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ABSTRACT 
 
Modern cloud-native applications distribute business logic across multiple layers: application code, 

orchestration frameworks, service meshes, and infrastructure configurations. This distribution creates 

”hidden logic”—execution rules embedded in infrastructure that are invisible during design and difficult 

to trace at runtime. We present unique user level behavior addressability and transparency  of Intention 

Space [16] , a computing model built on the CPUX (Common Path of Understanding and Execution) 

paradigm brings, that consolidates all business logic into explicit, design-time declarations using plain-

language state pulses. In our model, Design Nodes (DNs) contain computation while Gatekeepers declare 

execution conditions as named pulses (e.g., ”payment validated”: Y). The infrastructure provides only 

mechanical enforcement through an Intention Loop that matches runtime state to Gatekeepers without 

adding decision logic. We demonstrate that complex workflows—traditionally requiring nested if-then 

branching and explicit loops—can be expressed as linear CPUX sequences where execution paths emerge 

from data state rather than code branching. Our Golang implementation shows complete elimination of 

orchestration code while maintaining full cognitive traceability. Beyond technical innovation, CPUX 

addresses a critical social computing crisis: the lack of accountability in distributed social platforms. By 

creating unique, user behavior level CPUX footprints for every interaction, our model enables verifiable 

traceability from device identity through user intention to executed action—restoring accountability to 

social computing while preserving privacy. We argue this separation of intent (CPUX) from enforcement 

(infrastructure) is essential for building LLM-integrated, auditable, and socially responsible distributed 

systems. 
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1. INTRODUCTION 
 

1.1. The Hidden Logic Problem 
 

Consider a typical e-commerce order processing system deployed on Kubernetes with Istio 

service mesh: 

// order-

service/main.go (Business Logic Layer) func ProcessOrder(order Order) error { if order.Amount 

> 1000 { if err := premiumValidator.Validate(order); err != nil { return retry(premiumValidator.V

alidate, 3, order) } } else { standardValidator.Validate(order) } // … more branching logic } 

# k8s/hpa.yaml (Infrastructure Layer) spec: metrics: -

 type: Resource resource: name: cpu target: type: Utilization averageUtilization: 80 # Hidden rule

: Scale when CPU > 80% 

# istio/retry-policy.yaml (Service Mesh Layer) spec: http: -

 retries: attempts: 3 perTryTimeout: 2s # Hidden rule: Retry 3 times on failure 

https://airccse.org/cscp.html
https://airccse.org/csit/V16N02.html
https://doi.org/10.5121/csit.2026.160201
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Question: What is the complete execution flow for a $1500 order that fails validation on first 

attempt? 

Answer: One must read and correlate: 

1. Application code (branching logic) 

2. Kubernetes manifests (scaling rules) 

3. Istio configurations (retry policies) 

4. Service mesh observability logs (runtime behavior) 

This hidden logic distribution creates fundamental problems: 

• Traceability : No single artifact shows complete flow 

• Testability : Must test infrastructure + code interactions 

• Auditability : Business stakeholders cannot validate logic 

• Maintainability : Changes require coordinating multiple layers 

• LLM Integration : No structured representation for AI reasoning 

• Social Accountability : Cannot trace interactions to source devices/users 

 

1.2. The Core Insight 
 

We observe that traditional computing conflates two distinct concerns: 

What should happen(business intent) 

How to make it happen(mechanical execution) 

Current architectures intertwine these concerns across code, configuration, and infrastructure, 

making systems cognitively opaque. 

Our Contribution: We introducedCPUX (Common Path of Understanding and Execution) 

,[21] a paradigm that separates business intent from infrastructure enforcement by enabling logic 

through sharing and exclusion of  recognized  natural language phrases referred to as Pulses. 

Intention Space builds on  CPUXwhere 

• CPUX Structure : Declares all possible execution paths as sequences of Design Nodes 

(DNs) with plain-language Gatekeeper conditions 

• Infrastructure : Provides mechanical execution (Intention Loop) that enforces CPUX 

declarations without adding decision logic 

• Device-Level Identity : Each CPUX execution tied to unique device fingerprint + user 

intention, enabling social computing accountability 

• Result : Complete business logic is visible in CPUX; infrastructure remains purely 

mechanical; every social interaction is traceable 
 

1.3. Key Contributions 
 

1. Formal Model : CPUX as cognitive execution contract with Design Nodes, Intentions, 

Objects, and Pulses as primitive components 

2. Elimination of Hidden Logic : All business decisions visible in design-time CPUX 

declarations; infrastructure adds zero decision logic 

3. Plain-Language State Declarations : Execution conditions expressed as named pulses 

(e.g., ”inventory confirmed”: Y) enabling business stakeholder review and LLM integration 

4. Data-Driven Execution : Runtime branching eliminated from code; execution paths 

emerge from pulse state matching via SyncTest 

5. Social Computing Accountability : Device-level CPUX fingerprints create unique, 

traceable identity for every social interaction, addressing the accountability crisis in 

platforms like Facebook, Twitter, TikTok 

6. Implementation & Evaluation : Golang framework code sample with concrete use case  

demonstrating zero orchestration code while maintaining full traceability 
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1.4. Paper Organization 
 

Section 2 examines related work. Section 3 presents the PnR computing model and CPUX 

formalism. Section 4 details the architecture and implementation. Section 5 evaluates our 

approach through metrics and case studies through a small React App with CPUX engine in its 

core. Section 6 discusses LLM integration. Section 7 introduces CPUX for social computing 

accountability—the urgent global need. Section 8 concludes with future directions. 

 

2. RELATED WORK 
 

2.1. Workflow Orchestration Systems 
 

AWS Step Functions [1] and Azure Logic Apps [2] provide visual workflow definition with 

explicit state machines. However, they: 

• Use proprietary JSON/XML DSLs (not plain language) 

• Embed conditional logic in workflow definitions (still branching) 

• Remain platform-specific (vendor lock-in) 

• Require reading workflow definitions to understand flow 

• Cannot trace to device/user identity 

Apache Airflow [3] and Temporal [4] define workflows as code with DAG structures. They 

improve on step functions ,recoverability but: 

• Business logic still in code (if-then branches) 

• Workflow orchestration separate from execution 

• No plain-language condition declarations 

• No device-level traceability 

CPUX Advantage : All logic in plain-language pulses, platform-agnostic, no explicit branching 

in declarations, device-level identity for every execution, recoverability built into platform. 
 

2.2. Service Mesh & Orchestration 
 

Istio [5] and Linkerd [6] provide traffic management, retries, circuit breaking. Kubernetes 

Operators [7] encode reconciliation logic. These systems: 

• Hide business rules in YAML configurations 

• Distribute logic across mesh config + operator code 

• Focus on infrastructure concerns (not business flow) 

• Lack unified view of complete execution path 

• No user/device attribution 

CPUX Advantage : Consolidates all execution logic in CPUX; infrastructure config aligned with 

business intent; device identity integral. 
 

2.3. Event-Driven Architectures 
 

Apache Kafka [8], AWS EventBridge [9] enable event-driven systems with loose coupling. 

Reactive systems [10] promote message-passing. However: 

• Event flows implicit (must trace message paths) 

• Conditional logic in event handlers (code-level branching) 

• No design-time declaration of all possible flows 

• No provenance tracking to source device 

CPUX Advantage : Explicit declaration of all event-driven paths as DN sequences with visible 

Gatekeepers; device identity in event provenance. 
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2.4. Intent-Based Systems 
 

Intent-Based Networking [11] translates high-level intents to network configurations. Policy-

based management [12] separates policy from mechanism. Closest to our work, but: 

• Focus on infrastructure (not application logic) 

• Policies often domain-specific (not general computing) 

• Limited plain-language expressiveness 

• No user accountability 

CPUX Advantage : General-purpose computing model with full plain-language pulse 

declarations applicable to any domain; device-level user accountability. Just builds on the 

common human language irrespective of domain. 

 

2.5. Formal Methods & Model Checking 
 

TLA+ [13], Alloy [14], and Petri Nets [15] enable formal specification and verification. These 

are powerful but: 

• Require specialized formal notation (high learning curve) 

• Specification separate from implementation (sync problems) 

• Not designed for runtime execution 

• No social computing traceability 

CPUX Advantage : Declarations are executable; CPUX structure IS the implementation 

contract; device identity embedded. 

 

2.6. Social Computing & Accountability 
 

Blockchain-based identity [16] and zero-knowledge proofs [17] address digital identity but: 

• Focus on cryptographic primitives (not execution tracing) 

• Don’t integrate with application logic 

• No cognitive representation of intent 

Federated social networks [18] (Mastodon, ActivityPub) improve decentralization but: 

• Still lack device-level traceability 

• No structured intent representation 

• Cannot prove user intended specific action 

CPUX Advantage : First system to integrate device identity, user intention, and execution trace 

in single cognitive framework across application life cycle and use. 

 

2.7. Positioning 
 

CPUX is the first system to combine: 

1. Plain-language execution conditions (like Intent-Based Networking) 

2. Executable specifications (unlike formal methods) 

3. Complete flow visibility (unlike distributed orchestration) 

4. Zero hidden infrastructure logic (unique contribution) 

5. Device-level social accountability (unique contribution) 

 

3. THE PNR COMPUTING MODEL [20] 
 

3.1. Core Abstractions 
 

3.1.1.Pulse: Atomic State Unit 
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A Pulse is the fundamental data unit representing a named state with optional response and 

trivalence: 

Pulse = (Name: String, Response: Value, Trivalence: {Y, N, U}) 

• Name : Plain-language identifier (e.g., ”payment validated”) 

• Response : Optional value (e.g., transaction ID) 

• Trivalence : Y (yes/true), N (no/false), U (undecided) 

 

Example: 

{ ”name”: ”payment validated”, ”response”: ”txn_1234567”, ”trivalence”: ”Y” } 

Design Principle: Pulses are declared at design time, instantiated at runtime. All possible system 

states are explicit in pulse declarations. 

 

3.1.2.Signal: Immutable Pulse Collection 
 

A Signal is an immutable collection of Pulses: 

Signal = {Pulse₁, Pulse₂, …, Pulseₙ} 

Immutability Constraint: Outside Design Nodes, Signals cannot be modified—only copied 

with transformations declared via mapping operations. 

 

3.1.3.Intention: Signal Carrier 
 

An Intention carries a Signal between components: 

Intention = (Name: String, Signal: Signal, Timestamp: Time) 

Intentions are like light rays in physical space—they carry information (Signal) but don’t modify 

it in transit. 

 

3.1.4.Design Node (DN): Computation Container 
 

A Design Node is a black-box directional computational unit: 

DN = ( Name: String, Gatekeeper: Signal, // Pre-condition FlowinNames: [String], // Input pulse 

names FlowoutNames: [String], // Output pulse names Process: Signal → Signal // Computation ) 

Key Properties: 

• Black Box : Internal computation hidden; only interface matters 

• Gatekeeper : Declares when DN should execute (plain language) 

• Process : THE ONLY PLACE COMPUTATION HAPPENS 

• Pure : Same input Signal → same output Signal (functional) 

• Directional: forward states in the Object ahead in the CPUX sequence 

 

Example: 

 

DN_ValidatePayment := DesignNode{ Name: ”Validate Payment”, Gatekeeper: Signal{ {”order 

received”, true, ”Y”}, {”payment validated”, false, ”U”}, }, FlowinNames: [”order received”, ”pa

yment method”, ”amount”], FlowoutNames: [”payment validated”, ”transaction id”], Process: fun

c(input Signal) Signal { // Actual validation logic here (black box) return Signal{ {”payment vali

dated”, true, ”Y”}, {”transaction id”, ”txn_123”, ”Y”}, } }, } 

 

3.1.5.Object (O): State Holder & Reflector 
 

An Object persists state and performs declarative Signal mapping: 

O = ( Name: String, State: Signal, // Persisted state Mapping: MappingConfig // Declarative 

transformation ) 

Mapping Operations (declarative, no procedural code): 
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• Union : S₁ ∪ S₂ 

• Intersection : S₁ ∩ S₂ 

• Difference : S₁ \ S₂ 

• Rename : {pulse_name → new_pulse_name} 

Objects are like mirrors to light rays—they reflect Intentions (change direction) and can map 

Signals declaratively. Objects can start a new CPUX if the reflected interface is configured as a 

CPUX starter. 

 

3.2. Execution Unit: I1-DN-I2-O-I3 
 

The fundamental computation unit is: 

I1 → DN → I2 → O → I3 

Flow: 

1. I1 carries input Signal to DN 

2. DN performs computation (only place logic executes) 

3. I2 carries DN’s output to Object (now immutable) 

4. O reflects I2 → I3 via declarative mapping (no computation) 

5. I3 carries transformed Signal to next DN 

Critical Property: Signals are immutable outside DNs. Objects only rearrange/rename Pulses 

declaratively. 

 

3.3. CPUX: Common Path of Understanding and Execution 
 

A CPUX is a ordered sequence of execution units: 

CPUX = [DN₁, O₁, DN₂, O₂, DN₃, O₃, …, DNₙ] 

Expanded: 

I₀ → DN₁ → I₁ → O₁ → I₂ → DN₂ → I₃ → O₂ → I₄ → DN₃ → … 

Key Properties: 

1. Linear Structure : DNs arranged in ordered sequence ( branching only through another 

CPUX) 

2. Explicit Dependencies : Each DN’s Gatekeeper shows what it needs 

3. Cognitive Meaning : Sequence represents business process flow 

4. Visible Paths : All possible execution paths visible as parallel DNs 

5. Unique Identity : Each CPUX execution instance has unique address 

 

Example: 

 
OrderProcessing_CPUX = [ DN_ReceiveOrder, O_OrderState, DN_ValidatePayment_Credit, // 

Parallel path 1 DN_ValidatePayment_PayPal, // Parallel path 2 O_PaymentState, DN_CheckInve

ntory, O_InventoryState, DN_ShipOrder, ] 

At design time , this CPUX shows: 

• Four business steps (Receive, Validate, Check, Ship) 

• Two payment validation options (Credit/PayPal) 

• Dependencies via Gatekeepers (visible in DN declarations) 

At runtime , Intention Loop determines which path executes based on current pulse state—NO 

code-level if-then needed. 

 

3.4. Sync Test: Data-Driven Gatekeeper Matching 
 

SyncTest is the ONLY decision point in the infrastructure: 

SyncTest(Gatekeeper: Signal, Visitor: Signal) → Boolean 

Algorithm: 
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For each pulse P in Gatekeeper: Find matching pulse P’ in Visitor (by name) If not found: return 

False If P.Trivalence ≠ P’.Trivalence: return False Return True 

Key Properties: 

• Data-Driven : Decision based purely on state matching 

• No Logic : No if-then business rules in SyncTest 

• Declarative : Gatekeeper declares conditions; SyncTest just matches 

• Traceable : Match result explainable (which pulses matched/failed) 

Example: 

Gatekeeper = Signal{ {”payment validated”, true, ”Y”}, {”inventory confirmed”, true, ”Y”}, }   

Visitor = Signal{ {”order received”, true, ”Y”}, {”payment validated”, true, ”Y”}, {”inventory c

onfirmed”, true, ”Y”}, }   SyncTest(Gatekeeper, Visitor) → True // All pulses match 

 

3.5. Intention Loop: Mechanical Executor 
 

The Intention Loop is the infrastructure execution engine: 

Algorithm IntentionLoop(CPUX, RuntimeSignal): repeat: anyDNExecuted = False for each DN i

n CPUX.DesignNodes: if SyncTest(DN.Gatekeeper, RuntimeSignal): // Execute DN I1 = Intentio

n(”i1”, RuntimeSignal) I2 = DN.Execute(I1)   // Object reflects O = CPUX.Objects[DN.index] I3

 = O.Reflect(I2, ”i3”)   // Merge into runtime state RuntimeSignal = Merge(RuntimeSignal, I3.Sig

nal)   anyDNExecuted = True   if not anyDNExecuted: break // Self-termination 

Critical Properties: 

1. Mechanical : Only matches state; adds no business decisions 

2. Exhaustive : Tries all DNs every pass 

3. Self-Terminating : Stops when no DN qualifies 

4. Deterministic : Same initial state → same execution path 

5. Traceable : Every DN execution logged with state snapshot 

The ONLY loop in the entire system is this mechanical Intention Loop. No loops in business 

logic. 

 

3.6. Formal Model 
 

3.6.1. Components 

 

Define sets: 

• P : Set of all Pulses (declared at design time) 

• DN : Set of all Design Nodes 

• O : Set of all Objects 

• I : Set of all Intentions 

• CPUX : Set of all execution paths 

 

3.6.2. Execution Semantics 

 

A CPUX execution is a state transition function: 

Execute: (CPUX, Signal_initial) → Signal_final   Where: - Signal_initial: Initial runtime state - 

Signal_final: Final state after CPUX completion - Transition = sequence of DN executions based 

on SyncTest 

 

3.6.3. Theorem: Bounded Complexity 

 

Theorem 1 (Design-Time Complexity Bound): 

The maximum number of execution paths in a CPUX is bounded by DN, the number of Design 

Nodes declared at design time. 
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Proof: 

Each DN represents one possible execution step. The Intention Loop tries all DNs in sequence. A

t most DN steps can execute (assuming each DN executes once). Therefore, execution complexit

y is O(DN), determined entirely at design time. ∎ 

Theorem 2 (No Hidden Branching): 

If a DN D executes, there exists a visible Gatekeeper G in the CPUX declaration such that 

SyncTest(G, RuntimeState) = True. 

Proof: 

By construction, DN.Execute() is only called after SyncTest passes (see Intention Loop algorithm

). Every Gatekeeper is declared in DN definition. Therefore, all execution triggers are visible in C

PUX declarations. ∎ 

Corollary : No execution path exists that is not visible in CPUX structure. 

 

3.7. Design Principle: Cognitive Contract 
 

CPUX is a Cognitive Contract : An explicit, design-time agreement between: 

• Business Stakeholders : Can read plain-language pulses/gatekeepers 

• Developers : Implement DN.Process functions 

• Infrastructure : Mechanically enforces via Intention Loop 

• Auditors : Verify completeness by reviewing CPUX 

• End Users : Their device + intention creates unique CPUX fingerprint 

Contract Properties: 

1. Completeness : All execution paths in CPUX 

2. Visibility : All conditions in Gatekeepers 

3. Traceability : Every execution maps to DN in CPUX 

4. Accountability : Changes tracked via CPUX version control 

5. Device Attribution : Each execution tied to device identity 

Principle : ”If it’s not in the CPUX, it doesn’t execute.” 

 

3.8. Philosophical Foundation: Logic as Data 
 

The fundamental inversion in PnR computing is treating logic as data, not code. In traditional 

computing, logic is embedded in control flow constructs—if-then-else branches, loops, and 

function call hierarchies. In CPUX, logic is externalised as Pulse states and Gatekeeper 

declarations: literal data structures that the Intention Loop reads and matches mechanically. 

This inversion has profound implications for how we conceptualise computation: 

 

Intent-Driven Directional Elements: Traditional functions and code modules become intent-

driven directional elements within the CPUX structure. Design Nodes do not "decide" what to do 

next; they simply transform input Signals to output Signals when their Gatekeeper conditions are 

satisfied. The direction of computation emerges from the Intention that carries Signals forward—

the DN remains passive until activated by state matching. 

 

Forward State Creation: Design Nodes do not modify existing state; they produce new Pulses 

that flow forward via Intentions and Objects. State progression is always additive and directional, 

never mutating-in-place. Each computational step creates forward states that become the 

preconditions for subsequent steps. 

 

Pre-Configured Declarative Logic: The entire execution topology is declared at design time 

within the CPUX structure. Runtime does not invent new paths; it merely activates pre-declared 

paths based on state matching via SyncTest. All possible execution flows are visible before a 

single line of code executes. 
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Immutability as Architectural Constraint: Outside the Design Node’s Process function (the 

black box where actual computation occurs), everything remains immutable. Signals flow, 

Objects reflect, but nothing mutates. Even the Object’s mapping facility performs declarative 

transformation, not procedural mutation. 

 

This formulation—logic as data, functions as directional elements, computation as forward state 

creation through declarative configuration—represents a return to the algebraic roots of 

computing, where transformation is explicit, traceable, and cognitively transparent. 

 

3.9. The Design Node and the Freedom of Logic from code syntax 
 

Syntax-Free Logic Activation 

Traditional logic is inseparable from syntax. The expression if (x && y) { doThis() } binds 

meaning to grammatical structure—parentheses, operators, keywords, nesting. Change the 

syntax, break the logic. This coupling creates cognitive load and limits who can read, validate, or 

reason about system behaviour. 

In PnR computing, logic reduces to perception: the presence or absence of Pulses. There are no 

operators—AND is implicit, as all Gatekeeper Pulses must match. There are no conditional 

keywords, no nested expressions, no precedence rules. The SyncTest mechanism does not parse a 

grammar; it pattern-matches state. Activation depends solely on whether named Pulses exist with 

the required Trivalence. 

 

This syntax-free activation has profound implications: 

• Human readability: Business stakeholders perceive preconditions as plain-language state 

requirements, not code constructs 

• LLM compatibility: Language models reason naturally about "what Pulses exist?" rather 

than parsing control flow trees 

• Language independence: The same Gatekeeper declaration works whether the DN is 

implemented in Go, Rust, Python, or any other language 

This final point enables a powerful architectural capability: Design Nodes written in different 

languages can cooperate through realised state orchestration. A DN implemented in Go can 

produce Pulses that trigger a DN implemented in Rust, which in turn activates a DN written in 

Python. No language bindings, no foreign function interfaces, no serialisation protocols beyond 

the Pulse structure itself. The Intention Loop perceives only state—it is agnostic to the language 

that produced it. 

 
Logic, in this model, is not something you write in code. It is something you declare as required 

state, and the system perceives its realisation. 

 

4. ARCHITECTURE & IMPLEMENTATION 
 

4.1. System Architecture 
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4.2. Golang Implementation 
 

The full implementation of Intention Space as a platform is in progress at Keybyte Systems. Key 

components include: 

• Pulse & Signal : Immutable data structures with deep copy enforcement 

• Intention : Carrier with device/user attribution 

• Design Node : With SyncTest and execution logging 

• Object : Declarative reflection with state persistence 

• CPUX : Execution path with device fingerprinting and audit trail 

 

4.3. Design Node Template 
 

A Design Node functions as a waiting worker that only acts when the right conditions appear. 

Unlike traditional functions that are called directly, a Design Node declares what it needs, what it 

produces, and what it does—then waits for the Intention Loop to activate it. 

One DN, Multiple Intent Pairs 

A Design Node is unique within Intention Space, but it is not limited to a single purpose. A DN 

can receive multiple distinct Intentions and emit corresponding outgoing Intentions—including 

exception cases. However, when a DN participates in a CPUX, the cognitive design pairs one 

specific incoming intent with one specific outgoing intent. This pairing is what makes CPUX 

flows readable and traceable. 

Design Node (unique in Intention Space): 

 

Intent A  -->  DN  -->  Intent A 

Intent B  -->  DN  -->  Intent B 

Intent C  -->  DN  -->  Exception Intent 

 

CPUX (cognitive pairing): 

 

... --> Intent A --> DN --> Intent A --> ... 

 

The Object following a DN in a CPUX sequence is able to start a new CPUX if it reflects an 

Intention that starts  a new CPUX.   

The infrastructure supports treating each execution unit and each CPUX independently, but those 

details remain outside the scope of this paper. 
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The Three Declarations 

Every Design Node template comprises three declarations 

1. GATEKEEPER: "I wake up when I see these Pulses..." 

2. FLOWIN:     "When I wake, give me these values..." 

3. FLOWOUT:    "When I finish, I produce these new Pulses..." 

 

Template Structure in Go 

 

var MyWorker = DesignNode{ 

    

  // WHAT I NEED TO SEE (my trigger conditions) 

Gatekeeper: Signal{ 

{"order received", true, "Y"}, 

{"payment validated", false, "U"},  // Not yet done 

}, 

 

// WHAT I TAKE IN (my inputs) 

FlowinNames: []string{"order received", "amount"}, 

 

// WHAT I PRODUCE (my outputs)   

FlowoutNames: []string{"payment validated", "transaction id"}, 

 

// WHAT I DO (pure transformation, no side effects) 

Process: func(in Signal) Signal { 

// Your logic here - but remember: 

// - Read ONLY from in 

// - Return NEW pulses, dont modify anything 

// - No calling other services, no database writes 

 

return Signal{ 

{"payment validated", true, "Y"}, 

{"transaction id", "txn_12345", "Y"}, 

} 

}, 

} 

 

Three rules maintained by DN 

1. You do not call it — The Intention Loop calls it when Gatekeeper matches 

2. You do not branch inside it — One input shape, one output shape; exception cases are 

separate intent pairings, not hidden branches 

3. You do not mutate — Take Pulses in, produce new Pulses out, touch nothing else 

Benefits of the Template 

When every Design Node follows this template: 

• The system knows all possible paths at design time 

• No hidden logic—Gatekeepers are readable English phrases 

• Exception flows are explicit intent pairings, not buried catch blocks 

• Testing becomes trivial: given these Pulses, expect those Pulses 

• Tracing is automatic: every step logged with its trigger reason 
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4. OVERALL EVALUATION AT DECEMBER 2025 
 

We have used the CPUX methodology  through several languages like JS ,Go and Rust  and have 

been encouraged by development of Grid design lookout as a common user interaction interface 

with Intention Space across  different platforms. We are aiming to bring the platform for general 

use in the early part of 2026. What we have observede.g a transition from traditional ReactJS 

App to CPUX based App may introduce an increase of code base of around 20% while 

simplifying the components and boosting performance through avoiding re-rendering of 

components.  The general observation is while CPUX driven approach will bring benefit of  

medium to large React App , for simple App with less than 3 components it may be a over 

engineering.  Also CPUX based App offer easier maintenance and debug pathways ,with design 

being explicit outside the code.  Following is a link to a GitHub repository that has a small react 

App that compares the two approaches.  

https://github.com/spicecoder/iptp_paper 

 

5. LLM INTEGRATION 
 

In the CPUX methodology Intentions and Pulses become the common tokens of 

computation.Natural language is progression-oriented by nature. It is built to flow — from a 

subject to an action to a consequence. This inherent linearity makes it powerful for generating 

what comes next, but ill-suited for verifying what must be true. Large Language Models (LLMs), 

trained on this linguistic structure, inherit the same trait: they excel at imagining plausible 

continuations, but not at enforcing structural truth. They can extend ideas, simulate scenarios, and 

suggest next steps — but they cannot guarantee logical soundness, field completeness, or formal 

consistency. This is not a weakness of AI. It is a reflection of the generative spirit of language 

itself. Intention Space accepts this reality. It positions LLMs not as engines of correctness, but as 

assistants in semantic exploration. LLMs can propose new Intention Phrases, explore Pulse 

transitions, or expand CPUX chains. But the CPUX driven Intention Space  enforces correctness 

through field-matching, gatekeeper validation, and runtime CPUX identity. In short: LLMs 

provide semantic momentum; Intention Space provides the computational truth. 

 This separation of roles is what makes the architecture both open to creativity and resilient to 

drift, thus 

• LLMs generate Gatekeepers from business rules 

• Design Nodes can wrap LLM calls 

• Hybrid workflows mix traditional code + LLM 

• Future: LLM-generated complete CPUX from natural language 

 

6. CPUX FOR SOCIAL COMPUTING ACCOUNTABILITY 
 
6.1. The Crisis we face: 
 

online harassment is on the rise, 

majority of misinformation from <0.1% of accounts 

enormous economic harm from social media abuse 

Root Problem : No way to verify who did what, from where, with what intent 

 

6.2. Solution: Behavior as First-Class Address in Intention Space 
 

Intention Space makes every state transition caused in every user uniquely identifiable, traceable, 

and accountable. This is explicitly positioned as addressing the "hidden logic problem" that 

plagues conventional distributed systems. Intention Space is a quiet acceptance of the reality we 
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already live with in computing and design: that every action — whether performed by a human or 

a machine — arises within a broader landscape of intent, environment, and consequence. Modern 

software often operates on disconnected chunks: APIs, events, tasks, or sessions. But what is 

missing is not data — it is continuity. It is the recognition that computation does not occur in 

isolation, but within unfolding sequences of design and purpose. Intention Space give us a handle 

on this scene —It provides a structure in which behavior can be traced, coordinated, and verified 

through intention-bearing units of execution called CPUX Intention Space offer coherence in this 

interaction. 

 

Intention Space, behavior is elevated to a first-class address within the computational framework. 

This means that every meaningful act—such as registration, login, sending a message, or issuing 

a command—is not only executed but anchored through a Common Path of Understanding and 

Execution (CPUX). Unlike traditional systems that rely on device-specific identifiers (e.g., MAC 

addresses, biometrics, or IP-based tokens), Intention Space ensures security and accountability 

through behavioral consistency. A CPUX encodes not just what was done, but also why, by 

whom, and in what context—verified by the alignment of gatekeeper PnRs and runtime trails. 

Spoofing a device or identity is insufficient; if a CPUX cannot be traced back to a legitimate and 

contextually aligned anchor (such as a prior device registration or login CPUX), it is 

automatically invalidated. Thus, Intention Space enforces trust by checking whether a new action 

is a natural continuation of prior intent—not by the external identity alone, but by its position in 

the evolving behavioral trace 

Through Intention Space ,every social interaction gets unique, traceable CPUX: 

{ ”cpux_id”: ”SOCIAL_POST_001”, ”device_id_hash”: ”SHA256(MAC…)”, ”user_id”: ”user_

12345”, ”intention_chain”: [”compose_post”, ”send_post”], ”pnr_state”: { ”user clicked post”: ”

Y”, ”moderation passed”: ”Y” }, ”timestamp”: ”2024-12-

05T10:30:00Z”, ”cryptographic_signature”: ”…” } 

Benefits: 

• Irrefutable identity : Device + User + Intention 

• Intent proof : User explicitly clicked ”Post” 

• Platform accountability : Moderation decisions visible 

• Court-admissible : Forensic evidence 

• Bot detection : Patterns visible in CPUX 

Surveillance capitalism [19] extracts behavioral surplus opaquely for prediction/markets. 

Intention Space  with behavior elevated to a first-class address. makes interaction traces 

transparent and purpose-bound: 

 Not "what can we predict?" but "what actually happened?" and opens up new frontiers in the 

ownership of social interaction and behavior footprints. 

 

6.3. Privacy vs. Accountability 
 

Intention Space brings in Tiered  Disclosure: 

• Public : Hashed IDs, intention sequences 

• Platform : Real device/user IDs (for moderation) 

• Legal : Full details (court subpoena only) 

 

6.4. Implementation Roadmap 
 

We are building the platform with the overall goal  

• 2024-2026 : Standards development  

• 2026-2027 : Pilot deployments on mid-size platforms 

• 2027-2028 : Regulatory mandates  

• 2028-2030 : Major platform adoption,  Global standard, bot networks eliminated 
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7. DISCUSSION & FUTURE WORK 
 

Current Limitations we are addressing: 

• SyncTest overhead (mitigated by platform support for real time hash generation for 

Gatekeeper ) 

• Learning curve (mitigated by visual editors) 

• Storage costs (mitigated by time-limited retention) 
 

Immediate Future Work: 

• Visual CPUX editors with device preview 

• Formal verification with device based coherence through out App use. 

• LLM-native CPUX generation 

• Cross-platform device tracking standards 

• Privacy-enhancing technologies (zero-knowledge proofs) 

 

8. CONCLUSION 
 

CPUX eliminates hidden infrastructure logic through: 

1. Design-time declarations in plain language 

2. Mechanical enforcement by infrastructure 

3. Device-level accountability for social computing 

Technical Impact : Zero orchestration code, full traceability, LLM integration 

Societal Impact : Restores accountability to social computing while preserving privacy 

The choice : Implement CPUX standards now, or wait for the next crisis? 

The technology exists. The need is urgent. The time to act is now. 
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• Appendix A: Runnable Golang code to run CPUX   

// CPUX Design Node Demo - Simple Version 

// Copy this to https://go.dev/play/to run 

// 

// This demonstrates the core PnR concept: 

// - Pulses as named states with trivalence (Y/N/U) 

// - Signals as collections of Pulses 

// - SyncTest matching Gatekeeper against runtime state 

// - Design Nodes triggered only when conditions match 

 

package main 

 

import "fmt" 

 

// ============== CORE TYPES ============== 

 

// Trivalence represents Y (yes/true), N (no/false), U (undecided) 

type Trivalence string 

 

const ( 

Y Trivalence = "Y" 

N Trivalence = "N" 

U Trivalence = "U" 

) 

 

// Pulse is the atomic state unit 

type Pulse struct { 

Name       string 

Response   interface{} 

Trivalence Trivalence 

} 

 

// Signal is an immutable collection of Pulses 

type Signal []Pulse 

 

// DesignNode is a waiting worker with Gatekeeper conditions 

type DesignNode struct { 

Name        string 

Gatekeeper  Signal 

FlowinNames []string 

FlowoutNames []string 

Process     func(Signal) Signal 

} 

 

// ============== SYNCTEST: THE ONLY DECISION POINT ============== 

 

// SyncTest checks if all Gatekeeper pulses match the Visitor signal 

func SyncTest(gatekeeper Signal, visitor Signal) bool { 

for _, gkPulse := range gatekeeper { 

found := false 

for _, vPulse := range visitor { 

if gkPulse.Name == vPulse.Name { 

found = true 

if gkPulse.Trivalence != vPulse.Trivalence { 

https://go.dev/play/
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return false // Trivalence mismatch 

} 

break 

} 

} 

if !found { 

return false // Required pulse not present 

} 

} 

return true 

} 

 

// ============== HELPER FUNCTIONS ============== 

 

// FindPulse retrieves a pulse by name from a signal 

func FindPulse(sig Signal, name string) (Pulse, bool) { 

for _, p := range sig { 

if p.Name == name { 

return p, true 

} 

} 

return Pulse{}, false 

} 

 

// MergeSignals combines two signals (flowout overwrites existing) 

func MergeSignals(base Signal, addition Signal) Signal { 

result := make(Signal, len(base)) 

copy(result, base) 

 

for _, newPulse := range addition { 

found := false 

for i, existing := range result { 

if existing.Name == newPulse.Name { 

result[i] = newPulse 

found = true 

break 

} 

} 

if !found { 

result = append(result, newPulse) 

} 

} 

return result 

} 

 

// PrintSignal displays current state 

func PrintSignal(label string, sig Signal) { 

fmt.Printf("\n%s:\n", label) 

for _, p := range sig { 

fmt.Printf("  %-25s = %v [%s]\n", p.Name, p.Response, p.Trivalence) 

} 

} 

 

// ============== DESIGN NODES ============== 

 

var DN_ValidatePayment = DesignNode{ 

Name: "Validate Payment", 
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Gatekeeper: Signal{ 

{"order received", true, Y}, 

{"payment validated", false, U}, // Must be undecided 

}, 

FlowinNames:  []string{"order received", "amount"}, 

FlowoutNames: []string{"payment validated", "transaction id"}, 

Process: func(in Signal) Signal { 

// Simulate payment validation 

return Signal{ 

{"payment validated", true, Y}, 

{"transaction id", "txn_98765", Y}, 

} 

}, 

} 

 

var DN_CheckInventory = DesignNode{ 

Name: "Check Inventory", 

Gatekeeper: Signal{ 

{"payment validated", true, Y}, // Payment must be done 

{"inventory checked", false, U}, // Inventory not yet checked 

}, 

FlowinNames:  []string{"order received"}, 

FlowoutNames: []string{"inventory checked", "stock available"}, 

Process: func(in Signal) Signal { 

return Signal{ 

{"inventory checked", true, Y}, 

{"stock available", true, Y}, 

} 

}, 

} 

 

var DN_ShipOrder = DesignNode{ 

Name: "Ship Order", 

Gatekeeper: Signal{ 

{"payment validated", true, Y}, 

{"inventory checked", true, Y}, 

{"stock available", true, Y}, 

{"order shipped", false, U}, 

}, 

FlowinNames:  []string{"order received", "transaction id"}, 

FlowoutNames: []string{"order shipped", "tracking number"}, 

Process: func(in Signal) Signal { 

return Signal{ 

{"order shipped", true, Y}, 

{"tracking number", "TRK-12345", Y}, 

} 

}, 

} 

 

// ============== INTENTION LOOP ============== 

 

func IntentionLoop(nodes []DesignNode, runtime Signal) Signal { 

pass := 0 

for { 

pass++ 

fmt.Printf("\n========== INTENTION LOOP PASS %d ==========\n", pass) 

 



18                                        Computer Science & Information Technology (CS & IT) 

anyExecuted := false 

 

for _, dn := range nodes { 

matches := SyncTest(dn.Gatekeeper, runtime) 

 

if matches { 

fmt.Printf("\n✓ [%s] TRIGGERED - Gatekeeper matched\n", dn.Name) 

 

// Execute the Design Node 

flowout := dn.Process(runtime) 

 

// Merge results into runtime state 

runtime = MergeSignals(runtime, flowout) 

 

PrintSignal("  Flowout", flowout) 

anyExecuted = true 

} else { 

fmt.Printf("\n✗ [%s] WAITING - Gatekeeper not matched\n", dn.Name) 

} 

} 

 

PrintSignal("Runtime State after pass", runtime) 

 

if !anyExecuted { 

fmt.Printf("\n========== LOOP TERMINATED (no DN triggered) ==========\n") 

break 

} 

 

// Safety limit for demo 

if pass > 10 { 

fmt.Println("\n[Safety limit reached]") 

break 

} 

} 

 

return runtime 

} 

 

// ============== DEMO SCENARIOS ============== 

 

func main() { 

fmt.Println("╔═════════════════════════════════════════════

═══════════════╗") 

fmt.Println("║     CPUX DESIGN NODE DEMO - PULSE PRESENCE/ABSENCE         ║") 

fmt.Println("╚═════════════════════════════════════════════

═══════════════╝") 

 

nodes := []DesignNode{DN_ValidatePayment, DN_CheckInventory, DN_ShipOrder} 

 

// ============== SCENARIO 1: Complete Flow ============== 

fmt.Println("\n\n>>> SCENARIO 1: Order received - full flow should execute") 

fmt.Println("──────────────────────────────────────────────

───────────────") 

 

runtime1 := Signal{ 

{"order received", true, Y}, 

{"payment validated", false, U}, 
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{"inventory checked", false, U}, 

{"order shipped", false, U}, 

} 

 

PrintSignal("Initial State", runtime1) 

final1 := IntentionLoop(nodes, runtime1) 

PrintSignal("FINAL STATE", final1) 

 

// ============== SCENARIO 2: Missing Order ============== 

fmt.Println("\n\n>>> SCENARIO 2: No order received - nothing should trigger") 

fmt.Println("──────────────────────────────────────────────

───────────────") 

 

runtime2 := Signal{ 

// "order received" is MISSING 

{"payment validated", false, U}, 

{"inventory checked", false, U}, 

{"order shipped", false, U}, 

} 

 

PrintSignal("Initial State", runtime2) 

final2 := IntentionLoop(nodes, runtime2) 

PrintSignal("FINAL STATE", final2) 

 

// ============== SCENARIO 3: Payment Already Done ============== 

fmt.Println("\n\n>>> SCENARIO 3: Payment already validated - skip to inventory") 

fmt.Println("──────────────────────────────────────────────

───────────────") 

 

runtime3 := Signal{ 

{"order received", true, Y}, 

{"payment validated", true, Y},      // Already done! 

{"transaction id", "txn_pre", Y}, 

{"inventory checked", false, U}, 

{"order shipped", false, U}, 

} 

 

PrintSignal("Initial State", runtime3) 

final3 := IntentionLoop(nodes, runtime3) 

PrintSignal("FINAL STATE", final3) 

 

// ============== SCENARIO 4: Wrong Trivalence ============== 

fmt.Println("\n\n>>> SCENARIO 4: Payment validated = N (failed) - flow blocked") 

fmt.Println("──────────────────────────────────────────────

───────────────") 

 

runtime4 := Signal{ 

{"order received", true, Y}, 

{"payment validated", false, N},     // Failed, not Undecided! 

{"inventory checked", false, U}, 

{"order shipped", false, U}, 

} 

 

PrintSignal("Initial State", runtime4) 

final4 := IntentionLoop(nodes, runtime4) 

PrintSignal("FINAL STATE", final4) 
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fmt.Println("\n\n════════════════════════════════════════════

════════════════") 

fmt.Println("KEY OBSERVATIONS:") 

fmt.Println("  • Design Nodes only trigger when ALL Gatekeeper pulses match") 

fmt.Println("  • Missing pulse = no match") 

fmt.Println("  • Wrong trivalence (Y/N/U) = no match") 

fmt.Println("  • Execution order emerges from data state, not code sequence") 

fmt.Println("  • No if-then branching in the flow logic") 

fmt.Println("══════════════════════════════════════════════

══════════════") 

} 
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