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ABSTRACT

Modern cloud-native applications distribute business logic across multiple layers: application code,
orchestration frameworks, service meshes, and infrastructure configurations. This distribution creates
“hidden logic "—execution rules embedded in infrastructure that are invisible during design and difficult
to trace at runtime. We present unique user level behavior addressability and transparency of Intention
Space [16] , a computing model built on the CPUX (Common Path of Understanding and Execution)
paradigm brings, that consolidates all business logic into explicit, design-time declarations using plain-
language state pulses. In our model, Design Nodes (DNs) contain computation while Gatekeepers declare
execution conditions as named pulses (e.g., "payment validated”: Y). The infrastructure provides only
mechanical enforcement through an Intention Loop that matches runtime state to Gatekeepers without
adding decision logic. We demonstrate that complex workflows—traditionally requiring nested if-then
branching and explicit loops—can be expressed as linear CPUX sequences where execution paths emerge
from data state rather than code branching. Our Golang implementation shows complete elimination of
orchestration code while maintaining full cognitive traceability. Beyond technical innovation, CPUX
addresses a critical social computing crisis: the lack of accountability in distributed social platforms. By
creating unique, user behavior level CPUX footprints for every interaction, our model enables verifiable
traceability from device identity through user intention to executed action—restoring accountability to
social computing while preserving privacy. We argue this separation of intent (CPUX) from enforcement
(infrastructure) is essential for building LLM-integrated, auditable, and socially responsible distributed
systems.
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1. INTRODUCTION

1.1. The Hidden Logic Problem

Consider a typical e-commerce order processing system deployed on Kubernetes with Istio
service mesh:

// order-

service/main.go (Business Logic Layer) func ProcessOrder(order Order) error { if order. Amount
> 1000 { if err := premiumValidator.Validate(order); err !=nil { return retry(premiumValidator.V
alidate, 3, order) } } else { standardValidator.Validate(order) } // ... more branching logic }

# k8s/hpa.yaml (Infrastructure Layer) spec: metrics: -

type: Resource resource: name: cpu target: type: Utilization averageUtilization: 80 # Hidden rule
: Scale when CPU > 80%

# istio/retry-policy.yaml (Service Mesh Layer) spec: http: -

retries: attempts: 3 perTryTimeout: 2s # Hidden rule: Retry 3 times on failure
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Question: What is the complete execution flow for a $1500 order that fails validation on first
attempt?
Answer: One must read and correlate:

1.
2.
3.
4.

Application code (branching logic)

Kubernetes manifests (scaling rules)

Istio configurations (retry policies)

Service mesh observability logs (runtime behavior)

This hidden logic distribution creates fundamental problems:

Traceability : No single artifact shows complete flow

Testability : Must test infrastructure + code interactions

Auditability : Business stakeholders cannot validate logic
Maintainability : Changes require coordinating multiple layers

LLM Integration : No structured representation for Al reasoning

Social Accountability : Cannot trace interactions to source devices/users

1.2. The Core Insight

We observe that traditional computing conflates two distinct concerns:

What should happen(business intent)

How to make it happen(mechanical execution)

Current architectures intertwine these concerns across code, configuration, and infrastructure,
making systems cognitively opaque.

Our Contribution: We introducedCPUX (Common Path of Understanding and Execution)
,[21] a paradigm that separates business intent from infrastructure enforcement by enabling logic
through sharing and exclusion of recognized natural language phrases referred to as Pulses.
Intention Space builds on CPUXwhere

CPUX Structure : Declares all possible execution paths as sequences of Design Nodes
(DNs) with plain-language Gatekeeper conditions

Infrastructure : Provides mechanical execution (Intention Loop) that enforces CPUX
declarations without adding decision logic

Device-Level Identity : Each CPUX execution tied to unique device fingerprint + user
intention, enabling social computing accountability

Result : Complete business logic is visible in CPUX; infrastructure remains purely
mechanical; every social interaction is traceable

1.3. Key Contributions

1.

2.

Formal Model : CPUX as cognitive execution contract with Design Nodes, Intentions,
Objects, and Pulses as primitive components

Elimination of Hidden Logic : All business decisions visible in design-time CPUX
declarations; infrastructure adds zero decision logic

Plain-Language State Declarations : Execution conditions expressed as named pulses
(e.g., "inventory confirmed”: Y) enabling business stakeholder review and LLM integration
Data-Driven Execution : Runtime branching eliminated from code; execution paths
emerge from pulse state matching via SyncTest

Social Computing Accountability : Device-level CPUX fingerprints create unique,
traceable identity for every social interaction, addressing the accountability crisis in
platforms like Facebook, Twitter, TikTok

Implementation & Evaluation : Golang framework code sample with concrete use case
demonstrating zero orchestration code while maintaining full traceability
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1.4. Paper Organization

Section 2 examines related work. Section 3 presents the PnR computing model and CPUX
formalism. Section 4 details the architecture and implementation. Section 5 evaluates our
approach through metrics and case studies through a small React App with CPUX engine in its
core. Section 6 discusses LLM integration. Section 7 introduces CPUX for social computing
accountability—the urgent global need. Section 8 concludes with future directions.

2. RELATED WORK

2.1. Workflow Orchestration Systems

AWS Step Functions [1] and Azure Logic Apps [2] provide visual workflow definition with
explicit state machines. However, they:

. Use proprietary JSON/XML DSLs (not plain language)

. Embed conditional logic in workflow definitions (still branching)

. Remain platform-specific (vendor lock-in)

. Require reading workflow definitions to understand flow

. Cannot trace to device/user identity

Apache Airflow [3] and Temporal [4] define workflows as code with DAG structures. They
improve on step functions ,recoverability but:

. Business logic still in code (if-then branches)

. Workflow orchestration separate from execution

. No plain-language condition declarations

. No device-level traceability

CPUX Advantage : All logic in plain-language pulses, platform-agnostic, no explicit branching
in declarations, device-level identity for every execution, recoverability built into platform.

2.2. Service Mesh & Orchestration

Istio [5] and Linkerd [6] provide traffic management, retries, circuit breaking. Kubernetes
Operators [7] encode reconciliation logic. These systems:

. Hide business rules in YAML configurations

. Distribute logic across mesh config + operator code

. Focus on infrastructure concerns (not business flow)

. Lack unified view of complete execution path

. No user/device attribution

CPUX Advantage : Consolidates all execution logic in CPUX; infrastructure config aligned with
business intent; device identity integral.

2.3. Event-Driven Architectures

Apache Kafka [8], AWS EventBridge [9] enable event-driven systems with loose coupling.
Reactive systems [ 10] promote message-passing. However:

. Event flows implicit (must trace message paths)

. Conditional logic in event handlers (code-level branching)

. No design-time declaration of all possible flows

. No provenance tracking to source device

CPUX Advantage : Explicit declaration of all event-driven paths as DN sequences with visible
Gatekeepers; device identity in event provenance.
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2.4. Intent-Based Systems

Intent-Based Networking [11] translates high-level intents to network configurations. Policy-
based management [12] separates policy from mechanism. Closest to our work, but:

. Focus on infrastructure (not application logic)

. Policies often domain-specific (not general computing)

. Limited plain-language expressiveness

. No user accountability

CPUX Advantage : General-purpose computing model with full plain-language pulse
declarations applicable to any domain; device-level user accountability. Just builds on the
common human language irrespective of domain.

2.5. Formal Methods & Model Checking

TLA+ [13], Alloy [14], and Petri Nets [15] enable formal specification and verification. These
are powerful but:

. Require specialized formal notation (high learning curve)

. Specification separate from implementation (sync problems)

. Not designed for runtime execution

. No social computing traceability

CPUX Advantage : Declarations are executable; CPUX structure IS the implementation
contract; device identity embedded.

2.6. Social Computing & Accountability

Blockchain-based identity [16] and zero-knowledge proofs [17] address digital identity but:

. Focus on cryptographic primitives (not execution tracing)

. Don’t integrate with application logic

. No cognitive representation of intent

Federated social networks [18] (Mastodon, ActivityPub) improve decentralization but:

. Still lack device-level traceability

. No structured intent representation

. Cannot prove user intended specific action

CPUX Advantage : First system to integrate device identity, user intention, and execution trace
in single cognitive framework across application life cycle and use.

2.7. Positioning

CPUX is the first system to combine:

Plain-language execution conditions (like Intent-Based Networking)
Executable specifications (unlike formal methods)

Complete flow visibility (unlike distributed orchestration)

Zero hidden infrastructure logic (unique contribution)

Device-level social accountability (unique contribution)

Nk W=

3. THE PNR COMPUTING MODEL [20]
3.1. Core Abstractions

3.1.1.Pulse: Atomic State Unit
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A Pulse is the fundamental data unit representing a named state with optional response and
trivalence:

Pulse = (Name: String, Response: Value, Trivalence: {Y, N, U})

. Name : Plain-language identifier (e.g., ”payment validated”)

. Response : Optional value (e.g., transaction ID)

. Trivalence : Y (yes/true), N (no/false), U (undecided)

Example:
“name”; “payment validated”, “response”: ’txn_ 1234567, "trivalence”: ’Y” }
Design Principle: Pulses are declared at design time, instantiated at runtime. All possible system

states are explicit in pulse declarations.
3.1.2.Signal: Immutable Pulse Collection

A Signal is an immutable collection of Pulses:

Signal = {Pulsei, Pulsez, ..., Pulse,}

Immutability Constraint: Outside Design Nodes, Signals cannot be modified—only copied
with transformations declared via mapping operations.

3.1.3.Intention: Signal Carrier

An Intention carries a Signal between components:

Intention = (Name: String, Signal: Signal, Timestamp: Time)

Intentions are like light rays in physical space—they carry information (Signal) but don’t modify
it in transit.

3.1.4.Design Node (DN): Computation Container

A Design Node is a black-box directional computational unit:

DN = ( Name: String, Gatekeeper: Signal, / Pre-condition FlowinNames: [String], // Input pulse
names FlowoutNames: [String], // Output pulse names Process: Signal — Signal // Computation )
Key Properties:

. Black Box : Internal computation hidden; only interface matters

. Gatekeeper : Declares when DN should execute (plain language)

. Process : THE ONLY PLACE COMPUTATION HAPPENS

. Pure : Same input Signal — same output Signal (functional)

. Directional: forward states in the Object ahead in the CPUX sequence

Example:

DN_ValidatePayment := DesignNode{ Name: ”Validate Payment”, Gatekeeper: Signal{ {”order
received”, true, Y}, {”payment validated”, false, ”U”}, }, FlowinNames: [”order received”, ’pa
yment method”, ”amount”], FlowoutNames: [’payment validated”, transaction id”], Process: fun
c(input Signal) Signal { // Actual validation logic here (black box) return Signal{ {”payment vali
dated”, true, Y™}, {“transaction id”, ”txn_123”,7Y”’}, } }, }

3.1.5.0bject (O): State Holder & Reflector

An Object persists state and performs declarative Signal mapping:

O = ( Name: String, State: Signal, // Persisted state Mapping: MappingConfig // Declarative
transformation )

Mapping Operations (declarative, no procedural code):
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. Union: S1 U S:

. Intersection : S: N Sz

+  Difference : Si\ Sz

. Rename : {pulse name — new_pulse _name}

Objects are like mirrors to light rays—they reflect Intentions (change direction) and can map
Signals declaratively. Objects can start a new CPUX if the reflected interface is configured as a
CPUX starter.

3.2. Execution Unit: I11-DN-12-O-I3

The fundamental computation unit is:

II-DN—-12-0-13

Flow:

I1 carries input Signal to DN

DN performs computation (only place logic executes)

12 carries DN’s output to Object (now immutable)

O reflects 12 — 13 via declarative mapping (no computation)

5. 13 carries transformed Signal to next DN

Critical Property: Signals are immutable outside DNs. Objects only rearrange/rename Pulses
declaratively.

=

3.3. CPUX: Common Path of Understanding and Execution

A CPUX is a ordered sequence of execution units:
CPUX = [DNI, 01, DN2, 02, DN3, 03, ceey DNn]

Expanded:

Io-DNi—-»11—-01—-L—>DN.—>5—-0:—>14—>DNs — ...

Key Properties:

1. Linear Structure : DNs arranged in ordered sequence ( branching only through another
CPUX)

2. Explicit Dependencies : Each DN’s Gatekeeper shows what it needs

3. Cognitive Meaning : Sequence represents business process flow

4.  Visible Paths : All possible execution paths visible as parallel DNs

5. Unique Identity : Each CPUX execution instance has unique address

Example:

OrderProcessing CPUX =[ DN_ReceiveOrder, O OrderState, DN_ValidatePayment Credit, //
Parallel path 1 DN_ValidatePayment_PayPal, // Parallel path 2 O_PaymentState, DN_CheckInve
ntory, O_InventoryState, DN_ShipOrder, ]

At design time , this CPUX shows:

. Four business steps (Receive, Validate, Check, Ship)

. Two payment validation options (Credit/PayPal)

. Dependencies via Gatekeepers (visible in DN declarations)

At runtime , Intention Loop determines which path executes based on current pulse state—NO
code-level if-then needed.

3.4. Sync Test: Data-Driven Gatekeeper Matching
SyncTest is the ONLY decision point in the infrastructure:

SyncTest(Gatekeeper: Signal, Visitor: Signal) — Boolean
Algorithm:
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For each pulse P in Gatekeeper: Find matching pulse P’ in Visitor (by name) If not found: return
False If P.Trivalence # P’.Trivalence: return False Return True

Key Properties:

. Data-Driven : Decision based purely on state matching

. No Logic : No if-then business rules in SyncTest

. Declarative : Gatekeeper declares conditions; SyncTest just matches

. Traceable : Match result explainable (which pulses matched/failed)

Example:

Gatekeeper = Signal{ {”payment validated”, true, ”Y”’}, {”inventory confirmed”, true, ”Y”’}, }
Visitor = Signal{ {”order received”, true, ”Y”’}, {”payment validated”, true, ’Y”’}, {”’inventory ¢
onfirmed”, true, ”Y”}, } SyncTest(Gatekeeper, Visitor) — True // All pulses match

3.5. Intention Loop: Mechanical Executor

The Intention Loop is the infrastructure execution engine:

Algorithm IntentionLoop(CPUX, RuntimeSignal): repeat: anyDNExecuted = False for each DN i
n CPUX.DesignNodes: if SyncTest(DN.Gatekeeper, RuntimeSignal): / Execute DN I1 = Intentio
n(’i1”, RuntimeSignal) 12 = DN.Execute(I1) // Object reflects O = CPUX.Objects|[DN.index] I3
= O.Reflect(12, ”13””) // Merge into runtime state RuntimeSignal = Merge(RuntimeSignal, 13.Sig
nal) anyDNExecuted = True if not anyDNExecuted: break // Self-termination

Critical Properties:

1.  Mechanical : Only matches state; adds no business decisions

2. Exhaustive : Tries all DNs every pass

3. Self-Terminating : Stops when no DN qualifies

4. Deterministic : Same initial state — same execution path

5. Traceable : Every DN execution logged with state snapshot

The ONLY loop in the entire system is this mechanical Intention Loop. No loops in business
logic.

3.6. Formal Model
3.6.1. Components

Define sets:

. P : Set of all Pulses (declared at design time)
. DN : Set of all Design Nodes

. O : Set of all Objects

. I : Set of all Intentions

. CPUX : Set of all execution paths

3.6.2. Execution Semantics

A CPUX execution is a state transition function:

Execute: (CPUX, Signal initial) — Signal final Where: - Signal initial: Initial runtime state -
Signal_final: Final state after CPUX completion - Transition = sequence of DN executions based
on SyncTest

3.6.3. Theorem: Bounded Complexity
Theorem 1 (Design-Time Complexity Bound):

The maximum number of execution paths in a CPUX is bounded by DN, the number of Design
Nodes declared at design time.
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Proof:

Each DN represents one possible execution step. The Intention Loop tries all DNs in sequence. A
t most DN steps can execute (assuming each DN executes once). Therefore, execution complexit

y is O(DN), determined entirely at design time. m

Theorem 2 (No Hidden Branching):

If a DN D executes, there exists a visible Gatekeeper G in the CPUX declaration such that
SyncTest(G, RuntimeState) = True.

Proof:

By construction, DN.Execute() is only called after SyncTest passes (see Intention Loop algorithm
). Every Gatekeeper is declared in DN definition. Therefore, all execution triggers are visible in C
PUX declarations. m

Corollary : No execution path exists that is not visible in CPUX structure.

3.7. Design Principle: Cognitive Contract

CPUX is a Cognitive Contract : An explicit, design-time agreement between:
. Business Stakeholders : Can read plain-language pulses/gatekeepers
. Developers : Implement DN.Process functions

. Infrastructure : Mechanically enforces via Intention Loop

. Auditors : Verify completeness by reviewing CPUX

. End Users : Their device + intention creates unique CPUX fingerprint
Contract Properties:

1.  Completeness : All execution paths in CPUX

2. Visibility : All conditions in Gatekeepers

3 Traceability : Every execution maps to DN in CPUX

4.  Accountability : Changes tracked via CPUX version control

5. Device Attribution : Each execution tied to device identity

Principle : "Ifit’s not in the CPUX, it doesn’t execute.”

3.8. Philosophical Foundation: Logic as Data

The fundamental inversion in PnR computing is treating logic as data, not code. In traditional
computing, logic is embedded in control flow constructs—if-then-else branches, loops, and
function call hierarchies. In CPUX, logic is externalised as Pulse states and Gatekeeper
declarations: literal data structures that the Intention Loop reads and matches mechanically.

This inversion has profound implications for how we conceptualise computation:

Intent-Driven Directional Elements: Traditional functions and code modules become intent-
driven directional elements within the CPUX structure. Design Nodes do not "decide" what to do
next; they simply transform input Signals to output Signals when their Gatekeeper conditions are
satisfied. The direction of computation emerges from the Intention that carries Signals forward—
the DN remains passive until activated by state matching.

Forward State Creation: Design Nodes do not modify existing state; they produce new Pulses
that flow forward via Intentions and Objects. State progression is always additive and directional,
never mutating-in-place. Each computational step creates forward states that become the
preconditions for subsequent steps.

Pre-Configured Declarative Logic: The entire execution topology is declared at design time
within the CPUX structure. Runtime does not invent new paths; it merely activates pre-declared
paths based on state matching via SyncTest. All possible execution flows are visible before a
single line of code executes.
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Immutability as Architectural Constraint: Outside the Design Node’s Process function (the
black box where actual computation occurs), everything remains immutable. Signals flow,
Objects reflect, but nothing mutates. Even the Object’s mapping facility performs declarative
transformation, not procedural mutation.

This formulation—logic as data, functions as directional elements, computation as forward state
creation through declarative configuration—represents a return to the algebraic roots of
computing, where transformation is explicit, traceable, and cognitively transparent.

3.9. The Design Node and the Freedom of Logic from code syntax

Syntax-Free Logic Activation

Traditional logic is inseparable from syntax. The expression if (x && y) { doThis() } binds
meaning to grammatical structure—parentheses, operators, keywords, nesting. Change the
syntax, break the logic. This coupling creates cognitive load and limits who can read, validate, or
reason about system behaviour.

In PnR computing, logic reduces to perception: the presence or absence of Pulses. There are no
operators—AND is implicit, as all Gatekeeper Pulses must match. There are no conditional
keywords, no nested expressions, no precedence rules. The SyncTest mechanism does not parse a
grammar; it pattern-matches state. Activation depends solely on whether named Pulses exist with
the required Trivalence.

This syntax-free activation has profound implications:

. Human readability: Business stakeholders perceive preconditions as plain-language state
requirements, not code constructs

. LLM compatibility: Language models reason naturally about "what Pulses exist?" rather
than parsing control flow trees

. Language independence: The same Gatekeeper declaration works whether the DN is
implemented in Go, Rust, Python, or any other language

This final point enables a powerful architectural capability: Design Nodes written in different

languages can cooperate through realised state orchestration. A DN implemented in Go can

produce Pulses that trigger a DN implemented in Rust, which in turn activates a DN written in

Python. No language bindings, no foreign function interfaces, no serialisation protocols beyond

the Pulse structure itself. The Intention Loop perceives only state—it is agnostic to the language

that produced it.

Logic, in this model, is not something you write in code. It is something you declare as required
state, and the system perceives its realisation.

4. ARCHITECTURE & IMPLEMENTATION

4.1. System Architecture
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Figure 1: CPUX System Architecture
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4.2. Golang Implementation

The full implementation of Intention Space as a platform is in progress at Keybyte Systems. Key
components include:

. Pulse & Signal : Immutable data structures with deep copy enforcement

. Intention : Carrier with device/user attribution

. Design Node : With SyncTest and execution logging

. Object : Declarative reflection with state persistence

. CPUX : Execution path with device fingerprinting and audit trail

4.3. Design Node Template

A Design Node functions as a waiting worker that only acts when the right conditions appear.
Unlike traditional functions that are called directly, a Design Node declares what it needs, what it
produces, and what it does—then waits for the Intention Loop to activate it.

One DN, Multiple Intent Pairs

A Design Node is unique within Intention Space, but it is not limited to a single purpose. A DN
can receive multiple distinct Intentions and emit corresponding outgoing Intentions—including
exception cases. However, when a DN participates in a CPUX, the cognitive design pairs one
specific incoming intent with one specific outgoing intent. This pairing is what makes CPUX
flows readable and traceable.

Design Node (unique in Intention Space):

Intent A --> DN --> Intent A
Intent B --> DN --> Intent B
Intent C --> DN --> Exception Intent

CPUX (cognitive pairing):

... ==> Intent A --> DN --> Intent A --> ...

The Object following a DN in a CPUX sequence is able to start a new CPUX if it reflects an
Intention that starts a new CPUX.

The infrastructure supports treating each execution unit and each CPUX independently, but those
details remain outside the scope of this paper.
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The Three Declarations

Every Design Node template comprises three declarations

1. GATEKEEPER: "I wake up when I see these Pulses..."

2. FLOWIN: "When I wake, give me these values..."

3. FLOWOUT: "When I finish, I produce these new Pulses..."

Template Structure in Go
var MyWorker = DesignNode {

// WHAT I NEED TO SEE (my trigger conditions)
Gatekeeper: Signal {
{"order received", true, "Y"},
{"payment validated", false, "U"}, // Not yet done

5

// WHAT I TAKE IN (my inputs)
FlowinNames: []string{"order received", "amount"},

// WHAT I PRODUCE (my outputs)
FlowoutNames: []string{"payment validated", "transaction id"},

// WHAT I DO (pure transformation, no side effects)
Process: func(in Signal) Signal {

/I Your logic here - but remember:

// - Read ONLY from in

// - Return NEW pulses, dont modify anything

// - No calling other services, no database writes

return Signal {
{"payment validated", true, "Y"},
{"transaction id", "txn_12345","Y"},

N

Three rules maintained by DN

1. You do not call it — The Intention Loop calls it when Gatekeeper matches

2. You do not branch inside it — One input shape, one output shape; exception cases are
separate intent pairings, not hidden branches

3. You do not mutate — Take Pulses in, produce new Pulses out, touch nothing else

Benefits of the Template

When every Design Node follows this template:

. The system knows all possible paths at design time

. No hidden logic—Gatekeepers are readable English phrases

. Exception flows are explicit intent pairings, not buried catch blocks

. Testing becomes trivial: given these Pulses, expect those Pulses

. Tracing is automatic: every step logged with its trigger reason
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4. OVERALL EVALUATION AT DECEMBER 2025

We have used the CPUX methodology through several languages like JS ,Go and Rust and have
been encouraged by development of Grid design lookout as a common user interaction interface
with Intention Space across different platforms. We are aiming to bring the platform for general
use in the early part of 2026. What we have observede.g a transition from traditional React]S
App to CPUX based App may introduce an increase of code base of around 20% while
simplifying the components and boosting performance through avoiding re-rendering of
components. The general observation is while CPUX driven approach will bring benefit of
medium to large React App , for simple App with less than 3 components it may be a over
engineering. Also CPUX based App offer easier maintenance and debug pathways ,with design
being explicit outside the code. Following is a link to a GitHub repository that has a small react
App that compares the two approaches.

https://github.com/spicecoder/iptp _paper

5. LLM INTEGRATION

In the CPUX methodology Intentions and Pulses become the common tokens of
computation.Natural language is progression-oriented by nature. It is built to flow — from a
subject to an action to a consequence. This inherent linearity makes it powerful for generating
what comes next, but ill-suited for verifying what must be true. Large Language Models (LLMs),
trained on this linguistic structure, inherit the same trait: they excel at imagining plausible
continuations, but not at enforcing structural truth. They can extend ideas, simulate scenarios, and
suggest next steps — but they cannot guarantee logical soundness, field completeness, or formal
consistency. This is not a weakness of Al It is a reflection of the generative spirit of language
itself. Intention Space accepts this reality. It positions LLMs not as engines of correctness, but as
assistants in semantic exploration. LLMs can propose new Intention Phrases, explore Pulse
transitions, or expand CPUX chains. But the CPUX driven Intention Space enforces correctness
through field-matching, gatekeeper validation, and runtime CPUX identity. In short: LLMs
provide semantic momentum; Intention Space provides the computational truth.

This separation of roles is what makes the architecture both open to creativity and resilient to
drift, thus

. LLMs generate Gatekeepers from business rules

. Design Nodes can wrap LLM calls

. Hybrid workflows mix traditional code + LLM

. Future: LLM-generated complete CPUX from natural language

6. CPUX FOR SOCIAL COMPUTING ACCOUNTABILITY
6.1. The Crisis we face:

online harassment is on the rise,

majority of misinformation from <0.1% of accounts

enormous economic harm from social media abuse

Root Problem : No way to verify who did what, from where, with what intent

6.2. Solution: Behavior as First-Class Address in Intention Space
Intention Space makes every state transition caused in every user uniquely identifiable, traceable,

and accountable. This is explicitly positioned as addressing the "hidden logic problem" that
plagues conventional distributed systems. Intention Space is a quiet acceptance of the reality we
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already live with in computing and design: that every action — whether performed by a human or
a machine — arises within a broader landscape of intent, environment, and consequence. Modern
software often operates on disconnected chunks: APIs, events, tasks, or sessions. But what is
missing is not data — it is continuity. It is the recognition that computation does not occur in
isolation, but within unfolding sequences of design and purpose. Intention Space give us a handle
on this scene —It provides a structure in which behavior can be traced, coordinated, and verified
through intention-bearing units of execution called CPUX Intention Space offer coherence in this
interaction.

Intention Space, behavior is elevated to a first-class address within the computational framework.
This means that every meaningful act—such as registration, login, sending a message, or issuing
a command—is not only executed but anchored through a Common Path of Understanding and
Execution (CPUX). Unlike traditional systems that rely on device-specific identifiers (e.g., MAC
addresses, biometrics, or IP-based tokens), Intention Space ensures security and accountability
through behavioral consistency. A CPUX encodes not just what was done, but also why, by
whom, and in what context—verified by the alignment of gatekeeper PnRs and runtime trails.
Spoofing a device or identity is insufficient; if a CPUX cannot be traced back to a legitimate and
contextually aligned anchor (such as a prior device registration or login CPUX), it is
automatically invalidated. Thus, Intention Space enforces trust by checking whether a new action
is a natural continuation of prior intent—not by the external identity alone, but by its position in
the evolving behavioral trace

Through Intention Space ,every social interaction gets unique, traceable CPUX:

{ ”cpux_id”: ”SOCIAL_POST 0017, ”device id hash”: "SHA256(MAC...)”, "user_id”: "user
12345”, ”intention_chain”: [’compose_post”, send_post™], ”pnr_state”: { “user clicked post”: ”
Y”, ”moderation passed”: ”Y” }, “timestamp’: 2024-12-

05T10:30:00Z”, ”cryptographic_signature™: ”...” }

Benefits:

. Irrefutable identity : Device + User + Intention

. Intent proof : User explicitly clicked ”Post”

. Platform accountability : Moderation decisions visible

. Court-admissible : Forensic evidence

. Bot detection : Patterns visible in CPUX

Surveillance capitalism [19] extracts behavioral surplus opaquely for prediction/markets.
Intention Space with behavior elevated to a first-class address. makes interaction traces
transparent and purpose-bound:

Not "what can we predict?" but "what actually happened?" and opens up new frontiers in the
ownership of social interaction and behavior footprints.

6.3. Privacy vs. Accountability

Intention Space brings in Tiered Disclosure:
. Public : Hashed IDs, intention sequences
. Platform : Real device/user IDs (for moderation)
. Legal : Full details (court subpoena only)

6.4. Implementation Roadmap

We are building the platform with the overall goal

. 2024-2026 : Standards development

. 2026-2027 : Pilot deployments on mid-size platforms

. 2027-2028 : Regulatory mandates

. 2028-2030 : Major platform adoption, Global standard, bot networks eliminated
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7. DISCUSSION & FUTURE WORK

Current Limitations we are addressing:

. SyncTest overhead (mitigated by platform support for real time hash generation for
Gatekeeper )

. Learning curve (mitigated by visual editors)

. Storage costs (mitigated by time-limited retention)

Immediate Future Work:

. Visual CPUX editors with device preview

. Formal verification with device based coherence through out App use.
. LLM-native CPUX generation

. Cross-platform device tracking standards

. Privacy-enhancing technologies (zero-knowledge proofs)

8. CONCLUSION

CPUX eliminates hidden infrastructure logic through:

1.  Design-time declarations in plain language

2. Mechanical enforcement by infrastructure

3. Device-level accountability for social computing

Technical Impact : Zero orchestration code, full traceability, LLM integration
Societal Impact : Restores accountability to social computing while preserving privacy
The choice : Implement CPUX standards now, or wait for the next crisis?

The technology exists. The need is urgent. The time to act is now.
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. Appendix A: Runnable Golang code to run CPUX
/I CPUX Design Node Demo - Simple Version
/I Copy this to https://go.dev/play/to run
//
// This demonstrates the core PnR concept:
// - Pulses as named states with trivalence (Y/N/U)
// - Signals as collections of Pulses
/I - SyncTest matching Gatekeeper against runtime state
// - Design Nodes triggered only when conditions match

package main
import "fmt"

/! CORE TYPES

// Trivalence represents Y (yes/true), N (no/false), U (undecided)
type Trivalence string

const (

Y Trivalence ="Y"
N Trivalence = "N"
U Trivalence = "U"

)

// Pulse is the atomic state unit
type Pulse struct {

Name string

Response interface{}
Trivalence Trivalence

}

// Signal is an immutable collection of Pulses
type Signal []Pulse

// DesignNode is a waiting worker with Gatekeeper conditions
type DesignNode struct {

Name string

Gatekeeper Signal

FlowinNames []string

FlowoutNames []string

Process  func(Signal) Signal

}

/ SYNCTEST: THE ONLY DECISION POINT

/I SyncTest checks if all Gatekeeper pulses match the Visitor signal
func SyncTest(gatekeeper Signal, visitor Signal) bool {

for , gkPulse := range gatekeeper {

found := false

for , vPulse :=range visitor {

if gkPulse.Name == vPulse.Name {

found = true

if gkPulse.Trivalence != vPulse.Trivalence {


https://go.dev/play/
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return false // Trivalence mismatch

}

break

}

}

if found {

return false // Required pulse not present
}

}

return true

}

/! HELPER FUNCTIONS

/I FindPulse retrieves a pulse by name from a signal
func FindPulse(sig Signal, name string) (Pulse, bool) {
for , p :=range sig {

if p.Name == name {

return p, true

H

H

return Pulse{}, false

}

// MergeSignals combines two signals (flowout overwrites existing)
func MergeSignals(base Signal, addition Signal) Signal {

result ;= make(Signal, len(base))

copy(result, base)

for , newPulse := range addition {
found := false

for i, existing := range result {

if existing.Name == newPulse.Name {
result[i] = newPulse

found = true

break

}

!

if !found {

result = append(result, newPulse)
H

H

return result

}

// PrintSignal displays current state

func PrintSignal(label string, sig Signal) {

fmt.Printf("\n%s:\n", label)

for , p :=range sig {

fmt.Printf(" %-25s = %v [%s]\n", p.Name, p.Response, p.Trivalence)
H

H

/! DESIGN NODES

var DN_ValidatePayment = DesignNode{
Name: "Validate Payment",
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Gatekeeper: Signal{

{"order received", true, Y},

{"payment validated", false, U}, // Must be undecided
ys

FlowinNames: []string{"order received", "amount"},
FlowoutNames: []string {"payment validated", "transaction id"},
Process: func(in Signal) Signal {

// Simulate payment validation

return Signal{

{"payment validated", true, Y},

{"transaction id", "txn_98765", Y},

h
5
H

var DN_CheckInventory = DesignNode {

Name: "Check Inventory",

Gatekeeper: Signal {

{"payment validated", true, Y}, / Payment must be done
{"inventory checked", false, U}, // Inventory not yet checked
}5

FlowinNames: []string{"order received"},

FlowoutNames: []string{"inventory checked", "stock available"},
Process: func(in Signal) Signal {

return Signal{

{"inventory checked", true, Y},

{"stock available", true, Y},

H
2
H

var DN_ShipOrder = DesignNode {

Name: "Ship Order",

Gatekeeper: Signal{

{"payment validated", true, Y},

{"inventory checked", true, Y},

{"stock available", true, Y},

{"order shipped", false, U},

)

FlowinNames: []string{"order received", "transaction id"},
FlowoutNames: []string{"order shipped", "tracking number"},
Process: func(in Signal) Signal {

return Signal{

{"order shipped", true, Y},

{"tracking number", "TRK-12345", Y},

H

}s

H

/! INTENTION LOOP

func IntentionLoop(nodes []|DesignNode, runtime Signal) Signal {

pass ;=0

for {

pass++

fmt.Printf("\n========== INTENTION LOOP PASS %d ======—====

\n", pass)

17
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anyExecuted := false

for , dn :=range nodes {
matches := SyncTest(dn.Gatekeeper, runtime)

if matches {
fmt.Printf("\n v [%s] TRIGGERED - Gatekeeper matched\n", dn.Name)

/I Execute the Design Node
flowout := dn.Process(runtime)

// Merge results into runtime state
runtime = MergeSignals(runtime, flowout)

PrintSignal(" Flowout", flowout)

anyExecuted = true

} else {

fmt. Printf("\n X [%s] WAITING - Gatekeeper not matched\n", dn.Name)

H
H

PrintSignal("Runtime State after pass", runtime)

if lanyExecuted {

fmt.Printf("\n=—========LOOP TERMINATED (no DN triggered) ==========\n")
break

H

// Safety limit for demo

if pass > 10 {

fmt.Println("\n[Safety limit reached]")
break

H
H

return runtime

}

/ DEMO SCENARIOS

func main() {
fmt.PrintIn("

" ll)
fmt.Println(" ” CPUX DESIGN NODE DEMO - PULSE PRESENCE/ABSENCE "
fmt.PrintIn("

I| u)

nodes := [|DesignNode {DN_ValidatePayment, DN _CheckInventory, DN_ShipOrder}

/! SCENARIO 1: Complete Flow
fmt.Println("\n\n>>> SCENARIO 1: Order received - full flow should execute")

fmt.Println("

H)

runtimel := Signal{
{"order received", true, Y},
{"payment validated", false, U},
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{"inventory checked", false, U},
{"order shipped", false, U},
H

PrintSignal("Initial State", runtimel)
finall := IntentionLoop(nodes, runtimel)
PrintSignal("FINAL STATE", finall)

/! SCENARIO 2: Missing Order
fmt.Println("\n\n>>> SCENARIO 2: No order received - nothing should trigger")
fmt.Println("

H)

runtime?2 := Signal{

// "order received" is MISSING
{"payment validated", false, U},
{"inventory checked", false, U},
{"order shipped", false, U},

}

PrintSignal("Initial State", runtime2)
final2 := IntentionLoop(nodes, runtime?2)
PrintSignal("FINAL STATE", final2)

/! SCENARIO 3: Payment Already Done
fmt.Println("\n\n>>> SCENARIO 3: Payment already validated - skip to inventory")
fmt.PrintIn("

")

runtime3 := Signal{

{"order received", true, Y},

{"payment validated", true, Y}, // Already done!
{"transaction id", "txn_pre", Y},

{"inventory checked", false, U},

{"order shipped", false, U},

}

PrintSignal("Initial State", runtime3)
final3 := IntentionLoop(nodes, runtime3)
PrintSignal("FINAL STATE", final3)

/! SCENARIO 4: Wrong Trivalence
fmt.Println("\n\n>>> SCENARIO 4: Payment validated = N (failed) - flow blocked")
fmt.Println("

H)

runtime4 := Signal{

{"order received", true, Y},

{"payment validated", false, N}, // Failed, not Undecided!
{"inventory checked", false, U},

{"order shipped", false, U},

}

PrintSignal("Initial State", runtime4)
final4 := IntentionLoop(nodes, runtime4)
PrintSignal("FINAL STATE", final4)
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fmt.Println("\n\n

fmt.Printin("KEY OBSERVATIONS:")

fmt.Println(" * Design Nodes only trigger when ALL Gatekeeper pulses match")
fmt.Println(" * Missing pulse = no match")

fmt.Println(" * Wrong trivalence (Y/N/U) = no match")

fmt.Println(" * Execution order emerges from data state, not code sequence")
fmt.Println(" * No if-then branching in the flow logic")

fmt.Println("

}

ll)
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