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ABSTRACT 

 

This paper presents the design and investigation of performance of a 3-DOF Quanser helicopter 

system using a learning optimal control approach that is grounded on approximate dynamic 

programming paradigms, specifically action-dependent heuristic dynamic programming 

(ADHDP). This approach results in an algorithm that is embedded in the actor-critic 

reinforcement learning architecture, that characterizes this design as a model-free structure. 

The developed methodology aims at implementing an optimal controller that acts in real-time in 

the plant control, using only the input and output signals and states measured along the system 

trajectories. The feedback control design technique is capable of an online tuning of the 

controller parameters according to the plant dynamics, which is subject to the model 

uncertainties and external disturbances. The experimental results demonstrate the desired 

performance of the proposed controller implemented on the 3-DOF Quanser helicopter. 
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1.   INTRODUCTION 
 
The safe, reliable and efficient control of the complex systems (in which there are aircrafts, 
automobiles, electric energy systems, etc.) is essential for our society. Such automatic decision 
and control systems are omnipresent in the modern engineering techniques and have an enormous 
impact in our lives. The intrinsic complexity of such systems shows the need of improvements of 
decision and control methods which provide a guaranteed performance and the satisfaction of the 
prescribed objectives [1]. 
 
The optimazation of sequential decisions or controls that are repeated throughout the process 
comes in various fields, and the optimal control theory provides methods to compute feedback 
control systems that supply an optimal performance. The dynamic programming is a useful 
technique to deal with optimal control problems, although it is usually sensitive to computing, 
once the execution costs are very high, caused by the “curse of dimensionality” [2] to execute it 
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and to obtain better solutions. The controllers optimize the performance functions prescribed by 
the user and normally are designed offline when solving the Hamilton-Jacobi-Bellman (HJB) 
equations. That requires knowledge of a complete model of the system dynamics. Nevertheless, 
in many situations it is difficult to determine the precise dynamic model for practical systems. 
In nature, most organisms act in an optimal way to maintain resources while achieving their 
objectives. Such principle, characterized by strong self-learning and adaptation abilities, 
substantiates the approximate/adaptive dynamic programming (ADP), proposed by Werbos [3, 4], 
which has shown to be efficient to determine real-time optimal control policies in solving 
Hamilton-Jacobi Bellman (HJB) design equations online, forward in time, and it becomes an 
important method of intelligent control for non-linear systems [1, 5, 6]. 
 
In the approximate dynamic programming context, incremental methods are usually used to solve 
the online learning problem of critical network parameters to approximate a value function. 
Among the proposed iterative algorithms to estimate such parameters, we highlight the recursive 
least squares (RLS) learning. The efficiency of RLS methods in incremental actor-critical 
learning is mainly due to its robustness to deal with time variations in regression parameters and 
fast convergence speed compared to stochastic gradient methods [7]. 
 
RLS learning is emphasized under the perspective of the research and the development of ADP 
based control systems. Actor critic structures based on RLS were proposed in [8] to improve the 
efficiency of the conventional heuristic adaptive critic methods. In [9] and [10] the authors 
explore RLS methods to solve learning problems concerning the actor-critic reinforcement. 
Pietquin and others [11] presented a recent advance in temporal difference (TD) methods such as 
Kalman temporal difference (KTD). In this scheme, a Kalman filter is embodied in the estimative 
of the approximation process of the value function using a state space representation. A prior 
development on KTD paradigms is presented in the work by Geist and others [12] for 
deterministic markovi an decision processes. 
 
For many traditional iterative ADP algorithms, it is necessary to build a non-linear system model 
and, then, execute the ADP algorithms to derive an improved control policy. In terms of RLS 
learning to solve the discrete-time algebraic Riccati equation (DARE), also known as HJB-Riccati 
equation, in optimal control problems that are solved by the Heuristic Dynamic Programming 
(HDP) approach, the authors [13] developed methods and algorithms based on the RLS training 
for the online design of the discrete-time linear-quadratic regulator (DLQR). 
 
In contrast to the HDP approach, the Q learning, proposed by [14, 15], is an ADP algorithm based 
on data, which has been called action-dependent heuristic dynamic programming (ADHDP) [16]. 
For the Q learning algorithms, the function Q is used rather than the cost function of the 
traditional iterative ADP algorithms. The function Q, also termed as action value function, 
depends on both the state x and the control action u, which means that it includes the information 
about the system and the cost function, making the obtaining process of control policies from the 
function Q easier than through the traditional functions of performance index. [17]. For such 
characteristics, algorithms based on Q learning are preferable to obtain the optimal control for 
systems with unknown dynamics exclusively from the observed data throughout the system 
trajectories [17]. 
 
This work presents the conception of an RLS-based ADHDP algorithm for the online optimal 
control problem solution. Such iterative learning algorithm is based on policy iteration principle, 
where the policy improvements are performed at every time step along the realization of state 
trajectory towards the optimal policy. This control strategy is directed to the operation of a plant 
in the form of a helicopter with three degrees of freedom (3-DOF helicopter) which aims to 
represent in a simple way the dynamic of a real helicopter with two counter-rotating propellers 
that exempt the necessity of a tail rotor. In order to compensate for the effects of disturbances and 
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variations in plant dynamics, the control system is designed so that the DLQR controller acts in 
real-time in plant control using only input and output signals measured along the system 
trajectory. 
 
This work is organized as follows: Section 2 provides the system of equations of the 3-DOF 
Quanser helicopter system as well as its representation in state space, needed for the construction 
of the reference system to the proposed model. Section 3 provides, briefly, the fundamentals to 
assemble the optimal control design framework, which substantiates in the Bellman equation 
formulation in terms of the function Q, iteration principle of greedy policy and function 
approximation. It also presents the design method of the online optimal control system, that is 
based on the adaptive critic approach, where besides the gains of the DLQR controller are self-
adjustable, the computing of the function Q is fully independent of plant model. The simulation 
results aiming at the optimal control and stabilization of the 3-DOF helicopter and that verify the 
performance of the RLS methods for the approximation of the action value function of the DLQR 
for the proposed algorithm in this work are presented in Section 4. Finally, the conclusions and 
commentaries are contained in Section 5. 
 

2.   SYSTEM DESCRIPTION 
 
The experimental platform used in this research is a three degree-of-freedom (3-DOF) helicopter, 
whose assembly is depicted in Figure 1, and in Figure 2 one can observe the schemes of the 
helicopter. 

 
 

Figure 1. Configuration of the helicopter experimental system and its components: (a) main beam, (b) 
double rotor and (c) counterweight. 

 
The 3-DOF helicopter is assembled over a stable basis and its primary components are the main 
beam, a set of a double rotor and the counterweight. The main beam is assembled in a way that 
allows the rotor assembly to rotate in continuous circles. This rotation movement is called travel. 
It occurs over a vertical axis which goes through a slip-ring and is perpendicular to the basis. In 
the bearing and slip-ring assembly there is a pivot point that allows the main beam to raise and 
lower. This movement is described as pitch or elevation, and it occurs about an axis which is 
parallel to the basis. In the longer end of the main beam, there is another bearing whose axis is 
parallel to the beam. It allows a set of double rotors driven by DC motors to rotate around that 
bearing. The rotational movement of the rotors is referred to as roll, and it occurs around an axis 
that goes through the main beam. The motors may provide collective or differential (cyclic) 
voltage. The collective voltage generates the elevation movement of the main beam, and the 
differential voltage generates the roll movement. The roll movement of the rotors, in turn, 
originates the travel movement of the assembly. In the other end of the main beam, there is a 



10 Computer Science & Information Technology (CS & IT) 

counterweight that reduces the energy requirements in the motors, reducing the effective weight 
of the rotor assembly. 
 
The dynamic of the helicopter can be described by a sixth-order nonlinear model, and for the 
derivation of the equations of the system, a system of coordinates with its origin in the set of 
bearing and slip-ring is used, being the travel (�) the circular movement of the main beam, roll 
(�) the movement of the set of rotors, and elevation (�) the up and down movement of the beam, 
as well as its respective velocities (travel velocity (�� ), roll velocity (�� ), and elevation velocity 
(��)). The corresponding angles are shown in Figure 2. 
 

 
 

Figure 2. Configuration of the helicopter experimental system. 
 
In this way, the state equation can be expressed as 
 �� = �(�, 
) (1) 
 
 

in which � = ��  ��   �  ��   �  �� ��
 and 
 = [
�
�]�, where the control variables 
�and 
�corresponding to the voltages given to the left and right motors, respectively. 

 
To simplify the hypothesis, it is considered that the inertia of the helicopter can be represented 
bypoint masses associated with the body of the helicopter, the counterweight, the gravity center 
of the sustentation bundle, and with the mass position of active disturbance. Besidesthat, there are 
the viscous friction effects in the equations that describe the dynamic of the pitchand travel 
movements, aiming to make it more realistic for the simulation,disregarding the airresistance and 
the angular moment of the propellers that rotate in the same direction. The forcesgenerated by the 
propellers do not depend on the relative movement of the body of the helicopter regarding the air. 
Ultimately, the electromechanical dynamic of the motor-propollers sets is disregarded,which is 
much faster than the movement dynamic of the system as a whole. 
 
The 3-DOF helicopter has been an object of study of several works in the literature, such as [18 – 
21]. Among the proposed models to represent the dynamic of the helicopter, the one presented 
in[19] was used here. Such model was obtained through the formalism of Lagrange, being 
nonlinearand sixth-order. Through some mathematical simplifications, this model can be 
expressed by thefollowing set of differential equations: 
 ��� = �� ��� = ��� ∙ {��(
�� − 
��) + ��(
� − 
�) − �� ∙ ��} 
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��� = �� ��� = ��� ∙ {�� ∙ sin(2��) + �� ∙ cos(2��)} + �$ ∙ sin(��) + �� ∙ cos(��)+ {�%(
�� + 
��) + �&(
� + 
�)} cos (��) ��$ = �� ��� = {��� + ��� ∙ sin(2��) + ��$ ∙ cos(2��)}'�
∙ {�� − �� ∙ �� + [�((
�� + 
��) + ��)(
� + 
�)] ∙ sin(��) + �� ∙ �� ∙ [���∙ sin(2��) + ��� ∙ cos(2��)]} 

 
 
 

(2) 

 
in which ��,��and �$represent the roll, elevation and travel angles (in rad), ��,��and ��represent 
their respective derivatives (rad/s), and 
�and 
�represent the input voltages of the left andright 
motors. The other parameters are constants related to the physical dimensions and masses ofthe 
various components of the helicopter, as well as the constants related to the viscous friction,and 
their used values are presented in Appendix A. 
 

3.   ADHDP FOR ONLINE OPTIMAL CONTROL 
 
The Action-Dependent Heuristic Dynamic Programming (ADHDP) framework for online 
designof discrete linear quadratic regulator (DLQR) control systems is presented in this section. It 
isdescribed how to implement an optimal adaptive control using reinforcement learning guided 
bygreedy iteration schemes and function approximation methods to obtain optimal decision 
policies online in real-time. *learning is a reinforcement learning method that results in an 
adaptivecontrol algorithm for optimal control solution for completely unknown systems. The 
parametrizations of Bellman’s equation, the utility function and the dynamic system assemble the 
frameworkof online optimal control design, where the DLQR control policy is estimated online in 
real-timedirectly from data observed along the system trajectories, this means that the controller 
proposedsolve the Riccati equation without knowing the system matrix. 
 
3.1. Bellman-DLQR Problem Formulation 

 
The models of the dynamic system � and of the control policy ℎ are linear mappings that 
arerepresented for combiners of the states and inputs. The state �(�, , 
,) and decision 
policy ℎ(�,)parameterizations [22] are given by 
 �(�, , 
,) = -�, + .
, (3) 
and 
, = ℎ(
,) = −/
, (4) 
 
where - ∈  ℜ2×2, 4 is the order of the system, � ∈ ℜ2 is the state, . ∈  ℜ2×25, 46 is the amount 
of control inputs, 
 ∈  ℜ2×25 is the control input, and /(∙)∈  ℜ25×2 is the matrix of state 
feedback gains. 
 
The utility function 7 associated with the system (3)-(4) has a quadratic form that is given by 
 7(�,, 
,) = �,�*�, + 
,�8
,  (5) 
 
with weighting matrices * =  *� ≥ 0 and 8 =  8� > 0 symmetric [23]. 
 
For the DLQR control design, the parametrizations of the utility function, Eq.(5), and 
decision(control) policy, Eq.(4), are replaced in the state-value function  <=(�,) =  ∑ ?@',∞@A, 7(�@ , ℎ(
@))to obtain the parameterized DLQR cost function. 
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<=(�) = 7B�, ℎ(�)C +  ?<=�B�, ℎ(�)C (6) 
 
where 0 < ? ≤ 1 is the discount factor. So, the goal is to establish an control or decision 
policyℎ∗that minimizes the discounted sum of the instantaneous costs, which satisfies the 
inequality<=∗(�) ≤ <=(�). According to Bellmman’s optimality principle, the optimal cost <∗satisfiesthe discrete time HJB equation [24], as follows 
 <∗(�)  = min=(∙) {7B�, ℎ(�)C + ?<∗�B�, ℎ(�)C} (7) 
 

3.2. DLQR based onI Learning 
 
The action-dependent heuristic dynamic programming (ADHDP) approach is based on the *learning, which consists of a model free method that estimates the function * for any optimalor 
non-optimal policy [25, 26] based only the state transition cost samples of the instantaneouscost 
function. The function *, or the action-value function, is defined as [27] 
 *=(�, , 
,) = 7(�, , 
,) +  ?<ℎ�(�, , 
,) (8) 
 
From the equation (8), it can be seen that given a fixed policy<=(�) = *=B�, ℎ(�)C.Thus, 
thefunction * and the optimal function *∗can be expressed in the Bellman form by 
 *=(�, , 
,) = 7(�, , 
,) +  ?*ℎ(�,J�, ℎ(�,J�)) (9) 
  *∗(�, , 
,) = 7(�, , 
,) +  ?*∗(�,J�, ℎ(�,J�)) (10) 
 
where the optimal control policy is given by 
 ℎ∗(�,) = arg minNO

*∗(�, , 
,) 
(11) 

 
In [28] and [23], it is possible to see that for the DLQR, the function * is quadratic in terms of P, 
that is, 
 *(�, , 
,) = PQRSPQ (12) 
 
where P,� = [�,� 
,�], and S is the learning matrix associated with the function *, which is 
given by 
 

S = TS�� S�
S
� S

U 
(13) 

 
where S ∈  ℜ(2J25)×(2J25)and the matrices SVV, SVN, SNV e SNN represent the weightings of the 
state � and the control policy 
. 
 
The minimization of the parametrized function * provides the means to determine the 
optimalpolicy 
∗. The gradient equationW* W
⁄ = 0, when solved for 
, gives the optimal policy 
∗,which is described by 
 
∗ = /(S)� (14) 
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where /(S) = −SNN'�SNV 
 
The parametrization *(S) induces a policy parametrization ℎ(S). According to the 
parametrization
 =  ℎ(�, Y) of the control policy, the parameters vector Y is a vectorization of 
the gain matrix/, i.e. Y =  �[\(/) [23]. 
 
3.3. RLS-ADHDPApproximation 
 
The method for online optimal control design that will be described in this section is based on 
theadaptive critic approach and ADHDP algorithms [28, 29]. Such algorithms are developed in 
thecontext of online DLQR control design that provide the solution of the Riccati equation and 
theRiccati optimal gain / using greedy iteration schemes. 
 
Considering the quadratic form (12) and (13), assume that, for nonlinear systems, the function Q 
is parameterized as 
 *(�, 
) = ]�(P)� (15) 
 

for some unknown weight vector ^ = �����  …  �2`��
, where 4a = (4 + 46)(4 + 46 + 1)/2 

corresponds to the number of parameters to be estimated, and a basis functions vector b(P) =
���(P) ��(P)  …  �2`(P)��

, with P, = [�,� 
,�]�.For the parameter vector ^ estimation 
problem, the recursive least squares (RLS) method is considered. Such approach aims at carrying 
out online learning for optimal control via cost function estimatives of a given policy, constructed 
from the data (P, , P,J�, 7(�, , 
,)), which are observed throughout the system trajectory. 
 
The criteria used in the policy evaluation based on optimization make the * learning structure a 
critic adaptive scheme where the policy iteration step (critic network) determines the least squares 
solution to ^,J� 
 (b�(P,) − ?b�(P,J�))^c = �,�*�, + 
,�8
, (16) 
 
and the policy improvement step (action network) determines an improved policy that is given by 
 ℎ,J�(�,) = arg min=(∙) (��(P,)^,) 

(17) 
 
where each pair of weightings * and 8 defines a different controller. Therefore, exploring the 
possible weighing space, one approximates the dynamic programming solution for the optimal 
controller. ADHDP is a method which improves the controller from an iteration to the next, from 
the time instant Q until the instant Q +  1 [29]. 
 
The matrix vectorization and the Kronecker product theory [13, 30] contribute for an approximate 
solution of the HJB-Riccati equation obtained through an iterative scheme such as 
 ��(P,)^, = 7(�,, 
,) (18) 
 
where ^ is the parameter vector corresponding to the matrix S vectorization, ��(P,) is the 
regression vector and 7(�, , 
,) is the target, which are given by 
 �, = P,� ⊗ P,� 

=[P�,,� ; P�,,P�,,; P�,,� ; … ; P2'�,,P2,,; P2,,� ]� − (19) 
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?[P�,,J�� ; P�,,J�P�,,J�; P�,,J�� ; … ; P2'�,,J�P2,,J�; P2,,J�� ]� 
  7(�, , 
,) = �,�*�, + 
,�8
, (20) 

 
The problem consists in determining a parameter vector ^ estimative from a set of pairs of 
observations and regressors {(f(∙), �, , Q = 1, 2, … , g}, taking in accountonline designs for real-
time applications. The least squares estimative of ^ is defined as the vector that minimizes the 
following cost function 
 

h(�, g) = i jk',
k

,A�
[7(�, , 
,) − �,�^]� 

(21) 
 
where j is the forgetting factor, 0 < j ≤ 1, and g is the number ofsample data. 
The least-squares solution of the problem (21) is given by [31] 
 ^k = lk'�mk (22) 
 
wherelk = ∑ jk',k,A� �,�,�is the correlation matrix, 4a × 4a, of the input data vector �, and mk = ∑ jk',k,A� �,7(�, , 
,) is the crossed correlation vector between the LS estimator inputs 
and the desired response. 
 
Through algebraic manipulations, Eq.(22) is developed in a recursive form given by 
 ^, = ^,'� + l,'��,B7(�, , 
,) − �,�^,'�C (23) 
 
where l, is a recursive form given by 
 l, = jl,'� + �,�,� (24) 
 
Applying the matrix inversion lemma to the Eq.(24), the RLS estimation in the forms (23)-(24) 
can be rewritten as 
 ^, = ^,'� + n,B7(�, , 
,) − �,�^,'�C (25) 
 
where 

n, = o,�c = o,'��cj + �,�o,'��c 
(26) 

 
and o, = j'p(o,'� − n,�,�o,'�) (27) 
 
where the matrix Φ, 4a × 4a, is the inverse of correlation matrix/covariance matrix, and r,is thegain vector, 4a × 1. 
 
The ADHDP algorithm main core is developed according to the Eqs.(18)-(22) for 
theonline implementation based on RLS. The observed data throughout the system 
trajectoryis(PQ, PQ+1, 7(�Q, 
Q)) with P, = [�,� 
,�]�. The vectorP,J� = [�,J�� 
,J�� ]�is 
computed using
,J� = ℎ,(�,J�) whereℎ,(∙) is the current policy. A probing noise 
mustbe added to the control input as a conditionto obtain the persistence of excitation, 
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whichis
, =  − /�, + s,[22]. That scheme is capable ofsolving the HJB-Riccati equation 
online with noknowledge of the system dynamics. 
 
3.3.1. tuvw – ADHDP-DLQR Algorithm 

 
TheRLS{-ADHDP-DLQR algorithm has two main blocks that are responsible for the 
policyevaluation and policy improvement steps to determine the control policy based on 
reinforcement learning methods. In the block of policy evaluation, Kronecker product (steps 25-
27) and theequations of the RLS estimator (step 28) are executed so the matrix S is approximated, 
followedby the policy improvement (steps 31-32) block, the latter is a greedy policy with respect 
to theapproximation SaO|}. The block 0 contains the fixed parameters of the system inherent to 
theoptimization problem, which are the weighing matrices * and 8, the matrices - and . of 
thedynamic system, and the discount fator ?. The forgetting factor j, the parameter �, and 
thematrixo   are the necessary conditions for the RLS estimation problem. 
ALGORITHM 1 - RLS{-ADHDP-DLQR  
_______________________________________________ 
1►Block 0 – Initialization 

2 ►Weighting and Dynamic System Matrices – *, 8, -~, .~ 
3►Initial Policy – /) 

4 ►State Resetting – ��6�@�, 4�6�@� 
5► Initial State – �) 
6 ►Discount Factor – 0 < ? ≤ 1 
7 ►RLS{Parameters:�),Γ) 
8 ►Forgetting Factor – 0 < j ≤ 1 
9 ►Iteration Number – g. 
________________________________________________ 
10 ►- Iterative Process 
11 ► forQ ← 0 ∶ g 
12              do 

13                   ►Block 1– Environment Simulation 

14                   Control Noise (Probing noise of control signal) 
15                   s, ← [   ] 
16                   Control Action 
17                   
, ← −/,�, + s, 
18                   States 
19                   �,J� ← -~�, + .~
, 
20                   Next Control Action 
21                   
,J� ← −/,�,J� 
_________________________________________________ 
22                   ►Block 2– Approximate Policy Evaluation 

23►Target Assembling 
24                   7(�, , 
,) ← �,�*�, + 
,�8
, 
25                   ►Basis Set - Kronecker Product 
26                   �, = [P�,,� ; P�,,P�,,; P�,,� ; … ; P2'�,,P2,,; P2,,� ]� − ?[P�,,J�� ; 
27                    … ; P�,,J�P�,,J�; P�,,J�� ; … ; P2'�,,J�P2,,J�; P2,,J�� ]� 
28                   ►Recursive least-square : Update^,J� via RLS recurrence (25)-(27) 
29                   ►Smatrix recovery from vector� 

30                  Sa O|} ←  
��
��
� �� �� 2⁄ … �(4+4[) 2⁄
            �� 2⁄ �(4+4[)+1 ⋯ ��(4+4[)−1 2⁄

⋮             ⋮ ⋱           ⋮�(4+4[) 2⁄ ��(4+4[)−1 2⁄ ⋯ �2` ��
��
�
 

    ____________________________________________________ 
31                   ► Block 3– Policy Improvement (Feedback Optimal Gain K) 
32                   /,J�  ← (SNNaO|})'�(SNVaO|}) 
   _____________________________________________________ 
33                   if�%4�6�@� = 0 
34                       then 
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35                       �,J� ←  ��6�@� 

   _____________________________________________________ 
36   End – Iterative Process 
 

4.   SIMULATIONRESULTS 
 
In this section, the simulation results of the online optimal control design for the 3-DOF 
Helicopter system are presented, using an adaptive critic scheme based on greedy policy 
iterationtechnique.The typical parameters of configuration of the 3-DOF helicopter system are 
presented in AppendixA. The controller design via ADHDP is established aiming at maintaining 
the stabilization of the3-DOF helicopter system in real-time, taking into account the iterative 
process configuration , aswell as the reference policy, which is established offline by Schur’s 
solution [32] for the HJB-Riccati equation. 
 
The linearization for the adopted operation point of the nonlinear model of the helicopter 
wascarried out using the parameters given in Appendix A. The matrices of the linear 
continuousmodel are expressed as: 
 

- =
��
��
��

0 1 00 −0.753 00 0 0−0.098 0   −1.1920 0 0−1.257 0 0

0 0 0 0 0 0 1   0     0          0  0 0         0 0 1        0 0 −0.457��
��
��
 

(28) 
 
And 
 

. =
��
��
��

0 02.814 −2.8140 00.394 0.3940 0−0.035 −0.035��
��
��
 

(29) 
 
The chosen output variables were the roll, elevation and travel angles (� = [��  �]�). 
Besidesthat, since there is no direct transmission between inputs and outputs of the plant, the C 
and Dmatrices were defined as 
 

� = �1 0 00 0 10 0 0
0 0 00 0 00 1 0�and � = [0] 

(30) 
 
For many executed simulations, the influence of the forgetting factor j can be verified in 
theconvergence process for the solution of the HJB-Riccati equation with different values of j. 
Inthis approach, the algorithm presents a revitalization condition due to null-state problems that 
leadthe matrix of regressors to a null rank [7]. So, it is necessary to perform the system 
revitalizationafter each interval 4 �6�@�, which is given by the dimension of the regression vector �,. 
 
For the implementation of the RLS{-ADHDP-DLQR algorithm the initial conditions and 
systemparameters are: an admissible initial policy /); discount fator ?; initial state of the 
system�) = [0.18 − 0.19 − 0.32  0.61 − 0.5]� for the angles in radians and quadratic matrices 
of the cost function respectively given by * = [0.1 0 0 0 0 0;  0 1 0 0 0 0;  0 0 1 0 0 0;  0 0 0 0.01 0 0; … ;  0 0 0 0 1 0;  0 0 0 0 0 1];8 =
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 [10�  0; 0  10�]. The parameters that initialize the proposed RLSestimator are given by vector ^) = 10� ∗ [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 . . . 1 0 0 1 0 1]�; and 
matrix Γ) = 10 ∗ ���×��, where � is na identity matrix of order 4a . The matrices of the 
discretized system for the sampling interval R = 0.1 are obtainedthrough the zero-orderhold 
(ZOH) method. For the simulations the following values of j are considered: 0.7640 and0.9802. 
 
4.1. Forgetting Factor j =  0.764 
 
The evolution of the iterative process of the *-function estimation by the RLS{ − ADHDP −DLQRalgorithm is presented in Figure 3 for a cycle of 5000 iterations, considering the forgetting 
factor j =  0.764. The curves (a)-(f) of Figure 3 represent the convergence behavior of the 
elements £��, £��, £��, £$$, £%� and £&% of the matrix S corresponding to the componentes ��, ���, ���, ��%, ��$and��$ of the parameter vector �, respectively. There was a quick convergence, 
without large oscillations during the transitory period, which was achieved after only 1600 
iterations. 
 
The control strategy was adopted to solve the regulation problem of the helicopter, that is to 
maintain the 3-DOF helicopter in a steady and pre-stablished flight condition, considering 
restrictionsof the helicopter angles (which can be interpreted as obstacles that limit its 
maneuvering space),restrictions of control variables and external disturbance. 
 

 
Figure 3.Evolution of the iterative process for the parameters£��, £��, £��, £$$, £%� and £&% for  

5000 cycle of iterations, with the forgetting fator j =  0.764 − RLS{ − ADHDP − DLQR 
 
Figures 4 and 5 correspond to the control effort and the state trajectories of the 
system,respectively,from the action-environment-observation interactivity of the dynamic system 
simulator for theRLS{ − ADHDP − DLQR algorithm. 
 
From Figure 5, one can observe that the values of the states concentrate in a range that 
correspondsto the equilibrium point of the system. The recurring variations of the control effort in 
Figure 4indicate the effort at regulating, the states in a quick way, so that the plant of the 3-DOF 
Helicopter is in conformity with the pre-established design. 
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Figure 4.Control signal with tracking noise 
 

 
 

Figure 5.States ��, ��, ��, ��, �$and�� of the system for some samples 
 

4.2. Forgetting Factor j =  0.9802 
 
For a cycle of 5000 iterations, the evolution of the iterative process of the *-function estimation 
by the RLS{ − ADHDP − DLQRalgorithm is presented in Figure 6, considering the forgetting 
factor j =  0.980. The curves (a)-(f) of Figure 6 represent the convergence behavior of the 
elements £��, £��, £��, £$$, £%� and £&% of the matrix S correspondents to the componentes ��, ���, ���, ��%, ��$and��$ of the parameter vector �, respectively. There was a subtle convergence, 
without large oscillations during the transitory period, which was achieved after only 1600 
iterations.The same smooth convergence that took place for thefactor j =  0.764also happened 
to the factor j =  0.9802, thedifference between the two factors is the accommodation time. One 
can observe throughout thesimulations that for higher factors the convergence time tends to grow. 
For the forgetting fator j =  0.9802, the convergence was achieved after only 2500 iterations. 
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Figure 6.Evolution of the iterative process for the parameters£��, £��, £��, £$$, £%� and £&% for 5000 cycle of 

iterations, with the forgetting fator j =  0.764 −  RLS{ − ADHDP − DLQR 
 
As for the previous factor, we have in Figures 7 and 8, respectively, the control effort added to 
thetracking noise and the trajectories of the system states. The chosen operating point remains 
thesame, corresponding to the situation in which the helicopter finds itself still with elevation 
angle 14degrees below horizontal position. Suppose that the changes in the forgetting factor 
(disturbances)affect the input variables of the system, as one can see in Figure 8. 
 

 
 

Figure 7.Control signal with tracking noise 
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Figure 8.States ��, ��, ��, ��, �$and�� of the system for some samples 
 
The ADHDP methodology via process of RLS estimation of the optimal DLQR decision policies 
represent a method that performs the RLS approximation of the solution of the HJB-Riccati 
equation in the context of adaptive optimal control project in real-time based on the structure of 
learning by effort over a greedy policy iteration. Such methodology seems pretty 
successfulregarding the control and stabilization of the system of the 3-DOF helicopter, being that 
form a reference for the study and control of systems whose mathematical model is complex for 
the controlprocess in real-time. 
 

5.   SIMULATIONRESULTS 
 
In the present design, the adaptive critic method, based on greedy policy iterations, 
wasemployedfor obtaining solutions of online optimal control problems of discrete-time 
nonlinear systems,especially the control and stabilization problem of a 3-DOF helicopter. 
 
First of all, a mathematical model was adopted for the 3-DOF helicopter system for getting 
aprocess simulator for the ADHDP-DLQR design purpose. In the performance evaluation of 
theRLS{ − ADHDP − DLQRalgorithm, one can verify with respect to the selection of the 
forgettingfactor, its large influence in the convergence process for the solution of the HJB-Riccati 
equation.The aim of the proposed methodology is to improve the ADHDP approach performance 
via RLS estimation of the DLQR optimal decision policies. 
 
The results were promising for the multivariable dynamic system models, since the 
appropriatechoice of the forgetting factor considerably improves the performance of the RLS{ −ADHDP − DLQR method. The use of ¤�¤�factorization, as well as of the *ℛ decomposition 
used inthe critic net of the algorithm are one of our main research topics in the future, aiming to 
overcome problems inherent to the RLS estimation such as the numeric stability loss of the 
covariancematrix, causing a possible convergence loss of the systems under study. 
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