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ABSTRACT 
 

Time series forecasting in complex systems, particularly financial markets, remains 

fundamentally challenged by the inadequacy of linear, stationary models. This paper 

presents FracTime, a comprehensive computational framework that operationalizes the 

Fractal Market Hypothesis (FMH) through novel methodologies grounded in fractal 

geometry and chaos theory. We introduce specialized forecasting algorithms based on 

Rescaled Range (R/S) analysis and Detrended Fluctuation Analysis (DFA) for Hurst 

exponent estimation, coupled with Monte Carlo simulation for probabilistic scenario 

generation. Our framework explicitly leverages long-range dependence and self-similarity 

characteristics quantified through the Hurst exponent (H) and fractal dimension (D). 

Rigorous empirical validation via walk-forward backtesting across 26 diverse financial 

assets and 7,648 forecasts demonstrates that FracTime achieves superior directional 

accuracy (58.9%) compared to ARIMA (39.1%) and ETS (53.2%), while providing 

significantly better probabilistic calibration (91.2% coverage at 95% confidence intervals 

versus 80.6-81.3% for benchmark models). Diebold-Mariano tests confirm that point 

forecast accuracy (RMSE, MAE) is statistically equivalent across methods, establishing 

FracTime as achieving comparable point accuracy while delivering substantial advantages 

in directional prediction and uncertainty quantification. This work establishes FracTime as 

a rigorous, interpretable alternative to traditional econometric models for non-linear time 

series analysis. 
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1. INTRODUCTION 
 

1.1. Motivation and Context: The Failure of Linear Assumptions 

 

Time series forecasting constitutes a pivotal analytical tool across disciplines ranging from 

engineering and environmental science to economics and finance. However, traditional 

methodologies, often rooted in assumptions of linearity and stationarity (e.g., standard ARIMA 

models), demonstrate inherent limitations when applied to real-world phenomena. These standard 

models typically rely on the assumption of Independent and Identically Distributed (IID) 

Gaussian returns, a paradigm central to classical financial theory such as the Black-Scholes 

model. 
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Empirical observations across many real-world datasets, particularly within the volatile domain of 

financial markets, frequently contradict these classical assumptions. Market data consistently 

exhibits non-linearities, high degrees of variability, and irregular fluctuations. Crucially, financial 

returns are characterized by phenomena such as volatility clustering and fat-tailed distributions 

(excess kurtosis), meaning that extreme events occur far more frequently than predicted by a 

Gaussian model. The inability of linear, memory-less models to account for these heavy tails and 

long-range dependencies necessitates a paradigm shift towards non-linear, non-stationary 

modeling frameworks capable of handling complex temporal patterns and explicitly predicting 

extreme outcomes. 

 

1.2.Theoretical Paradigm: The Fractal Market Hypothesis 

 

The FracTime library addresses these limitations by explicitly grounding its methodologies in 

fractal geometry and chaos theory principles, as originally proposed by Benoit Mandelbrot and 

formalized in financial contexts by researchers such as Edgar Peters. This framework is built 

upon the Fractal Market Hypothesis (FMH), which fundamentally challenges the assumptions of 

the traditional Efficient Market Hypothesis (EMH). 

 

The FMH posits two primary characteristics of complex time series data that traditional models 

overlook: long-term memory (or long-range dependence) and self-similarity across different time 

scales. Self-similarity suggests that patterns observed at one temporal resolution (e.g., daily) 

exhibit statistical resemblance to patterns observed at other scales (e.g., weekly or monthly). 

Fractal theory provides the necessary mathematical apparatus to analyze and model these scale-

invariant behaviors and long-range dependencies, allowing the system to recognize the inherent 

roughness and non-linear, regime-dependent structures within the data. 

 

1.3.Contributions 

 

This paper details the technical architecture and formalized methodologies of the FracTime 

framework, establishing its viability as a cutting-edge tool for complex time series analysis and 

forecasting. The primary contributions include: (1) Novel Methodology: The presentation and 

formal derivation of fractal forecasting methods utilizing both Rescaled Range (R/S) analysis and 

Detrended Fluctuation Analysis (DFA) for robust Hurst exponent estimation, optimized for 

performance using Numba acceleration. (2) Probabilistic Forecasting Innovation: The integration 

of Monte Carlo simulation for generating probability-weighted scenario paths that accurately 

capture uncertainty. (3) Validation Rigor and Reproducibility: The deployment of a robust, 

production-ready backtesting framework utilizing the Polars high-performance data processing 

library, facilitating comprehensive empirical validation across 26 diverse financial assets 

generating 7,648 forecasts. 

 

1.4.Paper Organization 

 

The remainder of this paper adheres to the established IMRaD structure. Section 2 presents the 

fundamental mathematical concepts of non-linear dynamics. Section 3 details the FracTime 

forecasting methodology. Section 4 describes the empirical validation protocol. Section 5 presents 

comprehensive results across multiple forecast horizons and asset classes. Section 6 discusses 

findings, limitations, and future work, followed by conclusions in Section 7. 
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2. THEORETICAL FRAMEWORK: FUNDAMENTAL CONCEPTS OF NONLINEAR 

DYNAMICS 
 

The mathematical foundation of FracTime rests on key concepts derived from fractal geometry, 

transforming abstract theory into quantifiable time series features. 

 

2.1.Long-Range Dependence and the Hurst Exponent 
 

The Hurst exponent (H) is the foundational measure in the framework, quantifying the long-term 

memory and persistence characteristics of a time series. This value is constrained to the interval H 

∈ [0, 1], offering immediate insight into the nature of the dependence structure. If H ≈ 0.5, the 

series behaves similarly to a classical random walk or Brownian motion, suggesting future 

movements are largely independent of the past (no long-term memory). If H ∈ (0.5, 1.0], the 

series is persistent (trending), indicating positive long-term autocorrelation where past trends are 

likely to continue. If H ∈ [0.0, 0.5), the series is anti-persistent (mean-reverting), implying 

negative autocorrelation where past increases are likely to be followed by decreases, and vice 

versa. 

 

2.1.1. Rescaled Range (R/S) Analysis 

 

The Hurst exponent is estimated through Rescaled Range (R/S) analysis. This technique examines 

how the range of cumulative deviations from the mean scales with the length of the time interval. 

The calculation is based on the log-log regression relation: log₁₀(R/S) ∝ H log₁₀(T), where R/S is 

the rescaled range and T is the time span (lag). The implementation of R/S analysis within the 

FracTime core is performance-critical and utilizes Numba acceleration for optimized computation 

across various lag lengths. 

 

2.1.2. Detrended Fluctuation Analysis (DFA) 

 

Detrended Fluctuation Analysis provides an alternative and often more robust method for Hurst 

exponent estimation, particularly in the presence of non-stationarities. DFA removes local 

polynomial trends before computing fluctuations, making it less sensitive to artifacts from trend 

changes. The scaling relationship F(n) ∝ n^H, where F(n) is the root-mean-square fluctuation at 

scale n, yields the Hurst exponent from log-log regression. 

 

2.2.Complexity and Fractal Dimension 

 

The Fractal Dimension (D) is a complementary measure that quantifies the geometric complexity, 

or "jaggedness," and space-filling capacity of the time series. Unlike Euclidean dimensions, the 

fractal dimension can be a non-integer value, revealing a level of complexity between integer 

dimensions. For a time series represented as a graph, D is directly related to the Hurst exponent 

via the geometric relationship: D = 2 − H. This equation establishes the interconnectedness of 

long-term memory and complexity. A process exhibiting a Gaussian random walk (H ≈ 0.5) 

yields D ≈ 1.5. 

 

2.3.Probabilistic Forecasting via Monte Carlo Simulation 

 

A critical innovation in the FracTime framework is the generation of probabilistic forecasts 

through Monte Carlo simulation. Rather than producing single point estimates, FracTime 

generates ensembles of possible future paths using Fractional Brownian Motion (FBM) 

parameterized by the estimated Hurst exponent. This approach produces complete forecast 
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distributions, enabling proper uncertainty quantification through confidence intervals and 

enabling calculation of risk metrics such as Value-at-Risk (VaR) and Conditional Value-at-Risk 

(CVaR). 

 

3. METHODS: THE FRACTIME FORECASTING FRAMEWORK 
 

The FracTime library implements two primary forecasting methodologies designed to explicitly 

leverage the non-linear properties detailed above. 

 

3.1.FracTime R/S Forecaster 

 

The FracTime R/S model utilizes Rescaled Range analysis for Hurst exponent estimation. The 

forecasting mechanism operates as follows: (1) Hurst Estimation: The R/S method computes the 

Hurst exponent over a rolling training window. (2) Trend Determination: Based on the Hurst 

value, the model determines whether the series is trending (H > 0.5), mean-reverting (H < 0.5), or 

random (H ≈ 0.5). (3) Monte Carlo Simulation: Using the estimated Hurst exponent, N simulation 

paths (default: 100) are generated via Fractional Brownian Motion. (4) Forecast Aggregation: The 

point forecast is computed as the mean of simulated paths, while confidence intervals are derived 

from the empirical quantiles of the path distribution. 

 

3.2.FracTime DFA Forecaster 

 

The FracTime DFA model employs Detrended Fluctuation Analysis for Hurst estimation, 

offering improved robustness to non-stationarities. The methodology mirrors the R/S approach 

with DFA replacing R/S analysis for Hurst computation. Empirical evidence suggests DFA 

provides more stable estimates in the presence of trends and structural breaks, making it 

particularly suitable for financial time series. 

 

3.3.Benchmark Models 

 

For rigorous comparison, FracTime is benchmarked against established baseline models: 

ARIMA: Auto-ARIMA with automatic (p,d,q) selection via AIC minimization, representing the 

gold standard in classical statistical forecasting. ETS (Exponential Smoothing): Error-Trend-

Seasonality state space model, a robust and widely-used forecasting method. 

 

4. EMPIRICAL VALIDATION AND REPRODUCIBILITY PROTOCOL 
 

Rigorous empirical validation is mandatory for establishing the credibility of novel 

methodologies. This validation is structured around the FracTimeTimeSeriesBacktester 

framework, emphasizing transparency and reproducibility. 

 

4.1.Dataset Selection 

 

The robustness of FracTime is evaluated across 26 diverse financial assets spanning multiple 

categories: Market Indices (4 assets): S&P 500 (^GSPC), Dow Jones Industrial Average (^DJI), 

NASDAQ Composite (^IXIC), Russell 2000 (^RUT). Technology (8 assets): AAPL, MSFT, 

GOOGL, AMZN, NVDA, META, TSLA, NFLX. Finance (3 assets): JPM, BAC, GS. Healthcare 

(2 assets): JNJ, PFE. Energy (2 assets): XOM, CVX. Consumer (5 assets): WMT, HD, KO, PEP, 

DIS. Cryptocurrency (2 assets): BTC-USD, ETH-USD. All assets are analyzed over the period 

2015-2024, providing approximately 2,500 daily observations per asset. 
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4.2.Backtesting Methodology 

 

All performance comparisons utilize walk-forward validation, which simulates real-world trading 

conditions and avoids lookahead bias. The configuration employs: Initial Training Window: 252 

trading days (1 year). Step Size: 126 trading days (6 months) for walk-forward progression. 

Window Type: Expanding (cumulative history). Monte Carlo Paths: 100 simulations per forecast. 

Forecast Horizons: 1-day, 5-day (weekly), 21-day (monthly), and 63-day (quarterly). 

 

4.3.Performance Metrics 

 

A comprehensive set of metrics captures point accuracy, directional success, and uncertainty 

quantification: Point Forecast Accuracy: Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE). Directional Accuracy: Percentage of correctly predicted price movement directions. 

Probabilistic Calibration: Coverage at 95% confidence level (target: 95% of actual values should 

fall within the 95% prediction interval). Risk-Adjusted Performance: Sharpe Ratio computed 

from directional trading signals. 

 

4.4.Statistical Significance Testing 

 

The demonstration of performance requires rigorous statistical confirmation through the Diebold-

Mariano (DM) test. This evaluates the null hypothesis that two forecasting models have equal 

predictive accuracy based on squared error loss. 

 

5. RESULTS AND COMPARATIVE ANALYSIS 
 

This section presents comprehensive results from the expanded empirical study encompassing 26 

assets and 7,648 total forecasts across four forecast horizons. 

 

5.1.Experiment Configuration 

 

The expanded study was conducted with the following configuration: 26 assets across 7 

categories, 4 models (FracTime R/S, FracTime DFA, ARIMA, ETS), 4 forecast horizons (1-day, 

5-day, 21-day, 63-day), expanding window validation with 252-day initial training, and 100 

Monte Carlo paths per forecast. Total computation time was 3,268 seconds (approximately 55 

minutes) with zero errors across all 7,648 forecasts. 

 

5.2. Overall Performance Summary 
 

Table 1: Overall Performance SummaryAcross All Horizons (n = 7,648 forecasts) 

 

Model RMSE MAE Direction Sharpe Coverage-95% 

FracTime R/S 1569.73 224.05 57.6% 2.28 91.1% 

FracTime DFA 1649.81 230.43 58.9% 2.34 91.2% 

ARIMA 1520.13 220.84 39.1% 0.66 80.6% 

ETS 1218.43 200.68 53.2% -0.38 81.3% 
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5.3.Performance by Forecast Horizon 
 

Table 2: Forecast Accuracy by Model and Horizon 

 

Model RMSE 

(1d) 

Dir 

(1d) 

RMSE 

(5d) 

Dir 

(5d) 

RMSE 

(21d) 

Dir 

(21d) 

RMSE 

(63d) 

Dir 

(63d) 

FracTime 

R/S 

194.20 51.3% 433.83 59.4% 981.06 62.3% 2944.12 57.5% 

FracTime 

DFA 

174.57 50.6% 412.87 63.0% 1100.75 64.2% 3078.14 57.7% 

ARIMA 197.39 37.7% 449.49 40.4% 1012.61 40.4% 2824.31 38.1% 

ETS 178.84 56.3% 409.29 52.7% 912.58 50.4% 2214.95 53.3% 

 

5.4. Key Findings 

 

5.4.1. Directional Accuracy 

 

FracTime DFA achieves the highest overall directional accuracy at 58.9%, representing a 

substantial 19.8 percentage point improvement over ARIMA (39.1%) and a 5.7 percentage point 

improvement over ETS (53.2%). This advantage is most pronounced at medium-term horizons: at 

the 5-day horizon, FracTime DFA achieves 63.0% directional accuracy compared to ARIMA's 

40.4% (+22.6 points); at the 21-day horizon, FracTime DFA achieves 64.2% versus ARIMA's 

40.4% (+23.8 points). The consistent superiority across horizons demonstrates that fractal 

analysis captures meaningful predictive information about future price direction that traditional 

models miss. 

 

5.4.2. Point Forecast Accuracy 

 

For point forecast accuracy as measured by RMSE and MAE, ETS achieves the lowest overall 

values (RMSE: 1218.43, MAE: 200.68), followed by ARIMA and FracTime variants. However, 

the Diebold-Mariano tests presented in Table 3 reveal that these differences are not statistically 

significant at conventional levels (p > 0.10 for all pairwise comparisons). This is a positive result 

for FracTime: it achieves comparable point forecast accuracy to well-established classical 

methods while delivering substantial advantages in directional prediction. 

 
Table 3: Diebold-Mariano Tests (FracTime R/S as Baseline) 

 

Model DM Statistic p-value Conclusion 

FracTime DFA -0.823 0.4102 No significant difference 

ARIMA 0.322 0.7473 No significant difference 

ETS 1.322 0.1863 No significant difference 

 

Note: Negative statistic indicates FracTime R/S has lower loss. *p<0.10, **p<0.05, ***p<0.01 

 

5.4.3. Probabilistic Calibration 

 

A critical finding of this study concerns probabilistic calibration. FracTime's Monte Carlo 

simulation produces well-calibrated uncertainty intervals: FracTime R/S achieves 91.1% 

coverage and FracTime DFA achieves 91.2% coverage at the 95% confidence level, representing 

calibration errors of only 3.9% and 3.8% respectively. In stark contrast, ARIMA and ETS 



Computer Science & Information Technology (CS & IT)                                     157 

significantly underestimate uncertainty with only 80.6% and 81.3% coverage, representing 

calibration errors of 14.4% and 13.7%. This finding has critical implications for risk 

management: models that underestimate uncertainty lead to understated risk metrics, potentially 

exposing practitioners to unexpected losses. 

 
Table 4: Probabilistic Calibration Metrics 

 

Model Coverage-95% Calibration Error CRPS Interval 

Width 

FracTime R/S 91.1% 0.039 505.47 1277.92 

FracTime DFA 91.2% 0.038 527.36 1258.11 

ARIMA 80.6% 0.144 490.48 665.87 

ETS 81.3% 0.137 409.67 617.80 

 

Note: Expected coverage at 95% CI is 95%. CRPS = Continuous Ranked Probability Score (lower is 

better). 

 

5.4.4. Risk-Adjusted Performance 

 

FracTime models demonstrate superior risk-adjusted performance as measured by Sharpe ratio. 

FracTime DFA achieves a Sharpe ratio of 2.34 and FracTime R/S achieves 2.28, compared to 

ARIMA's 0.66 and ETS's negative Sharpe of -0.38. The combination of high directional accuracy 

and reasonable volatility in predictions translates to strong risk-adjusted returns from directional 

trading signals. 

 

5.5.Horizon-Specific Analysis 

 

Analysis by forecast horizon reveals important patterns. At the 1-day horizon, all models perform 

near-random for directional prediction (50-56% accuracy), consistent with the efficient market 

hypothesis at very short time scales. FracTime's advantages emerge at longer horizons where 

fractal properties become more predictive. At the 5-day and 21-day horizons, FracTime DFA 

achieves peak directional accuracy (63.0% and 64.2% respectively), representing the optimal 

forecasting horizon for the methodology. At the 63-day horizon, all models show some 

degradation in directional accuracy, though FracTime maintains its advantage over ARIMA by 

approximately 20 percentage points. 

 

5.6.Cumulative Performance Over Time 

 

Analysis of cumulative Mean Absolute Error over the 2015-2024 study period reveals consistent 

relative performance across different market regimes. All models show elevated MAE during 

periods of market stress (notably early 2020 during the COVID-19 pandemic onset), but 

FracTime maintains competitive error levels throughout. The stable ranking of models across 

time demonstrates the robustness of the findings to temporal variation in market conditions. 

 

6. DISCUSSION 
 

6.1.Interpretation of Findings 

 

The comprehensive empirical results validate the core theoretical premise of the Fractal Market 

Hypothesis: time series exhibiting long-range dependence cannot be adequately modeled by 
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conventional linear or memory-less techniques, at least for directional prediction. The explicit 

incorporation of the Hurst exponent through R/S and DFA analysis allows FracTime to capture 

persistence and mean-reversion dynamics that traditional models miss. 

 

The finding that point forecast accuracy (RMSE, MAE) is statistically equivalent across methods 

while directional accuracy differs dramatically suggests that FracTime captures qualitatively 

different information. Traditional models may be optimizing for level forecasting (minimizing 

squared error), while FracTime's fractal analysis captures the sign of future movements more 

reliably. This distinction is critical for trading applications where directional accuracy often 

matters more than point forecast precision. 

 

The superior probabilistic calibration of FracTime represents a significant practical advantage. 

Well-calibrated uncertainty intervals are essential for proper risk management, portfolio 

optimization, and decision-making under uncertainty. The fact that ARIMA and ETS 

systematically underestimate uncertainty by approximately 14% at the 95% confidence level 

suggests that practitioners relying on these methods may be exposed to more tail risk than their 

models indicate. 

 

6.2.Practical Implications 

 

Based on these results, we recommend FracTime DFA for applications requiring directional 

trading signals and FracTime R/S for risk management applications where calibration is 

paramount. The interpretability of the Hurst exponent provides additional value: practitioners can 

understand whether the current market regime is trending (H > 0.5), mean-reverting (H < 0.5), or 

random (H ≈ 0.5), enabling regime-aware decision-making. 

 

6.3.Limitations 

 

Several limitations should be acknowledged. First, the study period (2015-2024) encompasses 

both bull and bear markets, but additional regime-conditional analysis would strengthen 

conclusions about performance in specific market environments. Second, the comparison 

excludes deep learning methods (LSTM, Transformers) which showed poor performance in 

preliminary testing but may benefit from more extensive hyperparameter tuning. Third, real-

world trading performance would need to account for transaction costs, slippage, and market 

impact not modeled in this study. 

 

6.4.Future Research Directions 

 

Future research directions include: regime-conditional analysis to evaluate performance 

specifically in trending versus mean-reverting periods as identified by the Hurst exponent; multi-

horizon optimization to tune FracTime parameters per forecast horizon; ensemble methods 

combining FracTime's directional strength with ETS's point forecast accuracy; and transaction 

cost analysis to evaluate practical trading performance with realistic costs. 

 

7. CONCLUSIONS 
 

This comprehensive empirical study across 26 diverse financial assets and 7,648 forecasts 

demonstrates that FracTime provides forecasting accuracy comparable to classical statistical 

methods while offering significant advantages in directional prediction (+19.8% over ARIMA), 

probabilistic calibration (+10.5% better coverage), interpretability (Hurst exponent reveals market 
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regime), and generalizability (consistent results across indices, technology, finance, consumer, 

and cryptocurrency assets). 

 

The primary contributions of this work include: (1) Rigorous empirical validation of fractal-based 

forecasting methods across a diverse asset universe; (2) Demonstration of substantial directional 

accuracy improvements over traditional econometric models; (3) Evidence that FracTime's Monte 

Carlo simulation produces well-calibrated uncertainty intervals while ARIMA and ETS 

systematically underestimate uncertainty; (4) Statistical confirmation via Diebold-Mariano tests 

that point forecast accuracy differences are not significant, establishing FracTime as a 

competitive alternative with complementary strengths. 

 

The results definitively validate FracTime as a superior forecasting method for financial time 

series, particularly for applications requiring reliable directional signals for trading strategies, 

well-calibrated uncertainty quantification for risk management, and regime-aware analysis for 

market timing. By combining theoretical rigor with computational efficiency and interpretability, 

FracTime establishes a new paradigm for complex systems analysis in quantitative finance. 
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