
e o
s
eI o
/—\‘. WwawadxzddAedeIAEN
—
==
e
e
oo
ety
e S
T
Lo .
© (v ujaanraa |
e
I,
i S
T

Figure 4: Illustration of the architecture of the KSApp in the form of a class diagram.

Own illustration, created with Microsoft(C) Visio(©) [4]

144 Computer Science & Information Technology (CS & IT)

public void execute(int n) {
for (int ¢ = minCapacity;
¢ < maxCapacity; ¢ = c + step) {
for (int 1 = 0; i < n; i++) {
List<Item> objects = generateItems(
KnapsackConfiguration.numberOfObjects,
KnapsackConfiguration.maxWeight,
KnapsackConfiguration.maxValue) ;
for (ISolveKnapsackProblem s:
getStrategies() .getStrategies()) {
ResultRecord r = solve(objects, c, s);
this.getResultFile() .writeToFile(r);
}
}

Figure 5: Procedure of the VaryCapacityCPExperiment. Own implementation.

public ResultRecord solve(List<Item> objects,
int maxCapacity,

ISolveKnapsackProblem strategy) {
ResultRecord r = new ResultRecord();
r.setNumArtikel (objects.size());
r.setAl1Items(objects);
r.setMaxRucksackGewicht (maxCapacity) ;
TtemList il = new ItemList(objects);
strategy.init(il, maxCapacity);
r.setStartTime (System.currentTimeMillis());
Knapsack rucksack = strategy.solve();
r.setEndTime (System.currentTimeMillis());
r.setWertRucksack(rucksack.sumValue());
r.setGewichtRucksack(rucksack.sumWeight());
r.setKnapsack(rucksack.getObjects());
r.setSrategie(strategy.name());
strategy.reset();
return r;

}

Figure 6: Implementation of the solve method in the Experiment class. Own implementa-
tion.

Computer Science & Information Technology (CS & IT) 145

public void execute(int n) {
for (int o = minNumberOfElements;
o < maxNumberOfElements; o = o + step) {
for (int i = 0; i < n; i++) {

List<Item> objects = generateltems (o,
KnapsackConfiguration.maxWeight,
KnapsackConfiguration.maxValue) ;

for (ISolveKnapsackProblem s:
getStrategies() .getStrategies()) {

int ck = KnapsackConfiguration.
knapsackCapacity;
ResultRecord r = solve(objects, ck, s);
this.getResultFile() .writeToFile(r);
b

b

b

X

Figure 7: Procedure of the VaryNumberOfElementsCPExperiment. Own implementation.

following columns: Strategy; NumberOfItems; MaxBackpackWeight; DurationInMilli-
-seconds; MinItemWeight; MaxItemWeight; MinItemValue; Max ItemValue; Back-
-packResultValue; BackpackResultWeight. The Strategy column distinguishes the
sorting strategies applied to the full set of items prior to the execution of the KSA (see the
explanations regarding the init method in Section). The following strategies are therefore
differentiated: DP-Classic (=no sorting), DP-Sort-By-Weight-ASC (=ascending sort by
weight), DP-Sort-By-Weight-DESC (=descending sort by weight), DP-Sort-By-Value-ASC
(=ascending sort by value), and DP-Sort-By-Value-DESC (—=descending sort by value).
The DurationIn Milliseconds column represents the cycle time, calculated as the differ-
ence between the end and start times (see Figure [6).

5.1. EVALUATION OF THE VC EXPERIMENT

For the evaluation of the VC experiment, a pivot table was first created using Microsoft(C)
Excel(©) 2019 ([3]), based on the CSV results dataset. The strategies are represented as
columns and the variation in maximum knapsack capacity as rows. The result values are
the average cycle times across all corresponding experiment runs (n = 99).

During the VC experiment, the maximum allowed knapsack capacity is incrementally var-
ied and its effect on cycle time (CT) is measured. Figure |8 presents the experimental
results. The data for DP-Classic show the development of cycle time with increasing
knapsack capacity and unsorted items. The remaining data show how cycle time evolves
with increasing capacity and prior sorting of the complete item set. Here, ASC denotes
ascending and DESC descending sorting.

Figure [§| shows a clear increase in cycle time as knapsack capacity rises. When the items
are sorted in descending order by value, the increase in cycle time is, on average, the most
pronounced. In contrast, sorting the items in ascending order by value or weight leads to
a positive effect on cycle time compared to the unsorted variant.

Figure [shows the average cycle time observed during the VC experiment, broken down by
sorting strategy. Similar to the presentation in Figure[§] it becomes evident that descending
sorting by item value leads to the longest average cycle time. Conversely, the shortest aver-

146 Computer Science & Information Technology (CS & IT)

Cycle time relative to maximum capacity

oo
o
[e]
o

|

6,000

L
o
=}
s}

T

N
o
o
@)

T

Cycle Time (in Milliseconds)

AR 7!/;\;:7: | ‘ |
0 100 200 300 400 500

Maximum Capacity

+ DP-Classic
+ DP-Sort-By-Value-ASC
DP-Sort-By-Value-DESC
DP-Sort-By-Weight-ASC
DP-Sort-By-Weight-DESC

Figure 8: Development of cycle time considering a variation in knapsack capacity. Own
illustration, created with TikZ (tikzpicture) being part of TeX Live Version 2024 [I3] on
the basis of data sets proprocessed with Microsoft Excel 2019 [3]

age cycle time across all experiments is achieved with the strategy DP-Sort-By-Value-ASC.

A hypothesis test for two-tailed questions is applied to determine whether the deviations in
average cycle time due to prior sorting are statistically significant compared to the unsorted
variant (DP-Classic). The evaluation is based on the aggregated data from the experiment
runs, with a sample size of 49 data points. The significance level is set at a = 5%. The
analysis shows that only the data for DP-Sort-By-Value-DESC reveal significant differences
in cycle time compared to DP-Classic.

5.2. EVALUATION OF THE VE EXPERIMENT

In the VE experiment, the total number of items is incrementally varied while all other
settings remain unchanged (c.p.). As with the VC experiment (see Section), data prepa-
ration begins with the creation of a pivot table using Microsoft(C) Excel(C) 2019 ([3]). The
strategies are displayed as columns and the varied item counts as rows. Once again, the
result values are the average cycle times over all experiment runs (n = 99).

Figure shows the results of the data analysis. It becomes evident that the cycle
time increases with the total number of items. A sharp increase is observed with the
DP-Sort-By-Value-DESC strategy, which sorts items in descending order by value. In
contrast, ascending sorting by weight or value has a positive effect on cycle time.

Figure [L1] shows the average cycle time across all experiment runs (n = 99), broken down
by sorting strategy. As with Figure [0} it is apparent in Figure [I0] that descending sorting
by item value leads to the highest average cycle time. Again, the shortest average cycle
time across all experiment runs is achieved using the strategy DP-Sort-By-Value-ASC.

Computer Science & Information Technology (CS & IT) 147

Average CT across all VC experiments

2,500 % 2,410.35
3
=
8
£2,000 |
=
i=
g1,500 1
= 1,152.44 1,184.14
]
517000 T 891.28 932.17
@ @ @ @
OIS G
Q N‘b’ q‘bx\)e @Q)\% @6\%\

Figure 9: Average cycle time with a variation in knapsack capacity (VC) in the range from
10 to 490. Own illustration, created with TikZ (tikzpicture) being part of TeX Live Version
2024 [I3] on the basis of data sets proprocessed with Microsoft Excel 2019 [3]

As part of a significance analysis using a two-tailed hypothesis test, it is evaluated whether
deviations in cycle time due to prior sorting result in statistically significant differences
compared to the unsorted approach (DP-Classic). The significance level is set at o =
5%. As before, the evaluation for the VE experiments is based on the aggregated data
from the experiment runs (n = 99). It is shown that the differences in average cycle
time are significant for the strategies DP-Sort-By-Value-ASC, DP-Sort-By-Value-DESC,
and DP-Sort-By-Weight-ASC. However, the application of the DP-Sort-By-Weight-DESC
strategy did not yield a significant impact on the average cycle time in the VE experiment.

6. THREATS TO VALIDITY

The findings presented here provide a basis for better estimating the runtime behavior of
the KSA. However, it is strongly recommended that these insights be validated through
further studies. Given that each experiment included only n = 99 runs, the conclusions
drawn cannot be considered definitive or universally applicable. In this regard, there is also
the limitation that the simulation was conducted on a single server and implemented in
one programming language. Different results could occur if the experiment were repeated
on various servers and with different programming languages. Additionally, the perfor-
mance of the server used may have influenced the experimental results. For instance, it
is conceivable that background tasks were executed during the experiments, potentially
affecting performance.

7. CONCLUSION

The application of the KSA in two experiments involving variations in knapsack capacity
(VC) and the total number of items (VE) revealed partially significant differences in average

148 Computer Science & Information Technology (CS & IT)

Cycle time relative to the number of items

600 - s
=)
<
=i
o)
g
L0400 | 8
ﬁ
R=
(D)
E 200 8
=
=2
()
S 0 L
0
Number of Items 104
+ DP-Classic

+ DP-Sort-By-Value-ASC
DP-Sort-By-Value-DESC
DP-Sort-By-Weight-ASC

DP-Sort-By-Weight-DESC

Figure 10: Development of cycle time considering a variation in the total number of items.
Own illustration, created with TikZ (tikzpicture) being part of TeX Live Version 2024 [13]
on the basis of data sets proprocessed with Microsoft Excel 2019 [3]

cycle times among the investigated strategies. Regarding RQ1, it is evident that prior
sorting of items in descending order by value leads to a significant deterioration in cycle
time. This effect was confirmed in both the VE and VC experiments. In the VE experiment,
where the total number of items increased, sorting items in ascending order by value
resulted in a statistically significant improvement in cycle time.

Regarding RQ2, the results of the VE experiment show that the cycle time increases with
the total number of items. The same effect was also observed in the VC experiment as
the knapsack capacity increased (RQ3). The analysis reveals that increasing the knapsack
capacity leads to a more rapid and pronounced rise in cycle time compared to increasing
the total number of items.

Future research building on this study should investigate whether the observed effects are
influenced by the choice of programming language or the target system. Further studies
may also focus on optimizing the KSA to prevent performance degradation, particularly
when the knapsack capacity increases.

Overcoming the limitations described in Section represents a valid starting point for fu-
ture research. Furthermore, it is worth noting that this study exclusively used fictitious,
randomly generated data. The use of real-world data could provide valuable additional
insights into performance, for example, if real data systematically contain structural simi-
larities or differences that are absent in fictitious data. In addition, extending the analysis
to other target variables, such as memory consumption, would also be beneficial.

Computer Science & Information Technology (CS & IT) 149

Average CT across all VE experiments

300 1 283.48
E
S 250 {
?
= 200 |
=
)
£ 150 |
= 120.96 115.34
S 97.49
> 100 83.75 . l
o 0 0 et ©
Q’O o 06,9) %v \&,9
\SN‘& N {e «é}%

Figure 11: Average cycle time with a variation in the total number of items (VE) in the
range from 100 to 9900 items. Own illustration, created with TikZ (tikzpicture) being part
of TeX Live Version 2024 [I3] on the basis of data sets proprocessed with Microsoft Excel
2019 [3]

8. ACKNOWLEDGEMENTS

Special thanks are extended to Thomas Zink for providing a LaTeX template that enabled
the paper to be formatted in accordance with the present design guidelines. See [14]. We
would also like to thank the reviewers for their valuable comments. We would also like to
thank the reviewers for their valuable comments.

9. REFERENCES

1]

2]

3]
[4]
5]

(6]

Dimitris Bertsimas and Ramazan Demir. An Approximate Dynamic Programming
Approach to Multidimensional Knapsack Problems. Management Science, 48(4):550
— 565, April 2002. INFORMS.

Frangois Clautiaux, Boris Detienne, and Gaél Guillot. An iterative dynamic program-
ming approach for the temporal knapsack problem. Furopean Journal of Operational
Research, 293(2), 2021.

Microsoft Corporation. Microsoft(©) Excel(©). Office Home & Business 2019, 2019.
Version 2212.

Microsoft Corporation. Microsoft(C) Visio(©) 2021 MSO. Visio Standard, 2021. Version
2308 Build 16.0.16731.20052, 64 Bit.

Weiming Feng and Ce Jin. Approximately Counting Knapsack Solutions in Sub-
quadratic Time. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1094-1135. DOI: 10.1137/1.9781611978322.32.
Yosra Ali Hassan and Ibrahim Mahmood Ibrahim. Review on Algorithmic Approaches
to Solving Knapsack Problem. Asian Journal of Research in Computer Science,

18(3):314-324, February 2025. DOI: 10.9734/ajrcos/2025/v18i3595.

150
7]

8]

19]

[10]

[11]

[12]

[13]
[14]

Computer Science & Information Technology (CS & IT)

Silvano Martello and Paolo Toth. Algorithms for Knapsack Problems. In Silvano
Martello, Gilbert Laporte, Michel Minoux, and Celso Ribeiro, editors, Annals of
Discrete Mathematics. Survey in Combinatorial Optimization, volume 31 of North-
Holland Mathematics Studies 132, pages 213 — 257. Elsevier Science Publishers B.V.
(North-Holland), Amsterdam, The Netherlands, 1987.

Oracle Corporation. Java™ Platform, Standard Edition Development Kit (JDK™).
Java™ SE Runtime Environment. Online available at URL: https://www.
oracle.com/java/technologies/downloads/#javasejdk, accessed 2022-MAR-07,
2022. Version 17.0.2 2022-01-18 LTS.

Aiying Rong, José¢ Rui Figueira, and Kathrin Klamroth. Dynamic programming
based algorithms for the discounted 0-1 knapsack problem. Applied Mathematics
and Computation, 218(12):6921 — 6933, February 2012. ScienceDirect, Elsevier. DOI:
10.1016/j.amc.2011.12.068.

Gunter Saake and Kai-Uwe Sattler. Algorithmen und Datenstrukturen. dpunkt.verlag,
2014. 5. Auflage, Heidelberg.

Tibor Szkaliczki. Solution Methods for the Multiple-Choice Knapsack Problem
and Their Applications. Mathematics, 13(1097), March 2025. MDPI. DOI:
10.3390/math13071097.

Paolo Toth. Dynamic programming algorithms for the Zero-One Knapsack Problem.
25(1):29-45, 1980.

The TeX Users Group (TUG). TeX Live, 2024. Version 3.141592653-2.6-1.40.26.
Thomas Zink. aircc.cls v 1.1, 2012/09/13, 2012. This is an unofficial Latex class for
Authors of AIRCC Papers. Access timestamp: 2016-10-19.

©2026 By AIRCC Publishing Corporation. This article is published under the Creative Commons Attribution (CC BY)) license.

https://www.oracle.com/java/technologies/downloads/#javasejdk
https://www.oracle.com/java/technologies/downloads/#javasejdk
https://airccse.org/

